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Abstract As software architecture is a main driver for the software quality,
source code is often accompanied by software architecture specifications. When the
implementation is changed, the architecture specification is often not updated along
with the code, which introduces inconsistencies between these artifacts. Such incon-
sistencies imply a risk of misunderstandings and errors during the development,
maintenance, and evolution, causing serious degradation over the lifetime of the
system. In this chapter we present the Explicitly Integrated Architecture approach
and its tool Codeling, which remove the necessity for a separate representation
of software architecture by integrating software architecture information with the
program code. By using our approach, the specification can be extracted from
the source code and changes in the specification can be propagated to the code.
The integration of architecture information with the code leaves no room for
inconsistencies between the artifacts and creates links between artifacts. We evaluate
the approach and tool in a use case with real software in development and with a
benchmark software, accompanied by a performance evaluation.

1 Introduction

In the development of software systems, the software architecture [32] describes
the software’s general building blocks, including structural and behavioral aspects.
Software architecture is one of the main drivers for software quality. Due to its
importance, software architecture is often modeled in some way, for communicating
and analyzing the architecture. This includes a brief sketch on a sheet of paper and
goes up to extensive specifications in formal languages.
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While the software architecture can be modeled, it certainly will be implemented
using programming languages to build an executable system. The current major
programming languages, such as Java, C, Python, and so on [1], do not provide
abstractions for components and connectors. A translation between the concepts of
architecture specification languages and programming languages is required for a
project, to understand how these concepts are implemented. Developers either create
project-specific conventions to implement architectural features or use one of many
component implementation frameworks. Components are then, e.g., implemented
by a class definition with a name ending with Component within a package.
The component provides interfaces by implementing a corresponding interface,
that is defined in the same package. Conventions like these can be found in many
software systems, often not even documented. Implementation frameworks specify
recurring patterns for implementing architecture information such as component-
based structures. For example, in Enterprise Java Beans (EJB) [23] Java classes
with specific annotations can be used as components.

Both, conventions and frameworks, can be seen as architecture implementation
languages. They consider program code to describe architectural information. But
a program is not complete with an architecture alone. Further program code is
necessary to implement the detailed behavior or fine-grained structures, which is
required to build an executable and functional system. Architecture implementation
languages also need to provide room for such program code.

Languages for specifying and for implementing software architectures share
a common core: components and their interconnection [22]. As they describe
overlapping information, they should be consistent. Undetected inconsistencies may
be the source for misunderstandings and errors in the implementation. Automated
consistency checks can identify whether an architecture specification and its
implementation are in a consistent state. Existing approaches for consistency of
architecture models and implementations usually focus on a pair of specification
and implementation languages (see related work in Sect. 5). New approaches need
to be developed for emerging or evolving languages, which take the specific features
of the languages into account and respect existing, non-architectural program code.

A variety of software architecture specification languages exist, such as dedi-
cated architecture description languages (ADLs) [18] or general-purpose modeling
languages, that are feasible to describe software architectures, such as the Unified
Modeling Language (UML). The different languages provide different features,
including component hierarchies, different types of connectors, or different concepts
of abstract behavior. The implementation of software architecture is similarly
diverse. This diversity is a challenge for maintaining the consistency of architecture
implementations and specifications.

This chapter presents the following main contributions:

1. The Explicitly Integrated Architecture (EIA) approach automatically maintains
the consistency of implemented and specified architectures. It translates between
program code and architecture models, by extracting architecture models from
code and propagating model changes back to the code. It takes the difference of
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architecture languages into account and reduces the effort for integrating new or
evolved languages into the architecture model/code translation.

2. The Model Integration Concept is an approach for translating between program
code and software design models using translation patterns.

3. The Intermediate Architecture Description Language is an intermediate language
to translate between different software architecture languages.

4. Architecture Model Transformations based on the Intermediate Architecture
Description Language translate between software architecture languages.

5. The tool Codeling1 implements the EIA approach and has been used for
evaluation in synthetic and real environments.

6. A code generation tool generates concrete model/code translations from transla-
tion patterns.

We will present our approach as follows: In Sect. 2 we present our approach.
Codeling is presented in Sect. 3. We describe the evaluation and discuss its results
in Sect. 4. Related work is presented in Sect. 5, before we conclude in Sect. 6 and
present the future work.

2 The Explicitly Integrated Architecture Approach

The Explicitly Integrated Architecture (EIA) approach extracts architecture models
from code and propagates model changes back to the code. Using the proposed
approach, architecturemodel information is integrated with program code. The code
will be structured in a way that architecture meta model and model elements and
their properties can reliably be extracted and changed. Non-architectural code is not
overwritten when model changes are propagated.

Figure 1 sketches an overview of the approach. Artifacts of the approach are
representedwith rounded boxes and translations between these artifacts with arrows.
The parts of the approach are used to bidirectionally translate between program code
and a specification model expressed in an architecture specification language. They
are underlined in Fig. 1.

1. Program Code: the implementation of a software following the standards of an
architecture implementation language

2. Implementation Model: an abstract model view upon the program code, which
complies to an architecture implementation language

3. Translation Model: an intermediate model view for translating between an
implementation model and a specification model

4. Specification Model: a specification of architectural concerns using an architec-
ture specification language

1The tool Codeling and its accompanying code generator are available at https://codeling.de as
open source, licensed EPL 1.0.

https://codeling.de
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Fig. 1 The view types of the EIA approach and the means to translate between them (underlined)

The EIA is comprised of four parts:

1. The Model Integration Concept integrates models and meta models with
program code. It is used to create well-defined translations between program
code structures, model elements, and meta model elements. It extracts arbitrary
design models from code and propagates changes in the models to the code again.

2. The translation model reduces the number of translation definitions required
between architecture implementation and specification model languages. We
define the Intermediate Architecture Description Language (IAL) to express
translation models.

3. Architecture Model Transformations are used for the translation between
models of different languages and for transformations within models of the IAL.

4. The Explicitly Integrated Architecture Process describes how these areas are
used to achieve the overall objective.

While the Model Integration Concept would suffice for extracting architecture
models from code, it does not provide the necessary flexibility to handle new and
evolving languages with different features. The IAL and the transformations are
required to fulfill these objectives.

2.1 Explicitly Integrated Architecture Process

The Explicitly Integrated Architecture Process [11] is visualized in Fig. 2. It starts
from program code that complies to an implementation model, including code that
has not been developed using the process yet. An empty code base can also be a start
for green field development. The process defines three main steps for each direction.
For extracting a specification model, the following steps are executed:
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Fig. 2 Overview of the Explicitly Integrated Architecture Process

Step 1 extraction of a translation model from the program code via an implemen-
tation model;

Step 2 preparation of the translation model according to the features of the
involved languages;

Step 3 translation of the translation model into a specification model.

For propagating the model changes to the code, reverse steps are executed:

Step 4 translation of the specification model into a translation model;
Step 5 preparation of the translation model according to the features of the

involved languages;
Step 6 integration of the translation models with program code via an implemen-

tation model.

Fig. 3 Details of the steps 1 and 6 of the Explicitly Integrated Architecture Process

The steps 1 and 6 for model/code transformations are detailed in Fig. 3. Step 1
creates a translation model based on the program code. First, step 1.1 translates
the code into an implementation model using the Model Integration Concept.
Then, step 1.2 creates a translation model from the implementation model using
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architecture model transformations. Step 1.3 adds architecture information in the
program code that cannot be expressed with the implementation model language to
the translation model using the Model Integration Concept. To propagate changes in
the translation model to the code, step 6.1 first translates the transformation model
into an implementation model, before step 6.2 changes the code according to the
changed implementation model. Step 6.3 then changes the code according to the
translation model, with the architecture information that the implementation model
language cannot express.

During the following steps, trace links [35] are created or used: Trace links
between code and model elements are created in steps 1.1 and 1.3, and between
model elements of different modeling languages in the steps 1.2 and 3. That is,
in all steps from the code to the architecture specification model, trace links are
created. Step 4 propagates the changes in the specification model to the translation
model. The transformations require the trace links of step 3 to identify which
model elements were created in step 3 and to identify changes. Step 6.1 uses the
trace links of step 1.2 to propagate model changes in the translation model to the
implementation model. The steps 6.2 and 6.3 use the model/code trace links of the
steps 1.1 and 1.3, respectively, to identify the affected code elements. That is, during
each stop during the change propagation, the corresponding traces from the model
extraction are used.

2.2 Model Integration Concept

The Model Integration Concept (MIC)2 describes how model information is inte-
grated with program code. Models in the term of this approach are always based on
meta models. Other models, such as mathematical functions, are not meant here. In
Fig. 1 the concept provides vertical integration. It is used to integrate and extract
architecture model information from an implementation model and the translation
model with/from program code. For doing so, the MIC defines bidirectional formal
mappings between program code structures and an implementationmodel expressed
in a meta model of an architecture implementation language. As an example, a Java
class that implements a specific marker interface might represent a component, and
static final fields within this class definition represent attributes of this component.
With the MIC, the code is statically analyzed for program code structures that
identify implementation model elements. Changes in the model are propagated to
the code, following the mapping definitions.

Figures 4 and 5 show example mappings. Figure 4 shows a meta model/code
mapping for the class Component with the attribute name of the type String. Meta
model elements are shown on the left side. The right side shows Java program code,
which represents this meta model element. The meta model class is represented

2Some of the ideas behind the Model Integration Concept were first described in [14].
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with the declaration of an annotation with the name Component. The attribute
name is not declared in the meta model/code translation. This attribute is subject
to the model/code translation in Fig. 5. The declaration of the annotation has a
meta annotation Retention, declared RUNTIME, which means that the declared
annotation will be part of the compiled byte code and is processable in the running
system.

Fig. 4 An example of a meta model/code mapping

Figure 5 shows a model/code mapping for a model that instantiates the given
meta model. The left side shows an instance of that meta model, a single object
of the Component class, with the name BarcodeScanner. The right side
shows their Java program code representation. The program code declares a type
BarcodeScanner. The annotation Component is attached to the type. The
type’s body is a so-called entry point. That is, arbitrary code, such as attributes
and operations, can be added here without breaking the model/code relationship.

Fig. 5 An example of a model/code mapping

Such (meta) model/code mappings in the MIC are the basis for generating three
types of artifacts:

1. Bidirectional transformations between model elements and program code build
a model representation based on a given program code, so that developers can
extract an integrated model from program code. They also have to propagate
model changes to the code, i.e., create, delete, and change program code based
on model changes. It has to be ensured that these translations are unambiguous.
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2. Meta model/code translation libraries are program code structures, which
represent meta model elements. In the example, this is the annotation declaration.
This program code can be generated once. The results can be used as libraries,
as long as the meta model does not change.

3. Execution runtimes can be generated for model elements. These runtimesmanage
the operational semantics of integrated models.

2.2.1 Integration Mechanisms

Integration mechanisms are templates for model/code mappings. They describe
a mapping between program code structures and symbolic meta model elements
or symbolic model elements. Each comprises a meta model/code mapping for
translating a meta model element type and a corresponding model/code mapping
for translating instances of that element. Integration mechanisms can be instantiated
by applying them to a specific meta model or model, i.e., by replacing the symbolic
elements with specific elements.

We identified 20 integration mechanisms by building upon existing Java-based
architecture implementation languages such as JEE [23] or OSGi [33]. Some are
based on the work of Moritz Balz [4]. Figures 4 and 5 show mappings for the
integration mechanism Annotation Type for translating objects in the model using
the Component as an example. Further mechanisms exist for objects (e.g., marker
interfaces), attributes (e.g., constant static attributes), and references (e.g., annotated
references to other objects). Konersmann’s PhD thesis [12] formally describes the
current set of integration mechanisms for Java with formal definitions, examples,
and a discussion of the effects and limitations of each mechanism.

The integration mechanisms are an important part of the MIC to reduce the effort
for developing bidirectional model/code transformations and execution engines. For
integration mechanisms, reusable generic code generators for transformations, meta
model code libraries, and execution engines have been developed. When they are
instantiated with meta model elements, the respective code can be generated (see
the tool support described in Sect. 3) for the concrete mappings.

2.2.2 Operational Semantics

Two types of operational semantics exist for model elements in the context of the
MIC [13]:

1. Language semantics can be implemented in the runtime. Here each instance of a
model element has equal semantics, e.g., when a component is instantiated, it is
registered at a registry. These semantics apply to each component instance.

2. Model semantics can be implemented within the individual model/code struc-
tures. Here each instance of a model element has individual semantics, e.g., when
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a component is instantiated, individual initialization code should be called, which
can be defined by a developer.

In the latter, for executing such implementation details, translations within the MIC
may declare entry points. Entry points may contain arbitrary code, which is not
considered a part of the bidirectional model/code translation. The initialization code
stated above can be implemented within operations provided by the model/code
structures. An execution runtime will then execute these operations.

2.3 Intermediate Architecture Description Language

The Intermediate Architecture Description Language (IAL) mediates between
architecture implementation models and architecture specification models. It has the
role to increase the interoperability of the approach with different specification and
implementation languages. The IAL has a small core with the common elements
of architecture languages [21]. The core is extended with a variety of stereotypes
to represent, e.g., different kinds of interfaces, component hierarchies, or quality
attributes. Models expressed in the IAL are called translation models.

The core comprises the following elements: The Architecture is the root node
that represents a software architecture comprising interconnected components. The
class ComponentType represents a named component type. Interfaces can be used
as an abstract definition of named interfaces for component types. Component types
can provide and require interfaces.Component Instances represent the runtime view
on components’ types. The provision and requirement of interfaces is instantiated,
respectively.

Profiles add further concerns to the architecture language. Such concerns include,
e.g., different types of connectors, component hierarchies, types of interfaces, or
quality aspects. Profiles can be categorized regarding their abstract concern, e.g.,
the profiles Flat Component Hierarchy and Scoped Component Hierarchy both
handle the abstract concern of the component hierarchy, or Time Resource Demand
and Security Levels both handle software quality concerns. Some categories are
mandatory, meaning that at least one profile has to be used when an architecture is
described. One kind of component-type hierarchy must be chosen. Some categories
contain only optional profiles, e.g., no software quality profile is necessary to be
used.

Figure 6 shows the profiles of the IAL and their interrelationships regarding
their interpretation. The rectangles are categories of profiles, which share an
abstract concern. The rectangles with rounded corners represent profiles. Mandatory
categories (which have a solid border in Fig. 6) require at least one profile to be
used. The profiles and their application are described in detail in Konersmann’s PhD
thesis [12]. Considering the objective of the language, in the futuremore profiles and
categories can be added.
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Fig. 6 An overview of profiles of the Intermediate Architecture Description Language and their
interrelationships

2.4 Architecture Model Transformations

Two types of architecture model transformations are part of the EIA approach. First,
transformations between architecture specification languages and the IAL as well
as transformations between architecture implementation languages and the IAL are
used to create a mapping between architecture specifications and implementations
on a model level. Second, transformations within the IAL allow for translating
between different related profiles of the IAL. In Fig. 1 the architecture model
transformations provide the horizontal integration.

2.4.1 Transformations Between Architecture Languages

Transformations between architecture languages and the IAL can be defined in
any model transformation technique that allows for exogenous transformations, i.e.,
transformations from one language to another [19].
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In the implementation of the tool Codeling, we use triple graph grammars
(TGGs) [26] based on attributed, typed graphs [6]. In these typed graphs, the graphs
are considered models and the type graphs are meta models. A TGG describes triple
rules, which declare how two graphs can be produced in alignment. They comprise
a source graph, a target graph, and a correspondence graph. In our approach, one
of these graphs is always a model expressed in the IAL. The triple rules are used
to derive production rules and propagation rules in the context of our approach.
Production rules describe how to construct a target graph from a given source graph.
Propagation rules describe how to propagate changes in a target model back to the
source model.

In our approach, TGGs are used:

1. to produce a translation model from an implementation model,
2. to produce an architecture specification model from the translation model,
3. to propagate changes in the specification model to the translation model, and
4. to propagate changes in the translation model to the implementation model.

We developed TGG rules for the Palladio Component Model (PCM) [5], a subset
of the UML, JEE [23], and a project-specific architecture implementation language.
Details on the specific rules are given in Konersmann’s PhD thesis [12].

2.4.2 Transformations Within the IAL

The IAL comprises several profiles that are mutually exclusive (see Sect. 2.3). As
an example, when an architecture is modeled with hierarchical component types
and, at the same time, as flat component-type hierarchy, this information would
be inconsistent. Nevertheless, an architecture can be expressed in an architecture
implementation language that defines component-type hierarchies and should be
viewed in an architecture language that can only model flat hierarchies. To respect
these situations, the approach defines transformations between mutually exclusive
IAL profiles, which are called inter-profile transformations. In the EIA process,
both profiles are used in the IAL at the same time, leaving inconsistent information
in the translation model. The architecture model transformations toward the target
specification language only use the information they can handle, leaving trace links
in the process. When changes in the specification model are translated into the
translation model, the missing information is restored by exploiting the trace links.
Details on the inter-profile transformations are given in Konersmann’s PhD thesis
[12].

3 Tool Support

We developed the following tools for the approach. Figure 7 gives an overview of
the tools and their input and output. Codeling is the tool for executing the Explicitly
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Integrated Architecture Process. It creates architecture specification model views
upon program code, propagates changes in the model to the code representation,
and can migrate program code from one architecture implementation language to
another. Libraries in the context of Codeling support the development and execution
of model/code transformations and architecturemodel transformations, including an
automated selection and execution of inter-profile transformations.

The code generation tool exploits the definition of integration mechanisms for
the Model Integration Concept. The tool’s user maps integration mechanisms to
elements of meta model elements. We developed a library of abstract transforma-
tions and execution runtimes for integration mechanisms, to decrease the effort
for creating specific transformations and execution runtimes, where integration
mechanisms can be applied. Based on the library of these abstract transformations
and execution runtimes, the code generation tool then generates a meta model code
library, model/code transformations, and execution runtime stubs.

Fig. 7 An overview of the tools and the artifacts they use as input and output

3.1 Codeling

Codeling is a development and execution platform for extracting architecture
models from code and for propagating changes in the models back to the code.
It implements the process presented in Sect. 2.1 and provides a set of libraries to
support the development of concrete transformations between program code and
models.



Same but Different: Architecture Models and Their Implementation 99

Codeling is implemented with a modular architecture, which allows integrating
further architecture implementation or specification languages, using different types
of model/code or model-to-model transformation technologies.

Three types of use cases can be executed with, or are supported by Codeling:

1. For a code base, architecture specification models of different languages can be
extracted, and changes in these models can be propagated to the code.

2. When a set of rules or a normative architecture exists, Codeling can extract the
actual architecture from the code to check the architectural compliance of the
source code.

3. By translating program code into the IAL and back to another architecture
implementation language, Codeling can be a part of software migration. Only
architecturally relevant code can be migrated. Further program code needs to be
migrated by other means.

3.1.1 Model/Code Transformations

Libraries for the steps 1.1 (Code to ImplementationModel), 1.3 (Code to Translation
Model), 6.2 (Implementation Model to Code), and 6.3 (Translation Model to Code)
of the process comprise a hierarchy of abstract classes to assist the development of
concrete model/code transformations. The class hierarchy supports the transforma-
tion of Java code into Ecore [30, Chapter 5] based models and to propagate changes
in the Ecore models to the Java code using the Eclipse Java Development Tools.3

A transformation of code into a model representation is executed in a tree
structure, following containment references in the meta model: A root transfor-
mation object first translates the root code element—usually the projects at the
given paths—into a model representation, the root node of the targeted model. The
transformation objects store references to the code and the corresponding model
element, effectively creating a trace link between the code and the model.

After the translation, the transformation object is added to a transformation
object registry. This registry can be used later to retrieve model elements, which
represent specific code elements or vice versa. At last, the transformation creates
child transformation objects for its attributes and containment references and adds
them to a pool of tasks.

Transformations for classes have transformations for their attributes and con-
tainment references as child transformations. Transformations for attributes have no
child transformations. Reference transformations, including containment reference
transformations, have transformations for their target objects as child references. If
a containment reference is translated from a code to a model representation, the
targets of the reference do not exist, because they have not been translated yet.

3Eclipse JDT—https://www.eclipse.org/jdt/.

https://www.eclipse.org/jdt/
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Transformations for non-containment references first wait for the transformation
of the target objects.

3.1.2 Model-to-Model Transformations

To execute model-to-model transformations between an architecture implemen-
tation or specification language and the IAL (the exogenous transformations in
steps 1.2, 3, 5, and 6.1), Codeling provides helper classes to execute HenshinTGG
[15] rules to create the target model or to propagate changes from a changed
target model to a source model. Other technologies for defining exogenous model-
transformations can also be applied, as long as change propagation is possible.

Codeling uses Henshin [6] rules for inter-profile transformations in step 2 and
step 4. It derives the information about which inter-profile transformations have
to be executed during the process execution. The information is based on the IAL
profiles that are used in the HenshinTGG rule definitions between the IAL and the
architecture implementation and specification languages.

3.1.3 Process Execution

Figure 8 shows a simple example of the Explicitly IntegratedArchitecture Process in
action. In this example an EJB Session Bean CashDesk is added to an existing
bean BarcodeScanner. The CashDesk is declared to be the parent of the
BarcodeScanner.

(1) shows the program code for the bean BarcodeScanner.
(2) The implementation model is built by scanning the program code for

mapped structures based on the Model Integration Concept. In this example a type
declaration with an attached annotation Stateless is identified. The name of the
declared type is identified as the name of the bean.

(3) The implementation model is translated into a translation model, an instance
of the IAL.

(4) The translation model is translated into a specification model. The specifica-
tion model in the example is represented using a UML component diagram. In an
evolutionary step, a parent component named CashDesk is added.

The changes are propagated to the code as follows:
At (5) the architecture specificationmodel is translated into the translationmodel.

A new ComponentType with the name CashDesk is created, with a stereotype that
allows to add children to a component type.

(6) The translation model is translated into an implementation model. In this
model the hierarchy cannot be represented, because the EJB specification does not
define component hierarchies.

At (7) the program code is adapted corresponding to the changes in the
implementation model. That is, the type CashDesk is created.
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Fig. 8 An example of the Explicitly Integrated Architecture Process

(8) The architecture information that has no representation in the implemen-
tation model is translated into the code using the Model Integration Concept. In
this example, the hierarchy is translated as a field in the Java-type declaration
BarcodeScanner with the annotation EJB. This is an annotation of the EJB
framework, which specifies that an instance of the bean BarcodeScanner has to
be injected. Additionally, this field has the annotation ChildTypes, which marks
the reference an instance of the childTypes reference. To remove the hierarchy, the
code could be translated into a model using the process. As an alternative, the
respective code element could be removed.

It should be noted that the hierarchy could also have been created in the terms of
the approach by simply adapting the code accordingly, because the models can be
derived automatically.
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3.2 Code Generation Tool

Codeling provides libraries and components for defining and executing transla-
tions as defined by the Explicitly Integrated Architecture approach. This includes
the definition of bidirectional model/code transformations and meta model code
libraries, which, e.g., include annotations or interface definitions used by the
transformations. Developing such transformations and meta model code libraries
can be cumbersome and error-prone. The integration mechanisms can be used as
templates for generating model/code transformations and program code libraries
for meta model code. The Code Generation Tool generates the following artifacts
(see Fig. 7):

1. A meta model code library with code that represents architectural meta model
elements.

2. A set of model/code transformations for extracting a model from code and
propagating changes from the model to the code, which follow the integration
mechanisms.

3. Execution runtime stubs for the program code that is generated by the aforemen-
tioned transformations.

To generate these artifacts, the generator requires two items as input:

1. A language meta model, which describes the architecture implementation lan-
guage concepts in Ecore.

2. A mapping between meta model elements and integration mechanisms, which
describes which integration mechanism is to be instantiated for each meta model
element.

As the generated transformations follow the integration mechanisms, they reli-
ably extract model elements from the code and propagate changes from the model
back to the code. A hierarchy of abstract classes have been prepared to add new
translations for further mechanisms. However, especially for existing component
frameworks, model/code mappings might not follow the existing integration mech-
anisms or require slight deviations from existing mechanisms. For these mappings,
translations have to be programmed manually, using the aforementioned hierarchy
of abstract classes. If a mapping only deviates slightly from an existing mechanism,
the generated translation can be manually adapted. In each of the use cases shown in
Sect. 4, an adaptation of generated mechanisms was necessary. For both use cases,
some translations had to be defined manually.

3.3 Execution Runtimes

Within Codeling we developed a framework for implementing execution runtimes
for models that are integrated with program code [13]. These runtimes are based
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on Java’s reflection mechanism to analyze the code, inject instances, and invoke
operations at run-time. The framework comprises a set of abstract classes, which
have to be extended for implementing specific runtime classes. For each imple-
mented integration mechanism, an abstract runtime class exists. For implementing
an execution runtime for a meta model, we map integration mechanisms to each
class, reference, and attribute declared in the meta model. The code generation tool
then generates an execution runtime class for each of these pairs. This creates a tree
of execution runtimes, one for each meta model element. These generated execution
runtime classes contain functionality to instantiate objects, set reference targets, and
attribute values based on the underlying integration mechanism. The operational
semantics of the modeling language can be implemented in these classes. The
runtimes can effectively be seen as interpreters for the integrated models. They
can also trigger operations to invoke code, which is declared in an entry point, and
therefore trigger the execution of model semantics, which are expressed in program
code (see Sect. 2.2.2).

4 Evaluation

For evaluation purposes, the approach has been applied in four use cases: The first
use case translates the JEE program code of an e-assessment tool into a UML model
with components, interfaces, operations, and their interconnection and propagates
changes in the model back to the code. The second use case translates the program
code of the Common Component Modeling Example (CoCoME) [10] into a subset
of the Palladio Component Model (PCM) [5]. The third use case translates the
CoCoME system into the UML as another architecture specification language. The
fourth use case translates the CoCoME system into JEE as another architecture
implementation language. In the following sections we will elaborate on the first
and second use cases. All use cases are described in detail in Konersmann’s PhD
thesis [12].

4.1 Use Case JACK 3

In the first use case, the development of the e-assessment tool JACK 3 is supported
by generating an architectural view in the UML specification language. JACK 3 is
the designated successor of the e-assessment tool JACK 2 [31], developed at the
working group “Specification of Software Systems” (S3) of the institute paluno of
the University of Duisburg-Essen, Germany. Its predecessor is used in the teaching
and assessment of various disciplines, including programming, mathematics, and
micro-economics. JACK 3 comprises two parts: a back end written in Java using
the Eclipse platform as architecture implementation language, and a front end
written in Java, based on the Java Enterprise Edition 7. The front end defines a
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user interface, data definitions, and business logic for e-assessments. The back end
evaluates solutions against the defined standard solutions. It is not changed during
the development of JACK 3. Therefore, this use case focuses on the front end for
supporting the development of JACK 3.

This use case translates a subset of JEE technologies (EJB 3.2, CDI 1.2,
and JSF 2.2) into a UML component diagram and back. JEE is a standardized
set of frameworks and APIs for enterprise systems. Application servers act as
execution runtimes, which analyze the code before execution, e.g., to instantiate
and interconnect JEE components (beans) or to provide web-based interfaces
(e.g., REST interfaces or web services). The use case also adds time resource
demand information to operations in the specification model. JEE as architecture
implementation language cannot express this information. This use case shows that
such differences are taken into account by the approach.

For this use case, we generated and adapted model/code transformations for JEE
code. The architecture implementation language JEE defines source code structures
that represent architectural concepts, and platforms that execute the code. As no
Ecore meta model for JEE was publicly available, we created a meta model of
JEE with 11 classes, 16 references, and 22 attributes, which represent structural
elements, i.e., interrelated beans and data entities in namespaces and archives, and
their operations and attributes, as part of the use case.

We assigned integration mechanisms to 6 classes, 11 references, and 12
attributes. Some mechanisms had to be adapted to match the requirements of JEE-
compliant code. For the other elements, we developed individual transformations
based on the abstract transformations in Codeling. The project has 12307 lines of
Java code (NCLOC). The resulting model has 2446 objects with 45,354 reference
instances. On a computer with an Intel i5-8250U CPU and 16 GB memory on
Ubuntu Linux 18.04.2 and OpenJDK version “11.0.4” 2019-07-16, the median
model extraction time is about 5 s.

Furthermore, model-to-model transformations between JEE and the IAL were
defined using HenshinTGG. Our TGG for JEE and the IAL comprises 35 rules.
Another TGG was developed to translate between the IAL and a subset of the UML.
That TGG comprises nine rules.

The extracted architecture of JACK comprises 36 UML components that are
interconnected via 33 interfaces in a correctly layered architecture. It helped the
developers to understand that they implemented their architecture correctly and to
see how the components in the layers are interconnected. The resulting UML model
is changed in the use case by adding, changing, and deleting elements. Codeling
automatically changes the code according to the changes in the UML model.

Propagating a single renaming of a component, which is translated with the Type
Annotation mechanism, from the UML model to the code takes about 5 s on the
computer described above. The tool uses code refactoring operations to propagate
this code change. For the model extraction, the main drivers for execution time
are the size of the code to be analyzed and the size of the resulting model. For
propagating model changes, the main drivers are the size of the model and the
number of changes.
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4.2 Use Case CoCoME in PCM

In the second use case, the program code of the Common Component Modeling
Example (CoCoME) [10] is translated into a subset of the Palladio Component
Model (PCM) [5]. CoCoME has been developed as a benchmark for comparing
software architecture languages. The original CoCoME benchmark artifacts provide
the context, the requirements, the design, and the implementation of a system. The
system drives the business for an enterprise that runs multiple stores. Each store
contains multiple cash desks in a cash desk line [10].

CoCoME does not follow a standardized implementation framework like JEE
but comes with a custom style of implementing components and their interaction.
This use case shows how Codeling can be applied to software that does not follow
the coding conventions of industry standard platforms but follow project-specific
coding conventions. In CoCoME components are implemented using Java classes
with coding conventions and a set of methods to implement, alongside with a set of
adjacent classes to refine the component. The code structures are not systematically
implemented, so that minor changes had to be made to the code base, to define
working mappings.

A meta model for the implementation structure had to be created first, before
mappings could be implemented. Our meta model of CoCoME’s structure contains
12 classes, 13 references, and 1 attribute. 4 classes and 4 references could be trans-
lated using integration mechanisms or variations thereof. For the other elements, we
developed individual mappings based on the abstract transformations in Codeling.
The project has 9425 lines of Java code (NCLOC). The resulting model has 121
objects with 1357 reference instances. On the computer described above, the median
model extraction time is about 0.6 s. The first extraction takes longer (about 3 s),
because the Ecore environment and the meta model need to be loaded.

4.3 Further Use Cases

The third use case translates the CoCoME code into a UML model as another
architecture specification language. For this use case, we reused transformation
rules between the IAL and the UML. A UML architecture description is part of
the CoCoME artifacts. We extracted the UML architecture from CoCoME using
our approach and compared it to the UML architecture model in the CoCoME
artifacts. As the code conventions in CoCOME are not systematically implemented,
the extracted architecture initially did not match with the normative architecture.
Minor changes had to be made to the code base, to extract a matching architecture.
This use case shows not only that architecture specifications in different languages
can be extracted from the code, it also shows that, with a normative architecture
specification at hand, Codeling can be used to validate the implemented architecture
against an architecture specification.
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The fourth use case translates the CoCoME system into JEE as another archi-
tecture implementation language. The use case shows how Codeling can be used
as a part of software migrations between different architecture implementation
languages. In this use case, only the steps 1 (Program Code to Translation Model),
2 (Inter-Profile Transformations), and 6 (Translation Model to Program Code) are
executed. Step 1 of this use case is equal to step 1 of the CoCoME use case. In
step 2 instead of targeting the UML for translation, the architecture implementation
language JEE is chosen. JEE provides only a flat component hierarchy, while
the CoCoME architecture implementation language uses a scoped component
hierarchy. Therefore, other inter-profile transformations are executed. Steps 3 to
5 are omitted in this use case, because no architecture specification language is
involved. In step 6 a TGG is applied that is close to the one that has been used
in the JACK 3 use case. The JACK 3 team had special conventions how to handle
Java EE code, which did not apply in the CoCoME use case. Furthermore, the same
architecture implementation language meta model and model/code transformations
were used as in the JACK 3 use case.

The translation results in a new project within the Eclipse IDE, with an
architecture skeleton of CoCoME in JEE 7. The parent–child relationship between
components in the CoCoME architecture cannot be implemented in JEE, because
JEE uses flat component hierarchies. In step 6, therefore a new model/code
transformation has been added, to integrate the parent–child relationship between
components. A Java annotation @Child now indicates whether a referenced bean
is the child of another bean.

4.4 Discussion

The execution of the case studies suggested that the transformations can require
considerable execution times. Translating from the code to a UML representation
in the JACK use case required about 225 s on the computer stated above. The
backwards translation of the changed model to changes in the code required about
330 s. No information about operation parameters was included in the code-to-
model translations, because the translation required multiple hours when parameters
were also translated. The CoCoME case studies required 170 s for the translation to
the PCM, and 140 s to the UML. The migration of CoCoME to JEE required about
210 s on the same machine. Table 1 gives an overview of the use case sizes and their
performance. The number of objects and references show the IAL model size for
comparison. This does not include attribute values.

The tool Codeling uses a series of code-to-model, model-to-code, and model
transformations, including triple graph grammars (TGGs), to achieve its goals.
TGGs can be performance intensive. Forward and backward translation rules from
TGGs have a polynomial space and time complexity O(m × nk), where m is the
number of rules, n is the size of the input graph, and k is the maximum number of
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Table 1 An overview of the size and performance of evaluation use cases

No. of No. of Refe- Runtime Code Runtime Model Runtime Code

Use Case (Objects IAL) rences (IAL) to Model [s] to Code [s] to Code [s]

JACK 3 to UML 1644 2141 225 330 555

CoCoME to PCM 361 507 170 – –

CoCoME to UML 361 507 140 – –

CoCoME to JEE 361 507 – – 210

nodes in a rule [27]. Therefore, it is expected that an increasing model size implies
a higher resource demand.

A resource demand test was executed during the development of Codeling, to find
the limitations of the implementation. The detailed results of the resource demand
test can be found in Konersmann’s PhD thesis [12]. The translation between code
and specification models can be separated into the process steps for performance
analysis. The main driver for time-resource demand are the TGG rules, which took
about 87% of the translation time during the extraction of a synthetic model with
300 model objects. A major observation was that the TGG rules were executed
on a single core. We see a high potential for reducing this time by using other
model transformation techniques, especially those using parallel execution (e.g.,
ATL [34]).

The definition of model/code transformations for Codeling requires program-
ming in Java or Xtend with JDT and Ecore. The code generator supports the
development of model/code transformations by automatically creating transforma-
tions for meta model elements that can be translated with integration mechanisms.
In our use cases some transformations have to be developed manually. Although
we implemented a supporting framework (see Sect. 3), the development of trans-
formations is not trivial. To tackle this problem, for future work we develop a
language for describing mappings between model elements and source code for
the Model Integration Concept, especially considering integration mechanisms. The
objective is to make the development of new integration mechanisms and individual
model/code transformations easier.

5 Related Work

An extensive study of literature is part of the PhD thesis. In this section we give
an excerpt of the related work presented there, enriched with some more recent
findings. The approach at hand is a method for extracting architecture models from
code and to propagate changes in the model to the code. Pham et al. [24] describe
an approach to synchronize architecture models and code. They focus on UML
components and state machines as behavior models. ReflexML of Adersberger and
Philippsen [2] is a mapping of UML component diagrams to program code artifacts,
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enriched with a set of consistency checks between the model and the code. Already
in 1995 Murphy et al. [20] presented an approach that creates links between higher-
level model elements and program code files. The general ideas behind this approach
are close to the Explicitly Integrated Architecture approach. In both approaches a
semantic gap between program code elements and higher-level models has been
identified and should be bridged with a mapping. Codeling maps the elements
on a much more fine-grained level. While these approaches allow for mapping
architectural models to code elements, they are limited to a pair of languages.

The goal of model extraction methods is to create a model of a software design
based on code or execution traces. In general, models can be extracted statically
from source code and/or dynamically from execution traces [25], e.g., sequence
diagrams [29], state machines [28], or software architecture from code [8]. Model
extraction approaches do not aim to propagate changes to the code, but they are used
for model-based analysis and communication. The MIC can be seen as a model
extraction approach, extended with delta-based code generation and adaptation
means.

MoDisco [7] is a tool for model-driven reverse engineering. It allows for
extracting domain-specific models from code and transforming them to other code.
It also comprises a Java meta model as a basis for model transformations and model-
to-code transformations. MoDisco does not target architecture descriptions directly
and therefore has no mechanisms for handling the differences between languages.
MoDisco could be used as a basis for bidirectional model/code transformations
in Codeling, but it would be necessary to add concepts for handling integration
mechanisms.

Co-evolving models and code means to propagate deltas between models and
code in both directions. Existing approaches use, e.g., guidelines for manual
implementations [9]. Langhammer and Krogmann [17] describe an approach for
the co-evolution of models of the Palladio Component Model (PCM) and Java
program code, including architectural structure and abstract behavior. Langhammer
[16] describes rules for correspondence relationships between the architecture
model and the program code during changes on either side. Arbitrary code within
methods is preserved during model-to-code change propagation. The approach is
semi-automated, meaning that in cases where full automation is not possible, a
developer is asked to describe how consistency can be preserved. This approach
creates a specific mapping between a subset of the PCM and Java code. The MIC
can conceptually be used for arbitrary meta models and programming languages,
although the tools (see Sect. 3) currently support Java only.

A special case of model/code co-evolution is roundtrip engineering (RTE) [3],
a method where two representations of program code are maintained together: in a
textual syntax and in a—usually graphical—model syntax. RTE offers a bijective
projection between the textual and the model syntax. The models used in roundtrip
engineering are close to the code structures, e.g., UML class diagrams or data
models. While the MIC can handle such models and their code representation, the
MIC is designed to handle design models of higher abstraction levels. TheMIC does
not propagate code deltas to the model and is therefore not a co-evolution approach.
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It is a hybrid approach of model extraction and model-code co-evolution, which
extracts models and propagates model changes to code.

Balz [4] describes an approach for representing models with well-defined code
structures. He defines embedded models as a mapping between formal models
and program code patterns in a general-purpose programming language. A major
contribution of Balz’ work is the formal mapping between state machines and
process models, and program code. It provides explicit interfaces for implanted
code. The MIC is conceptually based on the essential ideas of the embedded
models approach. Balz defines these two specific types of models for which
embedded models can be used. The MIC generalizes this approach, to be usable
with arbitrary meta models. With the definition of meta models as a basis, the MIC
can declare integration mechanisms as templates for program code structures for
reusing mappings and generate model/code transformations and execution runtime
stubs.

6 Conclusions and Future Work

In this chapter we describe the Explicitly Integrated Architecture approach and its
tool support. The approach extracts software architecture specifications, e.g., UML
models, from source code, and propagates changes in the model to the code. It
therefore creates a volatile architectural view upon the code, reducing the need to
maintain two representations of the software architecture. The approach comprises
four parts: (1) The Model Integration Concept is a method to extract design models
from source code and propagate model changes to the code. (2) The Intermediate
Architecture Description Language (IAL) is an intermediate language for translating
between architecture implementations and specifications. These different views
upon software architecture usually have different features for software architectures.
The IAL is prepared to handle these features by using a small core and feature
modules. (3) The approach translates between languages using a set of architecture
model transformations, including translations between different language features,
such as hierarchical and non-hierarchical architectures. (4) The Explicitly Integrated
Architecture process uses the aforementioned parts to translate between source code
and architecture models.

We evaluated the approach by implementing the tool Codeling accompanied by
a code generator and used it in a real software project and on a benchmark software
for component modeling. The evaluation has shown that the approach is usable to
extract architecture specifications in different languages from a code base and to
migrate an architecture implementation to another implementation language.

For future work we will develop a language to make the development of
model/code transformations easier, and we evaluate other model-transformation
technologies to enhance the overall performance. We are planning to evaluate
the approach further on real software systems, including software with different
programming languages and of different domains.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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