Skip to main content

AE-OT-GAN: Training GANs from Data Specific Latent Distribution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12371))

Included in the following conference series:

Abstract

Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images gives us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akash, S., Lazar, V., Chris, R., Gutmann, M.U., Charles, S.: Veegan: reducing mode collapse in gans using implicit variational learning. In: Neural Information Processing Systems (2017)

    Google Scholar 

  2. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: a new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML. pp, 214–223 (2017)

    Google Scholar 

  4. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. In: ICML (2015)

    Google Scholar 

  5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  6. Dai, B., Wipf, D.: Diagnosing and enhancing VAE models. In: International Conference on Learning Representations (2019)

    Google Scholar 

  7. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components estimation (2014). arXiv preprint arXiv:1410.8516

  8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. In: ICLR (2017)

    Google Scholar 

  9. Figalli, A.: Regularity properties of optimal maps between nonconvex domains in the plane. Commun. Partial Diff. Equat. 35(3), 465–479 (2010)

    Article  MathSciNet  Google Scholar 

  10. Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks (2016). arXiv preprint arXiv:1701.00160

  11. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in neural information processing systems (2014)

    Google Scholar 

  12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NIPS, pp. 5769–5779 (2017)

    Google Scholar 

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a nash equilibrium. In: Advances in neural information processing systems (2017)

    Google Scholar 

  14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  15. Khayatkhoei, M., Singh, M.K., Elgammal, A.: Disconnected manifold learning for generative adversarial networks. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint arXiv:1312.6114

  17. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1 x 1 convolutions. In: NeurIPS (2018)

    Google Scholar 

  18. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  19. Lecun, Y., Chopra, S., Hadsell, R.: A tutorial on energy-based learning. Predict. Struct. Data (2006)

    Google Scholar 

  20. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  21. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  22. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: towards diverse and interactive facial image manipulation (2019). arXiv preprint arXiv:1907.11922

  23. Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: the power of two samples in generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1505–1514 (2018)

    Google Scholar 

  24. Liu, H., Gu, X., Samaras, D.: Wasserstein gan with quadratic transport cost. In: ICCV (2019)

    Google Scholar 

  25. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are gans created equal? a large-scale study. In: Advances in neural information processing systems, pp. 698–707 (2018)

    Google Scholar 

  26. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  27. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  28. Nijkamp, E., Hill, M., Zhu, S.C., Wu, Y.N.: On learning non-convergent non-persistent short-run MCMC toward energy-based model (2019). arXiv preprint arXiv:1904.09770

  29. van den Oord, A., Kalchbrenner, N., Espeholt, L., kavukcuoglu, k., Vinyals, O., Graves, A.: Conditional image generation with pixelcnn decoders. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  30. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  32. Razavi, A., Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  33. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models (2014). arXiv preprint arXiv:1401.4082

  34. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in neural information processing systems (2016)

    Google Scholar 

  35. Salimans, T., Zhang, H., Radford, A., Metaxas, D.: Improving GANs using optimal transport. In: International Conference on Learning Representations (2018)

    Google Scholar 

  36. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2391–232 (2000)

    Article  Google Scholar 

  37. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. In: ICLR (2018)

    Google Scholar 

  38. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  39. Wu, J., Huang, Z., Thoma, J., Acharya, D., Gool, L.V.: Wasserstein divergence for gans. In: ECCV (2018)

    Google Scholar 

  40. Xiao, C., Zhong, P., Zheng, C.: Bourgan: Generative networks with metric embeddings. In: NeurIPS (2018)

    Google Scholar 

  41. Xie, J., Lu, Y., Zhu, S., Wu, Y.: Cooperative training of descriptor and generator networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 27–45 (2016)

    Article  Google Scholar 

  42. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional gan. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  43. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: From facial expression recognition to interpersonal relation prediction. Int. J. Comput. Vis. 126(5), 550–569 (2017). https://doi.org/10.1007/s11263-017-1055-1

    Article  MathSciNet  Google Scholar 

  44. Zhu, S., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame): towards a unified theory for texture modeling. Int. J. Comput. Vis. 27(2), 107–126 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The project is partially supported by NSF CMMI-1762287, NSF DMS-1737812 and Ford URP and NSFC (61936002, 61772105, 61720106005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 35353 KB)

Supplementary material 2 (pdf 260 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, D., Guo, Y., Zhang, M., Qi, X., Lei, N., Gu, X. (2020). AE-OT-GAN: Training GANs from Data Specific Latent Distribution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics