Skip to main content

AutoTrajectory: Label-Free Trajectory Extraction and Prediction from Videos Using Dynamic Points

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

Abstract

Current methods for trajectory prediction operate in supervised manners, and therefore require vast quantities of corresponding ground truth data for training. In this paper, we present a novel, label-free algorithm, AutoTrajectory, for trajectory extraction and prediction to use raw videos directly. To better capture the moving objects in videos, we introduce dynamic points. We use them to model dynamic motions by using a forward-backward extractor to keep temporal consistency and using image reconstruction to keep spatial consistency in an unsupervised manner. Then we aggregate dynamic points to instance points, which stand for moving objects such as pedestrians in videos. Finally, we extract trajectories by matching instance points for prediction training. To the best of our knowledge, our method is the first to achieve unsupervised learning of trajectory extraction and prediction. We evaluate the performance on well-known trajectory datasets and show that our method is effective for real-world videos and can use raw videos to further improve the performance of existing models.

Y. Ma and X. Zhu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://software.clapper.org/munkres/.

  2. 2.

    https://github.com/trungmanhhuynh/Scene-LSTM.

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Li, F.F., Savarese, S.: Social LSTM: Human trajectory prediction in crowded spaces. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016)

    Google Scholar 

  2. Başar, T.: A new approach to linear filtering and prediction problems (2001)

    Google Scholar 

  3. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 941–951 (2019)

    Google Scholar 

  4. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  5. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  6. Cao, C., et al.: Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks. 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2956–2964 (2015)

    Google Scholar 

  7. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. ArXiv abs/1910.05449 (2019)

    Google Scholar 

  8. Chandra, R., Bhattacharya, U., Roncal, C., Bera, A., Manocha, D.: Robusttp: End-to-end trajectory prediction for heterogeneous road-agents in dense traffic with noisy sensor inputs. In: CSCS 2019 (2019)

    Google Scholar 

  9. Chandra, R., et al.: Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMS. ArXiv abs/1912.01118 (2019)

    Google Scholar 

  10. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8740–8749 (2019)

    Google Scholar 

  11. Crawford, E., Pineau, J.: Exploiting spatial invariance for scalable unsupervised object tracking. ArXiv abs/1911.09033 (2019)

    Google Scholar 

  12. Eslami, S.M.A., et al.: Attend, infer, repeat: Fast scene understanding with generative models. In: NIPS (2016)

    Google Scholar 

  13. Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 466–475. IEEE (2018)

    Google Scholar 

  14. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  15. Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3038–3046 (2017)

    Google Scholar 

  16. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Rob. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  17. Gupta, A., Johnson, J.E., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: Socially acceptable trajectories with generative adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  18. Hall, M.A.: Correlation-based feature selection for machine learning (2003)

    Google Scholar 

  19. He, Z., Li, J., Liu, D., He, H., Barber, D.: Tracking by animation: unsupervised learning of multi-object attentive trackers. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1318–1327 (2018)

    Google Scholar 

  20. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Conditional image generation for learning the structure of visual objects. ArXiv abs/1806.07823 (2018)

    Google Scholar 

  21. Kim, Y., Nam, S., Cho, I.S., Kim, S.J.: Unsupervised keypoint learning for guiding class-conditional video prediction. ArXiv abs/1910.02027 (2019)

    Google Scholar 

  22. Kosiorek, A.R., Kim, H., Posner, I., Teh, Y.W.: Sequential attend, infer, repeat: generative modelling of moving objects. In: NeurIPS (2018)

    Google Scholar 

  23. Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549 (2014)

    Google Scholar 

  24. Lee, N., et al.: Desire: Distant future prediction in dynamic scenes with interacting agents. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2165–2174 (2017)

    Google Scholar 

  25. Lefevre, S., Laugier, C., Guzman, J.I.: Exploiting map information for driver intention estimation at road intersections. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 583–588 (2011)

    Google Scholar 

  26. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph Forum 26, 655–664 (2007)

    Article  Google Scholar 

  27. Luo, Z., Peng, B., Huang, D.A., Alahi, A., Fei-Fei, L.: Unsupervised learning of long-term motion dynamics for videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7101–7110 (2017)

    Google Scholar 

  28. Ma, Y., Manocha, D., Wang, W.: Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic. arXiv preprint arXiv:1804.02915 (2018)

  29. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6120–6127 (2019)

    Google Scholar 

  30. Minderer, M., Sun, C., Villegas, R., Cole, F., Murphy, K., Lee, H.: Unsupervised learning of object structure and dynamics from videos. ArXiv abs/1906.07889 (2019)

    Google Scholar 

  31. Palaz, D.: Towards end-to-end speech recognition (2016)

    Google Scholar 

  32. Pan, J., Sun, H., cheng Xu, K., Jiang, Y., Xiao, X., Hu, J., Miao, J.: Lane attention: Predicting vehicles’ moving trajectories by learning their attention over lanes. ArXiv abs/1909.13377 (2019)

    Google Scholar 

  33. Park, S., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1672–1678 (2018)

    Google Scholar 

  34. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  35. Pellegrini, S., Ess, A., Schindler, K., Gool, L.V.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th ICCV, pp. 261–268 (2009)

    Google Scholar 

  36. Piekniewski, F., Laurent, P.A., Petre, C., Richert, M., Fisher, D., Hylton, T.: Unsupervised learning from continuous video in a scalable predictive recurrent network. ArXiv abs/1607.06854 (2016)

    Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  38. Rhinehart, N., McAllister, R., Kitani, K.M., Levine, S.: Precog: prediction conditioned on goals in visual multi-agent settings. ArXiv abs/1905.01296 (2019)

    Google Scholar 

  39. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Savarese, S.: Sophie: An attentive GAN for predicting paths compliant to social and physical constraints. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1349–1358 (2018)

    Google Scholar 

  40. Sharma, S., Ansari, J.A., Murthy, J.K., Krishna, K.M.: Beyond pixels: Leveraging geometry and shape cues for online multi-object tracking. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3508–3515. IEEE (2018)

    Google Scholar 

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  42. Tang, S., Andriluka, M., Andres, B., Schiele, B.: Multiple people tracking by lifted multicut and person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3539–3548 (2017)

    Google Scholar 

  43. Tang, Y., Salakhutdinov, R.: Multiple futures prediction. In: NeurIPS (2019)

    Google Scholar 

  44. Wang, M., Shi, D., Guan, N., Zhang, T., Wang, L., Li, R.: Unsupervised pedestrian trajectory prediction with graph neural networks. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 832–839 (2019)

    Google Scholar 

  45. Wang, N., Song, Y., Ma, C., Zhou, W., Liu, W., Li, H.: Unsupervised deep tracking. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1308–1317 (2019)

    Google Scholar 

  46. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3988–3998 (2019)

    Google Scholar 

  47. Zhang, S., et al.: Tracking persons-of-interest via unsupervised representation adaptation. Int. J. Comput. Vis. 128, 120–96 (2017)

    Google Scholar 

  48. Zhao, T., et al.: Multi-agent tensor fusion for contextual trajectory prediction. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12118–12126 (2019)

    Google Scholar 

  49. Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., Yang, M.H.: Online multi-object tracking with dual matching attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 366–382 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexin Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7653 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Zhu, X., Cheng, X., Yang, R., Liu, J., Manocha, D. (2020). AutoTrajectory: Label-Free Trajectory Extraction and Prediction from Videos Using Dynamic Points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics