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Abstract. Counterfactual explanations are one of the most popular
methods to make predictions of black box machine learning models inter-
pretable by providing explanations in the form of ‘what-if scenarios’.
Most current approaches optimize a collapsed, weighted sum of multiple
objectives, which are naturally difficult to balance a-priori. We propose
the Multi-Objective Counterfactuals (MOC) method, which translates
the counterfactual search into a multi-objective optimization problem.
Our approach not only returns a diverse set of counterfactuals with dif-
ferent trade-offs between the proposed objectives, but also maintains
diversity in feature space. This enables a more detailed post-hoc analysis
to facilitate better understanding and also more options for actionable
user responses to change the predicted outcome. Our approach is also
model-agnostic and works for numerical and categorical input features.
We show the usefulness of MOC in concrete cases and compare our app-
roach with state-of-the-art methods for counterfactual explanations.

Keywords: Interpretability · Interpretable machine learning ·
Counterfactual explanations · Multi-objective optimization · NSGA-II

1 Introduction

Interpretable machine learning methods have become very important in recent
years to explain the behavior of black box machine learning (ML) models. A
useful method for explaining single predictions of a model are counterfactual
explanations. ML credit risk prediction is a common motivation for counterfac-
tuals. For people whose credit applications have been rejected, it is valuable to
know why they have not been accepted, either to understand the decision making
process or to assess their actionable options to change the outcome. Counterfac-
tuals provide these explanations in the form of “if these features had different
values, your credit application would have been accepted”. For such explana-
tions to be plausible, they should only suggest small changes in a few features.
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Therefore, counterfactuals can be defined as close neighbors of an actual data
point, but their predictions have to be sufficiently close to a (usually quite dif-
ferent) desired outcome. Counterfactuals explain why a certain outcome was not
reached, can offer potential reasons to object against an unfair outcome and
give guidance on how the desired prediction could be reached in the future [35].
Note that counterfactuals are also valuable for predictive modelers on a more
technical level to investigate the pointwise robustness and the pointwise bias of
their model.

2 Related Work

Counterfactuals are closely related to adversarial perturbations. These have the
aim to deceive ML models instead of making the models interpretable [30].
Attribution methods such as Local Interpretable Model-agnostic Explanations
(LIME) [27] and Shapley Values [22] explain a prediction by determining how
much each feature contributed to it. Counterfactual explanations differ from
feature attributions since they generate data points with a different, desired
prediction instead of attributing a prediction to the features.

Counterfactual methods can be model-agnostic or model-specific. The lat-
ter usually exploit the internal structure of the underlying ML model, such as
the trained weights of a neural network, while the former are based on general
principles which work for arbitrary ML models - often by only assuming access
to the prediction function of an already fitted model. Several model-agnostic
counterfactual methods have been proposed [8,11,16,18,25,29,37]. Apart from
Grath et al. [11], these approaches are limited to classification. Unlike the other
methods, the method of Poyiadzi et al. [25] can obtain plausible counterfactuals
by constructing feasible paths between data points with opposite predictions.

A model-specific approach was proposed by Wachter et al. [35], who also
introduced and formalized the concept of counterfactuals in predictive modeling.
Like many model-specific methods [15,20,24,28,33] their approach is limited to
differentiable models. The approach of Tolomei et al. [32] generates explanations
for tree-based ensemble binary classifiers. As with [35] and [20], it only returns
a single counterfactual per run.

3 Contributions

In this paper, we introduce Multi-Objective Counterfactuals (MOC), which to
the best of our knowledge is the first method to formalize the counterfactual
search as a multi-objective optimization problem. We argue that the mathemati-
cal problem behind the search for counterfactuals should be naturally addressed
as multi-objective. Most of the above methods optimize a collapsed, weighted
sum of multiple objectives to find counterfactuals, which are naturally difficult
to balance a-priori. They carry the risk of arbitrarily reducing the solution set
to a single candidate without the option to discuss inherent trade-offs – which
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should be especially relevant for model interpretation that is by design very hard
to precisely capture in a (single) mathematical formulation.

Compared to Wachter et al. [35], we use a distance metric for mixed feature
spaces and two additional objectives: one that measures the number of feature
changes to obtain sparse and therefore more interpretable counterfactuals, and
one that measures the closeness to the nearest observed data points for more
plausible counterfactuals. MOC returns a Pareto set of counterfactuals that rep-
resents different trade-offs between our proposed objectives, and which are con-
structed to be diverse in feature space. This seems preferable because changes
to different features can lead to a desired counterfactual prediction1 and it is
more likely that some counterfactuals meet the (hidden) preferences of a user. A
single counterfactual might even suggest a strategy that is interpretable but not
actionable (e.g., ‘reduce your number of pregnancies’) or counterproductive in
more general contexts (e.g., ‘increase your age to reduce the risk of diabetes’). In
addition, if multiple otherwise quite different counterfactuals suggest changes to
the same feature, the user may have more confidence that the feature is an impor-
tant lever to achieve the desired outcome. We refer the reader to Appendix A
for two concrete examples illustrating the above.

Compared to other counterfactual methods, MOC is model-agnostic and
handles classification, regression and mixed feature spaces, which furthermore
increases its practical usefulness in general applications. Together with [16], our
paper also includes one of the first benchmark studies that compares multiple
counterfactual methods on multiple, heterogeneous datasets.

4 Methodology

[35] loosely define counterfactuals as:

“You were denied a loan because your annual income was £30,000. If your income

had been £45,000, you would have been offered a loan. Here the statement of

decision is followed by a counterfactual, or statement of how the world would

have to be different for a desirable outcome to occur. Multiple counterfactuals

are possible, as multiple desirable outcomes can exist, and there may be several

ways to achieve any of these outcomes.”

We now formalize this statement by stating four objectives, which a counterfac-
tual should adhere to. In the subsequent section we provide detailed definitions of
these objectives and tie them together as a multi-objective optimization problem
in order to generate a diverse set of different trade-off solutions.

4.1 Multi-Objective Counterfactuals

Definition 1 (Counterfactual Explanation). Let f̂ : X → R be a prediction
function, X the feature space and Y ′ ⊂ R a set of desired outcomes. The latter

1 Rashomon effect [5].
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can either be a single value or an interval of values. We define a counterfactual
explanation x′ for an observation x∗ as a data point fulfilling the following: (1)
its prediction f(x′) is close to the desired outcome set Y ′, (2) it is close to x∗ in
the X space, (3) it differs from x∗ only in a few features, and (4) it is a plausible
data point according to the probability distribution PX . For classification models,
we assume that f̂ returns the probability for a user-selected class and Y ′ has to
be the desired probability (range).

This can be translated into a multi-objective minimization task:

min
x

o(x) := min
x

(
o1(f̂(x), Y ′), o2(x,x∗), o3(x,x∗), o4(x,Xobs)

)
, (1)

with o : X → R
4 and Xobs as the observed (i.e. training) data. The first compo-

nent o1 quantifies the distance between f̂(x) and Y ′. We define it as:2

o1(f̂(x), Y ′) =

{
0 if f̂(x) ∈ Y ′

inf
y′∈Y ′

|f̂(x) − y′| else .

The second component o2 quantifies the distance between x∗ and x using the
Gower distance to account for mixed features [10]:

o2(x,x∗) =
1
p

p∑

j=1

δG(xj , x
∗
j ) ∈ [0, 1]

with p being the number of features. The value of δG depends on the feature
type:

δG(xj , x
∗
j ) =

{
1
̂Rj

|xj − x∗
j | if xj is numerical

Ixj �=x∗
j

if xj is categorical

with R̂j as the value range of feature j, extracted from the observed dataset.
Since the Gower distance does not take into account how many features have

been changed, we introduce objective o3, which counts the number of changed
features using the L0 norm:

o3(x,x∗) = ||x − x∗||0 =
p∑

j=1

Ixj �=x∗
j
.

The fourth objective o4 measures the weighted average Gower distance between
x and the k nearest observed data points x[1], ...,x[k] ∈ Xobs as an empirical
approximation of how likely x originates from the distribution of X :

o4(x,Xobs) =
k∑

i=1

w[i] 1
p

p∑

j=1

δG(xj , x
[i]
j ) ∈ [0, 1] where

k∑

i=1

w[i] = 1.

2 We chose the L1 norm over the L2 norm for a natural interpretation. Its non-
differentiability is negligible for evolutionary optimization.
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Throughout this paper, we set k to 1. Further procedures to increase the plausi-
bility of the counterfactuals are integrated into the optimization algorithm and
are described in Sect. 4.3.

Balancing the four objectives is difficult since the objectives contradict each
other. For example, minimizing the distance between counterfactual outcome and
desired outcome Y ′ (o1) becomes more difficult when we require counterfactual
feature values close to x∗ (o2 and o3) and to the observed data (o4).

4.2 Counterfactual Search

Our proposed method MOC uses the Nondominated Sorting Genetic Algorithm
II (NSGA-II) [7] with modifications specific to the problem considered. First,
unlike the original NSGA-II, it uses mixed integer evolutionary strategies (MIES)
[19] to work with the mixed discrete and continuous search space. Further-
more, a different crowding distance sorting algorithm is used, and we propose
some optional adjustments tailored to the counterfactual search in the upcoming
section.

For MOC, each candidate is described by its feature vector (the ‘genes’) and
the objective values of the candidates are evaluated by Eq. (1). Features of can-
didates are recombined and mutated with predefined probabilities – some of the
control parameters of MOC. Numerical features are recombined by the simu-
lated binary crossover recombinator [6], all other feature types by the uniform
crossover recombinator [31]. Based on [19], numerical features are mutated by
the scaled Gaussian mutator. Categorical features are altered by uniformly sam-
pling from their admissible levels, while binary and logical features are simply
flipped. After recombination and mutation, some feature values are randomly set
to the values of x∗ with a given (low) probability – another control parameter –
to prevent all features from deviating from x∗.

Contrary to NSGA-II, the crowding distance is computed not only in the
objective space R

4 (L1 norm) but also in the feature space X (Gower distance),
and the distances are summed up with equal weighting. As a result, candidates
are more likely kept if they differ greatly from another candidate in their fea-
ture values although they are similar in the objective values. Diversity in X is
desired because the chances of obtaining counterfactuals that meet the (hidden)
preferences of users are higher. This approach is based on Avila et al. [2].

MOC stops if either a predefined number of generations is reached (default) or
the performance no longer improves for a given number of successive generations.

4.3 Further Modifications

Initialization. Naively, we could initialize a population by uniformly sampling
some feature values from their full range of possible values, while randomly set-
ting other features to the values of x∗ to induce sparsity. However, if a feature has
a large influence on the prediction, it should be more likely that the counterfac-
tual values differ from x∗. The importance of a feature for an entire dataset can
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be measured as the standard deviation of the partial dependence plot [12]. Analo-
gously, we propose to measure the feature importance for a single prediction with
the standard deviation of the Individual Conditional Expectation (ICE) curve of
x∗. ICE curves show for one observation and for one feature how the prediction
changes when the feature is changed, while other features are fixed to the values
of the considered observation [9]. The greater the standard deviation of the ICE
curve, the higher we set the probability that the feature value is initialized with
a different value than the one of x∗. Therefore, the standard deviation σICE

j of
each feature xj is transformed into probabilities within [pmin, pmax] · 100%:

P (value differs) =
(σICE

j − min(σICE )) · (pmax − pmin)
max (σICE ) − min(σICE )

+ pmin

with σICE := (σICE
1 , ..., σICE

p ). pmin and pmax are control parameters with
default values 0.01 and 0.99.

Actionability. To get more actionable counterfactuals, extreme values of
numerical features outside a predefined range are capped to the upper or lower
bound after recombination and mutation. The ranges can either be derived from
the minimum and maximum values of the features in the observed dataset or
users can define these ranges. In addition, users can identify non-actionable fea-
tures such as the country of birth or gender. The values of these features are
permanently set to the values of x∗ for all candidates within MOC.

Penalization. Furthermore, candidates whose predictions are further away
from the target than a predefined distance ε ∈ R can be penalized. After the can-
didates have been sorted into fronts F1 to FK using nondominated sorting, the
candidate that violates the constraint least will be reassigned to front FK+1, the
candidate with the second smallest violation to FK+2, and so on. The concept is
based on Deb et al. [7]. Since the constraint violators are in the last fronts, they
are less likely to be selected for the next generation.

Mutation. Since the aforementioned mutators do not take the data distribution
into account and can potentially generate unlikely new candidates, we suggest
a conditional mutator. It generates plausible feature values conditional on the
values of the other features. For each input feature, we trained a transformation
tree [14] on Xobs, which is then used to sample values from the conditional
distribution. We mutate the feature in randomized order since a feature mutation
now depends on the previous changes.

How our proposed strategies for initialization and mutation affect MOC is later
examined in a benchmark study (Sects. 6 and 7).
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4.4 Evaluation Metric

We use the popular hypervolume indicator (HV) [38] to evaluate the quality of
our estimated Pareto front, with reference point s = ( inf

y′∈Y ′
|f̂(x∗) − y′|, 1, p, 1),

representing the maximal values of the objectives. We compute the HV always
over the complete archive of evaluated solutions.

4.5 Tuning of Parameters

We also use HV, when we tune MOC’s control parameters – population size,
the probabilities for recombining and mutating a feature of a candidate – with
iterated F-racing [21]. Furthermore, we let iterated F-racing decide whether our
proposed strategies for initialization and mutation of Sect. 4.3 are preferable.
Tuning is performed on six binary classification datasets from OpenML [34] –
which were not used in the benchmark. A summary of the tuning setup and
results can be found in Table 5 in Appendix B. Iterated F-racing found both our
initialization and mutation strategy to be advantageous. The tuned parameters
were used for the credit data application and the benchmark study.

5 Credit Data Application

This section demonstrates the usefulness of MOC to explain the prediction of
credit risk using the German credit dataset [13]. The dataset has 522 com-
plete observations and nine features containing credit and customer information.
Categories with few case numbers were combined. The binary target indicates
whether a customer has a ‘good’ or ‘bad’ credit risk. We chose the first observa-
tion of the dataset as x∗ with the following feature values:

Age Sex Job Housing Saving accounts Checking account Credit amount Duration Purpose

22 Female 2 Own Little Moderate 5951 48 Radio/TV

We tuned a support vector machine (with radial-basis (RBF) kernel) on the
remaining data with the same tuning setup as for the benchmark (Appendix C).
To obtain a single numerical outcome, only the predicted probability for the class
‘good’ credit risk was returned. We obtained an accuracy of 0.64 for the model
using two nested cross-validations (CV) (5-fold CV in outer and inner loop) and
a predicted probability for ‘good’ credit risk of 0.41 for x∗.

We set the desired outcome interval to Y ′ = [0.5, 1], which indicates a change
to a ‘good’ credit risk. We generated counterfactuals using MOC with the param-
eter setting selected by iterated F-racing. Candidates with a prediction below
0.5 were penalized.

A total of 136 counterfactuals were found by MOC. In the following, we focus
upon the 82 of them with predictions within [0.5, 1]. Credit duration was changed
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Fig. 1. Visualization of counterfactuals for the first data point x∗ of the credit dataset.
(a) Feature values of the counterfactuals. Only changed features are shown. The given
numbers indicate the minimum and maximum feature values of the counterfactuals.
(b) Response surface plot for the model prediction along features duration and credit
amount, holding other feature values constant at the value of x∗. Colors and contour
lines indicate the predicted value. The white point is x∗ and the black points are the
counterfactuals that only proposed changes in duration and/or credit amount. The
histograms show the marginal distributions of the features in the observed dataset.

for all counterfactuals, followed by credit amount (86%). Since a user might not
want to investigate all returned counterfactuals individually (in feature space),
we provide a visual summary of the Pareto set in Fig. 1, either as a parallel
coordinate plot or a response surface plot3 along two features. All counterfactuals
had values equal to or smaller than the values of x∗ for duration and credit
amount. The response surface plot illustrates why these feature changes were
recommended. The color gradient and contour lines indicate that either duration
or both credit amount and duration must be decreased to reach the desired
outcome. Due to the fourth objective and the conditional mutator, we obtained
counterfactuals in high density areas (indicated by histograms). Counterfactuals
in the lower left corner seem to be in a less favorable region far from x∗, but
they are close to the training data.

6 Experimental Setup

In this section, the performance of MOC is evaluated in a benchmark study
for binary classification. The datasets are from the OpenML platform [34] and
are briefly described in Table 1. We selected datasets with no missing values,
with up to 3500 observations and a maximum of 40 features. We randomly
selected ten observed data points per dataset as x∗ and excluded them from
the training data. For each dataset, we tuned and trained the following models:
logistic regression, random forest, xgboost, RBF support vector machine and a
3 This is equivalent to a 2-D ICE-curve through x∗ [9]. We refer to Sect. 4.3 for a

general definition of ICE curves.
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Table 1. Description of benchmark
datasets. Legend: task: OpenML task
id; Obs: Number of rows; Cont/Cat:
Number of continuous/categorical
features.

Task Name Obs Cont Cat

3718 boston 506 12 1

3846 cmc 1473 2 7

145976 diabetes 768 8 0

9971 ilpd 583 9 1

3913 kc2 522 21 0

3 kr-vs-kp 3196 0 36

3749 no2 500 7 0

3918 pc1 1109 21 0

3778 plasma retinol 315 10 3

145804 tic-tac-toe 958 0 9

Table 2. MOC’s coverage rate of methods
to be compared per dataset averaged over
all models. The number of nondominated
counterfactuals for each method are given in
parentheses. Higher values of coverage indi-
cate that MOC dominates the other method.
The ∗ indicates that the binomial test with
H0 : p < 0.5 that a counterfactual is covered
by MOC is significant at the 0.05 level.

DiCE Recourse Tweaking

boston 1* (36) 0.92* (24) 0.9* (10)

cmc 1* (17) 0.75 (8)

diabetes 1* (64) 0.45 (40) 1 (3)

ilpd 1* (26) 1* (37) 0.83 (6)

kc2 1* (53) 0.31 (55) 1 (2)

kr-vs-kp 1* (8) 0.2 (10)

no2 1* (58) 0.5 (12) 0.9* (10)

pc1 1* (60) 0.66* (38)

plasma retinol 1* (7) 0.89* (9)

tic-tac-toe 1* (20) 0.75 (8)

one-hidden-layer neural network. The tuning parameter set and the performance
using nested resampling are in Table 8 in Appendix C. Each model returned
only the probability for one class. The desired target for each x∗ was set to the
opposite of the predicted class:

Y ′ =

{
]0.5, 1] if f̂(x∗) ≤ 0.5
[0, 0.5] else

.

The benchmark study aimed to answer two research questions:

Q1) How does MOC perform compared to other state-of-the-art methods for
counterfactuals?
Q2) How do our proposed strategies for initialization and mutation of Sect. 4.3
influence the performance of MOC?

For the first one, we compared MOC – once with and once without our proposed
strategies for initialization and mutation – with ‘DiCE’ by Mothilal et al. [24],
‘Recourse’ by Ustun et al. [33] and ‘Tweaking’ by Tolomei et al. [32]. We chose
DiCE, Recourse and Tweaking because they are implemented in general open
source code libraries.4 The methods are only applicable to certain models: DiCE
can handle neural networks and logistic regressions, Recourse can handle logistic
regressions and Tweaking can handle random forests. Since Recourse can only
process binary and numerical features, we did not train logistic regression on
cmc, tic-tac-toe, kr-vs-kp and plasma retinol. As a baseline, we selected the

4 Most other counterfactual methods are implemented for specific examples, but can-
not be easily used for other datasets.
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closest observed data point to x∗ (according to the Gower distance) that has
a prediction equal to our desired outcome. Since this approach is part of the
What-If Tool [36], we call this approach ‘Whatif’.

The parameters of DiCE, Recourse and Tweaking were set to the default
values recommended by the authors (Appendix D). To allow for a fair compar-
ison, we initialized MOC with the parameters of iterated F-racing which were
tuned on other binary classification datasets (Appendix B). While MOC can
potentially return several hundreds of counterfactuals, the other methods are
designed to either return one or a few. We have therefore limited the maximum
number of counterfactuals to ten for all approaches.5 Tweaking and Whatif gen-
erated only one counterfactual by design. For MOC we reduced the number of
counterfactuals by preferring the ones that achieved the target prediction Y ′

and/or the highest HV contribution.
For all methods, only nondominated counterfactuals were considered for the

evaluation. Since we are interested in a diverse set of counterfactuals, we evaluate
the methods based on the size of their counterfactual set, its objective values,
and the coverage rate derived from the coverage indicator by Zitzler and Thiele
[38]. The coverage rate is the relative frequency with which counterfactuals of
a method are dominated by MOC’s counterfactuals for a certain model and x∗.
A counterfactual covers another counterfactual if it dominates it, and it does
not cover the other if both have the same objective values or the other has
lower values in at least one objective. A coverage rate of 1 implies that for each
generated counterfactual of a method MOC generated at least one dominating
counterfactual. We only computed the coverage rate over counterfactuals that
met the desired target Y ′.

To answer the second research question, we compared the dominated HV
over the generations of MOC with and without our proposed strategies for ini-
tialization and mutation. As a baseline, we used a random search approach that
has the same population size (20) and number of generations (175) as MOC. In
each generation, some feature values were uniformly sampled from their set of
possible values derived from the observed data and x∗, while other features were
set to the values of x∗. The HV for one generation was computed over the newly
generated candidates combined with the candidates of the previous generations.

7 Results

Q1) MOC vs. State-of-the-Art Counterfactual Methods

Table 2 shows the coverage rate of each method (to be compared) by the tuned
MOC per dataset. Some fields are empty because Recourse could not process
features with more than two classes and Tweaking never achieved the desired
outcome for pc1. MOC’s counterfactuals dominated all counterfactuals of DiCE
for all datasets. The same holds for Tweaking except for kr-vs-kp and tic-tac-
toe because the counterfactuals of Tweaking had the same objective values as

5 Note that this artificially penalizes our approach in the benchmark comparison.
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Fig. 2. Boxplots of the objective values and number of nondominated counterfactuals
(count) per model for MOC with our proposed strategies for initialization and mutation
(mocmod), MOC without these modifications, Whatif, DiCE, Recourse and Tweaking
for the datasets diabetes and no2. Lower values are better except for count.

the ones of MOC. MOC’s coverage rate of Recourse only exceeded 90% for
boston and ilpd since Recourse’s counterfactuals often deviated less from x∗

(but performed worse in other objectives).
Figure 2 compares MOC (with (mocmod) and without (moc) our proposed

strategies for initialization and mutation) with the other methods for the datasets
diabetes and no2 and for each model separately. The resulting boxplots for all
other datasets are shown in Figs. 4 and 5 in the Appendix. They agree with
the results shown here. Compared to the other methods, both versions of MOC
found the most nondominated solutions, which met the target and changed the
least features. DiCE performed worse than MOC in all objectives. Tweaking’s
counterfactuals were often closer to x∗, but they were further away from the
nearest training data point and more features were changed. Tweaking’s coun-
terfactuals often did not reach the desired outcome because they stayed too close
to x∗. The MOC with our proposed modifications found counterfactuals closer
to x∗ and the observed data, but required more feature changes compared to
MOC without the modifications.

Q2) MOC Strategies for Initialization and Mutation

Figure 3 shows the ranks of the dominated HVs for MOC without modifications,
for each modification of MOC and random search. Ranks were calculated per
dataset, model, x∗ and generation, and were averaged over all datasets, models
and x∗. We transformed HVs to ranks because the HVs are not comparable
across x∗. It can be seen that the MOC with our proposed modifications clearly
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Fig. 3. Comparison of the ranks w.r.t. the dominated HV (domhv) per generation
averaged over all models and datasets. For each approach, the population size of each
generation was 20. A higher HV and therefore a higher rank is better. Legend: moc:
MOC without our proposed modifications; moccond : MOC with the conditional muta-
tor; mocice: MOC with the ICE curve variance initialization; mocmod : MOC with both
modifications; random: random search.

outperforms the MOC without these modifications. The ranks of the initial pop-
ulation were higher when the ICE curve variance was used to initialize the candi-
dates. The use of the conditional mutator led to higher dominated HVs over the
generations. We received the best performance over the generations when both
modifications were used. At each generation, all versions of MOC outperformed
random search. Figure 6 in the Appendix shows the ranks over the generations
for each dataset separately. They largely agree with the results shown here. The
performance gains of MOC compared to random search were particularly evident
for higher-dimensional datasets.

8 Conclusion and Outlook

In this paper, we introduced Multi-Objective Counterfactuals (MOC), which to
the best of our knowledge is the first method to formalize the counterfactual
search as a multi-objective optimization problem. Compared to state-of-the-art
approaches, MOC returns a diverse set of counterfactuals with different trade-
offs between our proposed objectives. Furthermore, MOC is model-agnostic and
suited for classification, regression and mixed feature spaces. We demonstrated
the usefulness of MOC to explain a prediction on the German credit dataset
and showed in a benchmark study that MOC finds more counterfactuals than
other counterfactual methods that are closer to the training data and required
fewer feature changes. Our proposed initialization strategy (based on ICE curve
variances) and our conditional mutator resulted in higher performance in fewer
evaluations and in counterfactuals that were closer to the data point we were
interested in and to the observed data.

MOC has only been evaluated on binary classification, and only with respect
to the dominated HV and the individual objectives. It is an open question how to
let users select the counterfactuals that meet their – a-priori unknown – trade-off
between the objectives. We leave these investigations to future research.
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9 Electronic Submission

The complete code of the algorithm and the code to reproduce the experiments
and results of this paper are available at https://github.com/susanne-207/moc.
The implementation of MOC is based on our implementation of [19], which we
also used for [3]. We will provide an open source R library with our implemen-
tation of the method based on the iml package [23].

A Illustration of MOC’s Benefits

This section illustrates the benefits of having a diverse set of counterfactuals
using the diabetes dataset of the benchmark study (Sect. 6). We will compare the
counterfactuals returned by MOC with the ones of Recourse [33] and Tweaking
[32]. Due to space constraints, we only show the six counterfactuals of MOC
with the highest HV contribution for both examples.

Table 3. Counterfactuals and corresponding objective values of MOC and Recourse
for the prediction of a logistic regression for observation 741 of the diabetes dataset.
Shaded fields indicate values that differ from the value of observation 741 in brackets.

Feature (x∗) MOC1 MOC2 MOC3 MOC4 MOC5 MOC6 Recourse1 Recourse2 Recourse3

preg (11) 11.00 6.35 11.00 11.00 11.00 6.35 11.00 11.00 10.92

plas (120) 27.78 3.29 79.75 94.85 79.75 3.18 57.00 57.00 57.00

pres (80) 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

skin (37) 37.00 37.00 37.00 37.00 37.00 37.00 37.00 36.81 37.00

insu (150) 150.00 150.00 17.13 150.00 40.61 150.00 150.00 150.00 150.00

mass (42.3) 42.30 42.30 29.17 15.36 29.17 42.30 42.30 42.30 42.30

pedi (0.78) 0.78 0.78 0.31 0.78 0.17 0.78 0.78 0.78 0.78

age (48) 48.00 41.61 44.42 48.00 48.00 48.00 28.36 28.36 28.36

o1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

o2 0.06 0.12 0.10 0.07 0.10 0.11 0.08 0.08 0.08

o3 1.00 3.00 5.00 2.00 4.00 2.00 2.00 3.00 3.00

o4 0.10 0.05 0.03 0.07 0.04 0.07 0.09 0.09 0.09

Table 3 contrasts MOC’s counterfactuals with the three counterfactuals of
Recourse for the prediction of observation 741. A logistic regression predicted a
probability of having diabetes of 0.89 for this observation. The desired target is
a prediction of less than 0.5, which indicates having no diabetes. All counterfac-
tuals of Recourse suggest the same reduction in age and plasma concentration
(plas), with two counterfactuals additionally suggesting a minimal reduction in
the number of pregnancies (preg) or the skin fold thickness (skin).6 Apart from
that a reduction in age or preg is impossible, they do not offer many options

6 By reclassifying age and preg as integers (instead of decimals), integer changes would
be recommended by MOC, Recourse and Tweaking.

https://github.com/susanne-207/moc
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Table 4. Counterfactuals and corresponding objective values given by MOC and
Tweaking for the prediction of a random forest for observation 268 of the cmc dataset.
Shaded fields indicate values that differ from the value of observation 268 in brackets.

Feature (x∗) MOC1 MOC2 MOC3 MOC4 MOC5 MOC6 Tweaking1

preg (2) 2.00 2.00 2.00 2.00 2.00 2.00 1.53

plas (128) 121.50 90.21 126.83 128.00 88.44 120.64 119.71

pres (64) 64.00 64.00 64.00 64.00 64.00 64.00 64.00

skin (42) 42.00 42.00 42.00 42.00 42.00 42.00 42.00

insu (0) 0.00 0.00 0.00 0.00 0.00 90.93 0.00

mass (40) 40.00 40.00 40.00 40.00 40.00 40.00 40.00

pedi (1.1) 1.10 0.48 1.10 0.17 0.46 1.10 1.10

age (24) 24.00 24.00 24.00 24.00 25.85 24.00 28.29

o1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

o2 0.00 0.06 0.00 0.05 0.06 0.02 0.02

o3 1.00 2.00 1.00 1.00 3.00 2.00 3.00

o4 0.05 0.02 0.05 0.04 0.01 0.03 0.06

for users. Instead, MOC returned a larger set of counterfactuals that provide
more options for actionable user responses and are closer to the observed data
than Recourse’s counterfactuals (o4). Counterfactual MOC1 has overall lower
objective values than all counterfactuals of Recourse. MOC3 suggested changes
to five features so that it is especially close to the nearest training data point
(o4).

Table 4 compares the set of counterfactuals found by MOC with the single
counterfactual found by Tweaking for the prediction of observation 268. A ran-
dom forest classifier predicted a probability of having diabetes of 0.62 for this
observation. Again, the desired target is a prediction of less than 0.5. Tweak-
ing suggested reducing the number of children and plasma glucose concentration
(plas) while increasing the age so that the probability of diabetes decreases. This
is contradictory and not plausible. In contrast, MOC’s counterfactuals suggest
various strategies, e.g., only a decrease of plas, which is easier to realize. In
addition, MOC1, MOC3 and MOC6 dominate the counterfactual of Tweaking.
Since five of six counterfactuals suggest changes to plas, the user may have more
confidence that plas is an important lever to achieve the desired outcome.

B Iterated F-racing

We used iterated F-racing (irace) [21] to tune the parameters of MOC for binary
classification. The parameters and considered ranges are given in Table 5. The
number of generations was not part of the parameter set because it would be
always tuned to the upper bound. Instead, the number of generations was deter-
mined after the other parameters were tuned with irace. Irace was initialized
with a maximum budget of 3000 evaluations equal to 3000 runs of MOC. In
every step, irace randomly selected one of 300 instances. Each instance consisted
of a trained model, a randomly selected data point from the observed data as x∗
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Table 5. Parameter space investigated with iterated F-racing, as well as the resulting
optimized configuration (Result).

Name Description Range Result

M Population size [20, 100] 20

initialization Initialization strategy [Random, ICE curve] ICE curve

conditional Whether to use the conditional mutator [TRUE, FALSE] TRUE

p.rec Probability a pair of parents is chosen to

recombine

[0.3, 1] 0.57

p.rec.gen Probability a feature is recombined [0.3, 1] 0.85

p.rec.use.orig Probability the indicator for feature

changes is recombined

[0.3, 1] 0.88

p.mut Probability a child is chosen to be mutated [0.05, 0.8] 0.79

p.mut.gen Probability one feature is mutated [0.05, 0.8] 0.56

p.mut.use.orig Probability indicator for a feature change is

flipped

[0.05, 0.5] 0.32

and a desired outcome. The desired target for each x∗ was the opposite of the
predicted class:

Y ′ =

{
]0.5, 1] if f̂(x∗) ≤ 0.5
[0, 0.5] else

.

The trained model was either logistic regression, random forest, xgboost, RBF
support vector machine or a two-hidden-layer neural network. Each model esti-
mated only the probability for one class. The models were trained on datasets
obtained from the OpenML platform [34] (without the sampled x∗) and are
briefly described in Table 7. While these datasets were not used in the bench-
mark study (Sect. 6), the same preprocessing steps were conducted and the mod-
els were tuned with the same setup (see Sect. C for details).

In each step of irace, parameter configurations were evaluated by running
MOC on the same selected instance. MOC stopped after evaluating 8000 candi-
dates with Eq. (1), which should be enough to ensure convergence of the HV in
most cases. The integral of the first order spline approximation of the dominated
HV over the evaluations was the performance criterion as recommended by [26].
The integral takes into account not only the extent but also the rate of conver-
gence of the dominated HV. A Friedman test was used to discard less promising
configurations. The first Friedman test was conducted after initial configurations
were evaluated on 15 instances; afterward, the test was conducted after evaluat-
ing the remaining configurations on a single instance to accelerate the exclusion
process. The best configuration returned is given in Table 5.

To obtain a default parameter for the number of generations for the bench-
mark study, we determined for the 300 instances after how many generations
of the tuned MOC the dominated HV has not increased for 10 generations. We
chose the maximum of 175 generations as a default for the study.
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Table 6. Tuning search space per
model. The hyperparameters ntrees
and nrounds were log-transformed.

Model Hyperparameter Range

randomforest ntrees [0, 1000]

xgboost nrounds [0, 1000]

svm cost [0.01, 1]

logreg lr [0.0005, 0.1]

neuralnet lr [0.0005, 0.1]

layer size [1, 6]

Table 7. Description of datasets for tun-
ing with iterated F-racing. Legend: Task:
OpenML task id; Obs: Number of rows;
Cont/Cat: Number of continuous/categorical
features.

Task Name Obs Cont Cat

3818 tae 151 3 2

3917 kc1 2109 21 0

52945 breastTumor 277 0 6

3483 mammography 11183 6 0

3822 nursery 12960 0 8

3586 abalone 4177 7 1

C Model Hyperparameters for the Benchmark Study

We used random search (with 200 iterations for neural networks and 100 itera-
tions for all other models) and 5-fold CV (with misclassification error as perfor-
mance measure) to tune the hyperparameters of the models on the training data.
The tuning search space was the same as for iterated F-racing and is shown in
Table 6. Numerical features were scaled (standardization (Z-score) for random
forest, min-max-scaling (0–1-range) for all other models) and categorical features
were one-hot encoded. For neural network and logistic regression, ADAM [17]
was the optimizer, the batch size was 32 with a 1/3 validation split and early
stopping was conducted after 5 patience steps. Logistic regression needed these
configurations because we constructed the model as a zero-hidden-layer neural
network. For all other hyperparameters of the models, we chose the default val-
ues of the mlr [4] and keras [1] R packages. Table 8 shows the accuracies of the
trained models using nested resampling (5-fold CV in outer and inner loop).

Table 8. Accuracy using nested resampling per benchmark dataset and model. Legend:
Name: OpenML task name; rf: random forest. Logistic regression (logreg) was only
trained on datasets with numerical or binary features.

Name rf xgboost svm logreg neuralnet

boston 0.90 0.89 0.87 0.86 0.87

cmc 0.70 0.72 0.67 0.68

diabetes 0.76 0.74 0.75 0.63 0.68

ilpd 0.69 0.67 0.65 0.53 0.58

kc2 0.81 0.80 0.79 0.75 0.72

kr-vs-kp 0.99 0.99 0.97 0.99

no2 0.63 0.59 0.58 0.55 0.54

pc1 0.93 0.93 0.91 0.91 0.88

plasma retinol 0.53 0.52 0.58 0.55

tic-tac-toe 0.99 0.99 0.98 0.97
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Fig. 4. Boxplots of the objective values and number of nondominated counterfactuals
(count) per dataset and model for MOC with our proposed strategies for initialization
and mutation (mocmod), MOC without these modifications, Whatif, DiCE, Recourse
and Tweaking. Lower values are better except for count.

D Control Parameters of Counterfactual Methods

For Tweaking [32], we only changed ε, a positive threshold that limits the tweak-
ing of each feature. It was set to 0.5 because it obtained better results for the
authors on their data example on Ad Quality in comparison to the default value
0.1. We used the R implementation of Tweaking on Github: https://github.
com/katokohaku/featureTweakR (commit 6f3e614). For Recourse [33], we left
all parameters at their default settings. We used the Python implementation
of Recourse on Github: https://github.com/ustunb/actionable-recourse (com-

https://github.com/katokohaku/featureTweakR
https://github.com/katokohaku/featureTweakR
https://github.com/ustunb/actionable-recourse
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Fig. 5. Boxplots of the objective values and number of nondominated counterfactuals
(count) per dataset and model for MOC with our proposed strategies for initialization
and mutation (mocmod), MOC without these modifications, Whatif, DiCE, Recourse
and Tweaking. Lower values are better except for count.

mit aaae8fa). For DiCE [24], we used the ‘DiverseCF’ version proposed by the
authors [24] and left the control parameters at their defaults. We used the inverse
mean absolute deviation for the feature weights. For datasets where the mean
absolute deviation of a feature was zero, we set the feature weight to 10. We
used the Python implementation of DiCE available on Github: https://github.
com/microsoft/DiCE (commit fed9d27).

https://github.com/microsoft/DiCE
https://github.com/microsoft/DiCE
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with the conditional mutator; mocice: MOC with the ICE curve variance initialization;
mocmod : MOC with both modifications; random: random search.
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