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Abstract. Vibro-tactile interfaces were proposed as an alternative to enhance
human-machine communication in information-rich domains. The current study
aims to examine the effectiveness of two levels of tactile alerts when combined
with visual alerts, in MUM-T (Manned UnManned Teaming) setup. In MUM-T,
aside from their primary mission, mounted operators are responsible for sup-
portive unmanned systems and must attend to their health. On the simple level,
the alert provides information about a threat or a failure in the supportive
unmanned systems, while in the complex level, the alert includes more specific
information about the source of failure, that may require more effort to interpret.
The experiment simulates an operational mission in which participants ride an
autonomous ground patrol vehicle while identifying threats and targets in the
area and being supported by two unmanned systems. Response accuracy to
alerts and threat identification rates were measured. Results indicate that tactile
alerts given in addition to visual alerts in a visually loaded and auditory noisy
scene, improve task performance. Moreover, the complex level of tactile alerts
did not impair performance compared to the simple level of tactile alerts and led
to higher rate of identification in specific cases. Nevertheless, relatively high
rates of false alarms (FA) for threats were observed, especially when tactile
alerts were present, which can be explained by the payment matrix (no penalty)
or by the assumption that adding tactile alerts may lead participants to be more
vigilant, which can lead to higher correct identifications, but also to higher FA
rates.
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1 Introduction

Military operational activities require obtaining large quantities of data from multiple
sources in a short period of time while running multiple tasks simultaneously [1].
Operators are expected to detect changes quickly and respond systematically and fast
[2]. Unmanned systems are potent force multipliers, in the MUM-T (Manned
UnManned Teaming) operational concept, they are controlled from a moving ground or
aerial platform, and are used for tasks that otherwise would have been taken over by
other manned or remotely operated platforms. MUM-T can cause significant task load
increase for its operating crew and key design elements are necessary for achieving the
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workload reduction necessary to facilitate it [3]. We focus on the use of tactile alerts to
improve operators’ ability to detect threats and attend to failures. Tactile alerts may
enhance attentional abilities by distributing information between several resources [4],
as visual alerts alone are less suited for this level of complexity [5]. The tactile channel
can be used to alleviate workload and attract operators’ attention to mission related
notifications at various levels and events [6].

Yet, like the visual and auditory channels, frequent use of tactile alerts may increase
workload and impair performance [7]. Moreover, multiple alerts can lead to neglect,
where the alerts are ignored [8], mainly when the task is unclear and the transfer of
information to the operator is impaired [9]. Therefore, the tactile alerting system must
be used properly. Tactile cues can be used as signals with lower information processing
requirements [10]. According to Elliot et al. [11], when tactile cues are added to
existing visual cues, performance improves. An important question is content related
what kind of tactile messages should be transferred by a tactile display.

The current study was aimed to examine the level of tactile alert (simple/complex)
that should be used in a MUM-T operational setup. For this, a burdening, visually and
auditory loaded operational mission was examined. We defined two levels of tactile
alerts - simple and complex: A simple alert provides information that is easy to interpret
about the occurrence of a pre-determined event. It is defined as a binary happened/did-
not-happen alert; A complex alert requires more effort to interpret, but includes more
specific informative information. It provides the operator with at least one more layer of
information, e.g., source, direction, distance, etc. [6]. Two types of tactile alerts were
given; A “danger” alert which indicates upon the presence of hostile targets, and a
“failure” alert which indicates upon a technical failure in one of the supportive
unmanned systems. “Danger” alert was defined as more immediate and required faster
responses.

It was hypothesized that H: Identification rate of alerts will be higher when tactile
alerts are given in addition to visual ones, more so, for the tactile alerts provided in the
“complex” level for both “danger” and “failure” alert types.

2 Method

The study aimed to examine the effectiveness of two levels of tactile alerts when
combined with visual alerts. Each participant was placed in a simulated workstation of
an autonomous ground patrol vehicle that navigated autonomously. While driven along
the route, the operator was required to identify threats and targets in the mission area
and manage two unmanned vehicles (UVs), an unmanned ground vehicle (UGV) and a
drone, that support the mission in a MUM-T setup. Occasionally a failure occurred in
one of the supporting vehicles and the operator had to attend to it while continuously
seeking for threats and targets. Each participant executed three different scenarios, one
scenario for each level of tactile alerts (none, simple, complex). Visual alerts were
presented on a computer screen (#3 in Fig. 1b); Tactile alerts were transmitted through
a wearable tactile display located on the soldiers’ forearms (Fig. 1a).
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Three females and 23 males, students aged 24–30 (M = 27.1, SD = 1.6) all military
reserve soldiers on active duty at least once in the year prior to the experiment par-
ticipated in the study. Recruitment was via social media and compensation was 40 NIS
for one hour. Nine participants’ objective performance data was withdrawn from the
study due to a technical problem in saving their data, leaving a total of 17 participants.
These withdrawn participants did not change the population’s parameters.

2.1 Apparatus

Experimental Environment. The study was conducted at the Human Performance Lab.
The simulator consists of three visual displays in different sizes: screen #1 - 22′, screen
#2 - 42′, screen #3 - 13.3′, running a simulation of the operational mission (see
Fig. 1b). Participants sat about one meter away from the main screen (#2 in Fig. 1b).
The laboratory is temperature and noise controlled.

Operational Tasks. To accomplish the mission three task types were required.
Ongoing: the task was to detect targets and mark them by pressing a “target” button on
visual display (#3). The target button was blinking in red three times when a target was
identified by one of the supportive UVs (Fig. 2), 14–16 targets per session with a
variation of 10–85 s between two consecutive targets. UV status: the participant was
asked to identify failures in the UVs and report them, 11–13 failure alerts per session,
with a variation of 5–40 s gap between two alerts. Gray and blue buttons were blinking
when there was a failure in one of UVs (gray for drone and blue for UGV) and stopped
blinking when the operator pressed the corresponding button on the visual display (#3;
Fig. 2). A secondary task was to report upon identification of vehicles via the com-
munications device: “car identified”. The purpose of this task was to serve as a dis-
tracting element to the main mission tasks.

Headphones. (Samson SR850) were used to transmit typical military radio commu-
nication, presented at a range of 40 dB with short peaks of up to 80 dB, to add to the
realism of the simulation and increase mental demand.

Fig. 1. a) Tactile system: two tactor forearm bracelets (one on each arm) and C2 tactor; b)
Experimental setup. Screen #1 navigation map, screen #2 main navigation display, and screen #3
visual display in which participants receive information and react; c) Example of a navigation
map (screen #1)
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Tactile Interface. Military applications strive for simplicity on one hand, and redun-
dancy on the other hand for robustness, therefore a two-tactor system was chosen but
with one signal [12]. The two C2 tactors (i.e., vibrating tactile actuators) powered by
the Eval 2.0 controller (Engineering Acoustics Inc (EAI)) and were stitched to two
elastic-fiber straps. The straps were worn around the forearms, one on each hand, over
the participant’s skin (see Fig. 1a). The tactile alerts included four different temporal
patterns (on-off and duration modulation) through the tactile system (see Tactile alerts’
design). The gain scale ranges from 1–255 units, as determined by the EAI apparatus.

Tactile Alerts’ Design. Two types of tactile alerts were chosen: one for conveying
“danger” and one for conveying “failure”. The tactile signals for each alert type were
chosen following a pre-experiment. For the pre-experiment five tactile cues were
designed according to a list of criteria such as the alerts’ overall length, gain and pulse
rate (see Fig. 3a). The experimental part of the pre-experiment was divided into two.
The first part included a navigation task, in which each participant was exposed to all
five different cues once in random order. Time gap between two cues was at least two
minutes. Participant had to choose which kind of meaning better describes the alert that
has just been executed: “danger” or “failure”. Participants responded while the navi-
gation mission continued. In the second part, participants were able to feel all five cues
for an unlimited period of time, by pressing on the alert buttons. They were asked to
choose the most appropriate alert for “danger” and afterwards for “failure”. From the
pre-experiment, for the “danger” alert, all five alert types were chosen almost at the
same rate in the first part, while in the second part alerts C, D and E were hardly chosen
at all, therefore, it was decided not to use them for the context of danger. Among alerts
A and B, it was decided to choose alert B for “danger” although the rates of the two
alerts were close, with a small favor for B in both parts of the pre-experiment. For the
“failure” alert, alerts A and B were less chosen by participants in the first part of the
pre-experiment, and there was almost an equality between alerts C, D and E. To choose

Fig. 2. The visual display where participants received the alerts and responeded to them
(touchscreen, screen #3). On the top is the target indicator and on the bottom are the various
failures that could have occurred for the UGV and drone.
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the fitted alert for “failure”, we used the second part of the pre-experiment, where there
was an unequivocal majority for alert C. It was decided to choose alert C as “failure”
alert.
Thus, alert B was chosen for “danger” and alert C for “failure” for the current
experiment. The “simple” tactile alert condition consisted of alerts B for danger/threat
and C for “failure” in any one of the UVs. The “complex” tactile alert condition
consisted of the same alert B for danger/threat and two alerts for “failure” depending on
the source of the failure: alert C1 for failure in the UGV and alert C2 for failure in the
drone (see Fig. 3b).

2.2 Procedure

Participants were invited solely to the lab for one-hour long sessions. At the beginning
of the session, each participant read the instructions and signed informed consent.
Following a short verbal briefing, each participant got familiarized with the task (the
way targets were marked and how to detect them, how to identify failures of the
vehicles and how to report them). A separate briefing about the tactile and visual
displays was given in order to familiarize participants with the alerts.

The experimental part of the study included a trial scenario (of two minutes) in
which participants received both visual and tactile alerts (“simple” condition), and three
operational scenarios, each participant performed all scenarios. Participants completed
each scenario with one of the three modality conditions. The scenarios’ order was fixed,
but the modality conditions were balanced across participants. The length of each
section was approximately nine minutes, with a break of a few minutes between
sessions to prepare participants for the next session.

Fig. 3. a) Tactile cue patterns used in the pre-experiment. b) Tactile cue patterns selected to the
experiment. In the simple condition: Alert B for “danger”, alert C for “failure”, in the complex
condition: Alert B for “danger”, alert C1 for failure in the UGV and alert C2 for failure in the
drone.
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3 Results

3.1 Detection of Danger, Threats and Targets

Missed Alerts. Data of 782 danger alerts were collected. All in all, danger was detected
709 times. Thus, there were 73 (9.3%) missed cases. A Generalized Linear Mixed
Model (GLMM) with binominal family was used with random effects of participants
and scenarios to account for differences among scenarios and individual differences
among participants. The dependent variable was defined as a binary variable: 1 for
reacting to danger, and 0 for missing a danger, and the independent variable was the
alert level (none, simple, complex). The final model includes a main effect of alert level
(v2 (df = 2) = 7.037, p < .01) and two random effects, for subject and scenario. Post-
Hoc (Tukey-HSD) analyses revealed a significant difference between the “none”
condition and the “complex” level of tactile alert; 15% missed cases without tactile
alerts out of all miss alerts, and 5% with “complex” level of tactile alerts. Results
remain stable in perspective of missing dangers per person according to the different
conditions as shown in Fig. 4b.

False Alarms. There was no penalty for FA. On average, there were 8.87 (SE = 1.54,
ME = 7.50) incorrect responses (clicking on the “danger” button when no target was
present) per participant, of those 2.25 occurred in the “none” condition, 3.12 occurred
during the “simple” condition, and 3.5 in the “complex” condition.

3.2 Identification of Failure Alerts

Missed Alerts. Data from 672 failure alerts were collected. There were 13 (1.9%)
missed notifications (no response), only 2 of which with a tactile alert. A Generalized
Linear Mixed Model (GLMM) with binominal family was used with random effects of
participants and scenarios to account for differences among scenarios and individual
differences among participants. The dependent variable was defined as a binary

Fig. 4. a) Missing rate per person of failure alerts by condition. b) Missing rate per person of
dangers in the field of operation by condition.
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variable: 1 for reaction for a failure alert, and 0 for missing a failure alert, and the
independent variable was the alert level (none, simple, complex). The final model
includes main effect of alert level (v2 (df = 2) = 5.797, p < .01) and two random
effects, for subject and scenario. Post-Hoc (Tukey-HSD) analyses revealed that there
was a significant difference between the “none” condition to the “simple” level of
tactile alert; 5% missed cases without tactile alerts out of all miss alerts and 0.48%
missed cases with “simple” level of tactile alerts out of all missed alerts, and also
between the “none” condition to the “complex” level of tactile alert; 5% missed cases
without tactile alerts out of all miss alerts, and 0.49% with “complex” level of tactile
alerts. Results remain stable in perspective of missing failure alerts per person
according to the different conditions as shown in Fig. 4a.

False Alarms. There were no incorrect responses (clicking on one of the “failure”
buttons when no failure occurred).

4 Discussion

The aim of the experiment was to examine the effectiveness of two tactile alert levels in
a multi-task operation with high workload. Previous studies have shown that tactile
cues can capture attention, which may be helpful under high workload [13]. How to
define the level of detail and complexity necessary of the tactile alerts is important for
this operational research field. The results of the identification rate of both “danger” and
“failure” alerts were significantly higher when tactile alerts were added than when only
visual alerts were shown. Thus, hypothesis H was confirmed. Rates were 95.6%
identification of tactile notifications compared to 91.1% for visual notifications only
(without tactile alerts). Moreover, the “complex” level of tactile alerts provided higher
rates of “danger” identification compared to the “none” condition, while the rate of
“failure” identification for both the “simple” and the “complex” levels was significantly
higher than for the “none”. This indicates that having higher granularity of tactile alerts
did not interrupt operators with performing their main task, and moreover, improved
task performance. More so, “complex” tactile alerts can improve performance better
than the “simple” ones when looking at the identification of “danger” alerts.

False alarm (FA) for a presence of a target was higher when tactile alerts were
given. Incorrect responses (report about a target when there is no target in the field) in
the military context is a severe mistake. One explanation for the high rate of FA is that
due to the experimental design, operators pressed the “target” button right when they
received a “danger” alert, even though this kind of alert is designed to warn the
operator of a close danger/target observed by the supporting unmanned vehicles, and
not an immediate one. Another explanation may lie on the “payment matrix” [14], in
which when gain or loss for a specific behavior are not defined, people tend to pay less
attention to false alarms. Accordingly, participants were not told that they will be fined
for incorrect responses, which may have caused higher rates of FA. No fine for FA
could make them prefer to react in more leniently in order to miss fewer targets. Further
study should use more specific instructions regarding the fine for incorrect responses in
order to avoid high rate of FA. Moreover, the data regarding the higher rate of FA in
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the tactile alert conditions can testify that operators did not distinguish between the alert
types (“danger” and “failure”) and pressed on the “target” button even when a “failure”
alert was activated. However, it may also indicate that the additional tactile alerts
condition led participants to be tenser and more vigilant, which led to higher correct
identifications, but also to higher FA rates.

Alongside the supportive results to use the tactile alerts there are few limitations.
First, in the “complex” level condition, the three tactile alerts shared a similar initiation
pattern, which forces the operator to wait until the middle or the end of the alert before
responding, or to use the visual display right at the beginning of the tactile alert without
attending to it until the end. By that participants actually treat the “complex” level of
tactile alerts as the “simple” level. Second, participant had limited time to learn and
train on the tactile alert patterns, while the visual alerts are more common and straight
forward. A longer learning session of the tactile patterns may lead to different results
and should be taken into consideration in further researches. A follow-up study should
also include a simpler level of only one simple tactile cue with no specific information
regarding “danger” or “failure” (a basic level), that will be compared to the levels tested
here. Possibly, the “complex” tactile alerts may create a burden on the operator and a
basic level would be more effective in multi-task operation.

In conclusion, in the current study it was found that tactile alerts can be combined
with visual alerts, in a multi-task operation in MUM-T setup without reducing per-
formance. Moreover, tactile alerts in this kind of operation reduce the missing of
“danger” alerts, which is important for operational setups where missing alerts can lead
to severe consequences.
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