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Abstract. Boltzmann Machines are recurrent neural networks that have
been used extensively in combinatorial optimization due to their simplic-
ity and ease of parallelization. This paper introduces the Permutational
Boltzmann Machine, a neural network capable of solving permutation
optimization problems. We implement this network in combination with
a Parallel Tempering algorithm with varying degrees of parallelism rang-
ing from a single-thread variant to a multi-threaded system using a 64-
core CPU with SIMD instructions. We benchmark the performance of
this new system on Quadratic Assignment Problems, using some of the
most difficult known instances, and show that our parallel system per-
forms in excess of 100× faster than any known dedicated solver, including
those implemented on CPU clusters, GPUs, and FPGAs.

Keywords: Parallel Boltzmann Machine · Replica exchange
Monte-Carlo · Combinatorial optimization · Quadratic Assignment
Problem

1 Introduction

Boltzmann Machines (BM), first proposed by Hinton in 1984 [13], are recurrent,
fully connected, neural networks that store information within their symmet-
ric edge weights. When combined with Stochastic Local Search methods such
as Simulated Annealing (SA) [1] or Parallel Tempering (PT) [10], BMs can
be used to perform combinatorial optimization on complex problems such as
TSP [3], MaxSAT [8], and MaxCut [16]. In this paper, we present an algorithm
for a Permutational Boltzmann Machine (PBM), structured to solve complex,
integer based, permutation optimization problems. We combine this PBM with
Parallel Tempering and propose both single-threaded and multi-threaded, soft-
ware implementations of this PBM + PT system using a 64-core CPU along
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with SIMD instructions. As a proof-of-concept, we show how to solve Quadratic
Assignment Problems (QAP) [17] using a PBM and present experimental results
on some of the hardest QAP instances from QAPLIB [6], Palubeckis [21], and
Drezner [9]. We then show that, over the tested instances, our single-threaded
and multi-threaded PBM systems can find the best-known-solutions of QAP
problems in excess of 10× and 100× faster than the next best solver respec-
tively.

The rest of this paper is organized as follows: Sect. 2 provides background
on BMs and the formulation of QAP problems. Section 3 presents the structure
of our Permutational Boltzmann Machine and Sect. 4 presents our single and
multi-threaded implementations of a PBM + PT system on a multi-core CPU.
Section 5 outlines the experiments conducted to benchmark the performance of
our PBM + PT system and presents our results. Section 6 concludes this paper.

2 Background

2.1 Boltzmann Machines

BMs, as shown in Fig. 1, are made up of N neurons, {x1, x2, . . . , xN} with binary
states represented by vector S = [s1 s2 . . . sN ]ᵀ ∈ {0, 1}N . Each neuron, xi, is
connected to other neurons, xj , via symmetric, real-valued weights, wi,j ∈ R

where wi,j = wj,i and wi,i = 0, forming a 2D matrix, W ∈ R
N×N . Each neuron

also has a bias value, bi, which forms B ∈ R
N×1. The cumulative inputs to

the neurons, also referred to as their local fields, hi, form H ∈ R
N×1 and are

calculated using (1).

(a) (b)

Fig. 1. Structure of a Boltzmann Machine and its neurons. (a) Top level structure of
a Boltzmann Machine (b) Detailed structure of a BM neuron, where T is the system
temperature and rand() is a uniform random number within [0,1]

hi(S) =
N∑

j=1

wi,jsj + bi , H(S) = WS + B (1)
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E(S) = −1
2

N∑

i=1

N∑

j=1

wi,jsisj −
N∑

i=1

bisi = −SᵀWS
2

− SᵀB (2)

P (S) =
exp(−E(S)/T )∑

∀Sj∈{0,1}N exp(−E(Sj)/T )
(3)

Each possible state of a BM has an associated energy term calculated via
(2). The probability of the system being in any state depends on the energy of
that state as shown in (3). The lower the energy, the higher the probability that
the network will be in that state. BMs create an energy landscape for a problem
through the weights that connect their neurons where the state(s) with the
lowest energy corresponds to a valid solution. The procedures to convert various
optimization problems to the BM format are discussed in [12]. The term T in
(3), known as the system temperature, flattens or sharpens the energy landscape
when increased or decreased respectively, providing a method to maneuver the
landscape when searching for the global minimum.

Generally, BMs are combined with Simulated Annealing (SA) to solve opti-
mization problems. Using SA, at a time-step t, where the system is in state St

with temperature T , the local fields H(St) are calculated using (1). In order
to make an update to the system, we must conduct a trial. First, a neuron xi

is randomly chosen and the change in energy as a result of flipping its state is
calculated via (4). Next, the probability of flipping the neuron’s state, Pmove,
is calculated via (5) and is compared against a uniformly distributed random
number in [0,1] to determine the change in the neuron’s state using (6).

ΔE(St, i) = ΔEsi−→!si
(St) = −[1 − 2sti]hi(St) (4)

Pmove = min{1, exp(−ΔE/T )} (5)

Δsi =

{
[1 − 2sti] if Pmove ≥ rand()
0 otherwise

(6)

After the trial, the system state variables si, H, and E need to be updated
as shown in (7), (8), and (9) respectively, where Wi,∗ and W∗,i represent row
and column i of W respectively.

st+1
i = sti + Δsi (7)

H(St+1) = H(St) + ΔsiW∗,i (8)

E(St+1) = E(St) + ΔE(St, i) (9)

This procedure is repeated a preset number of times, occasionally cooling the
system by decreasing T until it goes below a certain threshold, Tthresh, at which
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point the process is terminated and the lowest energy state observed throughout
the search is returned. This state may or may not correspond to a valid or
optimal solution due to the stochastic nature of the algorithm but, theoretically,
if given a long enough cooling schedule, the BM + SA system will eventually
converge to an optimal answer [2].

2.2 Quadratic Assignment Problems (QAP)

QAP problems, first formulated in [17], are a class of NP-Hard permutation
optimization problems to which many other problems such as the Travelling
Salesman Problem can be reduced. While the formulation is relatively simple,
QAP remains, to this day, one of the more challenging combinatorial optimiza-
tion problems. QAP problems entail the task of assigning a set of n facilities to
a set of n locations while minimizing the cost of the assignment. QAP problems
are comprised of n × n matrices F = (fi,j) and D = (dk,l) which describe the
flows between facilities and distances between locations respectively with the
diagonal elements of both matrices being 0. A third n × n matrix BP = (bi,k),
describes the costs of assigning a facility to a location. All three matrices are
comprised of real-valued elements. Given these matrices, each facility must be
assigned to a unique location, generating a permutation, φφφ ∈ Sn, where Sn is
the set of all permutations, such that the cost function (10) is minimized.

min
φφφ∈Sn

cost(φφφ) = min
φφφ∈Sn

n∑

i=1

n∑

j=1

fi,jdφi,φj
+

n∑

i=1

bi,φi
(10)

Generally, there are two variants of the QAP problem: symmetric (sym) and
asymmetric (asm). In the symmetric case, either one or both of F and D are
symmetric. If one of the matrices is asymmetric, it can be made symmetric by
taking the average of an element and its complement. However, if both matrices
are asymmetric, we can no longer symmetrize them in this manner. It is impor-
tant to distinguish between these two cases as they are handled differently by a
PBM, as will be shown in Sect. 3.

3 Permutational Boltzmann Machines (PBM)

3.1 Structure and Update Scheme

The PBM’s structure is an extension of Clustered Boltzmann Machines (CBM),
first proposed by De Gloria [11]. A CBM places neurons that do not have any
connections between them into groups called clusters. Within a cluster, the states
of the neurons have no effect on each other’s local fields; simultaneously flipping
the states of multiple neurons in the same cluster has the same effect as flipping
them in sequence. In a PBM, the neurons are arranged into an n × n matrix
SP = (sr,c), where each row, ri, and each column, cj , forms a cluster, as shown
in Fig. 2a. On each cluster, we impose an exactly-1 constraint to ensure that
within each row and each column, there is exactly one neuron in the ON state.



A Permutational Boltzmann Machine with Parallel Tempering 321

In the context of a permutation problem, the row-clusters represent a 1-
hot encoded integer in [1, n], allowing the neuron states to be represented via
the integer permutation vector, φ. The column-clusters, in turn, enforce that
every integer is unique. The n2 × n2 weight matrix is also reshaped into a 4D
(n × n) × (n × n) matrix as shown in (11), allowing the generation of the wr,c

sub-matrices via Kronecker Products (denoted by ⊗) of rows and columns of F
and D via (12). The n × n local field matrix HP is calculated via (13).

(a) (b)

Fig. 2. Structure of a Permutational Boltzmann Machine. (a) The binary neuron state
matrix SP with row/column cluster structures and the permutation vector φ (b) Struc-
ture of a permutation Swap Move

WP =

⎡

⎢⎢⎢⎢⎢⎣

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

w3,1 w3,2 . . . w3,n

...
...

. . .
...

wn,1 wn,2 . . . wn,n

⎤

⎥⎥⎥⎥⎥⎦
, WP ∈ R

(n×n)×(n×n) (11)

wr,c =

{
−(Fr,∗)ᵀ ⊗ Dc,∗ sym

−(Fr,∗)ᵀ ⊗ Dc,∗ − F∗,r ⊗ (D∗,c)ᵀ asm
, wr,c ∈ R

n×n (12)

hr,c =
n∑

r′=1

n∑

c′=1

wr,c;r′,c′sr′,c′ + br,c , HP = (hr,c) ∈ R
n×n (13)

We enforce the 2n exactly-1 constraints by not allowing moves that violate
the constraints. Assuming that the system is initialized to a valid state that meets
all the constraints, we propose trials via moves called swaps as shown in Fig. 2b.
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A swap proposal involves picking two unique rows, r and r′, from the neuron
matrix and swapping the states of their ON neurons along columns c and c′. If
accepted, this move results in 4 simultaneous bit-flips within the binary neuron
matrix. The change in energy as a result of such a move is shown in (14), where
the first set of local field terms correspond to the neurons being turned OFF
while the second set is due to the neurons being turned ON . The two weights
being subtracted are required as we have two pairs of neurons that may be
connected across the clusters. The first weight is to compensate for the weight
being double added by the local fields of the two neurons turning OFF . The
second weight is to account for a coupling that was previously inactive between
the two neurons turning ON . As shown in (15), we can directly generate the sum
of these weights using F and D. A trial can then be performed by substituting
the ΔE value from (14) into (5) and comparing the generated move probability
against a value generated by rand().

ΔE(φt, r, r′) = (ht
r,c + ht

r′,c′) − (ht
r,c′ + ht

r′,c) − (wr,c;r′,c′ + wr,c′;r′,c) (14)

wr,c;r′,c′ + wr,c′;r′,c =

{
−2fr,r′dc,c′ sym

−(fr,r′ + fr′,r)(dc,c′ + dc′,c) asm
(15)

3.2 Updating the Local Field Matrix

When a swap proposal is accepted, the system state must be updated. Swapping
the two values in φ and adjusting the system energy is simple. However, updat-
ing the local field matrix involves a large number of calculations. Attempting to
update Hp via (16) involves fetching four weight sub-matrices from global mem-
ory with long access delays. Interestingly, the structure of the weight matrix and
the PBM itself allow these calculations to be performed efficiently while storing
the majority of required data within L2 or L3 caches. For a symmetric problem,
we can generate the required weights with a Kronecker Product operation on
the differences between 2 rows of the F matrix (Δf) and 2 rows of the D matrix
(Δd) using (17). For an asymmetric problem, an additional update using Fᵀ

and Dᵀ is required. In this manner, the amount of memory required to store the
weight data is reduced from n4 elements for a monolithic weight matrix to 2n2

elements to store F and D when the problem is symmetric. For an asymmetric
problem, an additional 2n2 elements are needed to store Fᵀ and Dᵀ. Storing a
transposed copy of the matrices, while doubling the required memory, provides
significant speedups due to a larger number of cache hits when fetching a small
number of rows.

Ht+1
P = Ht

P − (wr,c + wr′,c′) + (wr,c′ + wr′,c) = Ht
P + ΔHP (16)

ΔHP =

{
Δf ⊗ Δd = (Fr,∗ − Fr′,∗)ᵀ ⊗ (Dc,∗ − Dc′,∗) sym

Δf ⊗ Δd + (F∗,r − F∗,r′) ⊗ (D∗,c − D∗,c′)ᵀ asm
(17)
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4 System Overview

4.1 Parallel Tempering

A major weakness of Simulated Annealing in traditional BM optimizers is that
it can easily get stuck in a local minimum due to the unidirectional nature of the
cooling schedule. Parallel Tempering (PT), first proposed in [23] and developed
in [14], provides a means of running M cooperative copies (replicas) of the sys-
tem, each at a different temperature, in order to search a larger portion of the
landscape while allowing a mechanism for escaping from local minima. Replicas
are generally arranged in order of increasing T from Tmin to Tmax in a tem-
perature ladder. A replica, Rk, operating at temperature Tk, can stochastically
exchange temperature with the replica immediately above it on the ladder, Rk+1,
with an Exchange Acceptance Probability (EAP ) calculated via (18). Figure 3
outlines the structure of an optimization engine using BM replicas with PT.

EAP = min{1, exp((1/Tk − 1/Tk+1)(Ek − Ek+1))} (18)

(a) (b)

Fig. 3. Overview of a Boltzmann Machine combined with Parallel Tempering (a) Struc-
ture of BM + PT Engine (b) Example of a replica escaping from a local minimum and
reaching the global optimum via climbing the PT ladder

As implied by (3) and (7), higher T replicas can move around a larger portion
of the landscape whereas the moves in lower T replicas are contained to a smaller
subspace of the landscape. The ability of replicas to move up or down the ladder,
as shown in Fig. 3b, allows for a systematic method of escaping from local
minima, making PT a better choice for utilizing parallelism than simply running
M disjoint replicas in parallel using SA as proven in [10,14]. In this paper, we
implement a PT algorithm based on a modified version of Dabiri’s work [7]. One
drawback to PT algorithms such as the BM + PT system used in [7] is that
their Tmax and Tmin must be manually tuned for each problem instance. This
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requires considerable time and effort while having dramatic effects on the efficacy
of the optimization process. We partially address this issue by selecting, from
each family of QAP problems, small instances whose solutions can be verified via
exact algorithms, to tune a function that automatically selects these parameters
for that family within our system.

4.2 Single-Threaded Program

Algorithm 1 presents our proposed PBM + PT system which can be configured
for varying levels of multi-threaded operation. A single PT engine (U = 1) is
used with M = 32 replicas. The algorithm starts by initializing the temperature
ladder and assigning random permutations to each replica and populating their
HP matrices and energy values. The system then enters an optimization loop
where it runs Y trials for each replica in sequence using the RUN R() function,
updating their states every time a trial is accepted by calling Swap(). After
all replicas have finished their Y trials, temperature exchanges are performed.
Similar to QAP solvers such as [15,18–20,24], this process is repeated until the
state corresponding to the best-known-solution (BKS ) of a problem, EBKS , is
reached by one of the replicas, terminating the loop. The system then returns,
for each replica, the minimum energy found and the corresponding state.

4.3 Multi-thread Load Balancing

For our implementation, we targeted a 64-core AMD 3990X CPU. Given the
structure of a PBM combined with PT, one of the most intuitive ways to extract
parallel speedups is to create a thread for each replica such that they all run on
a unique core with their own dedicated L1 and L2 caches.

One issue that arises from this form of parallel execution is that replicas at
higher T have higher swap acceptance rates than replicas at lower T resulting in

(a) (b)

Fig. 4. Load balancing threads via replica folding
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Algorithm 1. Permutational Boltzmann Machine with Parallel Tempering

Parameters: M, U, C, Y
Input: n, EBKS , asm,F,D,Fᵀ,Dᵀ,BP

Output: Emin, φmin

1: Engine Variables
2: E[U ][M ]
3: Emin[U ][M ]
4: φ[U ][M ][n]
5: φmin[U ][M ][n]
6: HP[U ][M ][n][n]
7: T [U ][M ]

8:
9: function Run R(u, m)

10: for y ← 1 to Y do
11: r, r′ ← pick 2 unique rows
12: ΔE ← (14)
13: Pswap ← exp(−ΔE/T [u][m])
14: if Pswap > rand() then
15: Swap(u, m, r, r′)

16:
17: � Perform Replica Swap Adjustments
18: function Swap(u,m,r,r’ )
19: c, c′ ← φ[u][m][r], φ[u][m][r′]
20: fr[n : 1] ← F[r, :] − F[r′, :]
21: dr[n : 1] ← D[c, :] − D[c′, :]
22: if asm then
23: fc[n : 1] ← Fᵀ[r, :] − Fᵀ[r′, :]
24: dc[n : 1] ← Dᵀ[c, :] − Dᵀ[c′, :]

25: for i ← 1 to n do
26: HP[u][m][i, :]

+← fr[i] ∗ dr
27: if asm then
28: HP[u][m][i, :]

+← fc[i] ∗ dc

29: φ[u][m][r], φ[u][m][r′] ← c′, c

30: E[u][m]
+← ΔE

31: if E[u][m] < Emin[u][m] then
32: Emin[u][m] ← E[u][m]
33: φmin[u][m] ← φ[u][m]

34: � Exchange Replica Temperatures
35: function PTexchange(u)
36: for m ← 1, M − 1 do
37: δβ ← 1/T [u][m]−1/T [u][m+1]
38: δE ← E[u][m] − E[u][m + 1]
39: EAP ← exp(δβ ∗ δE)
40: if EAP ≥ rand() then
41: T [u][m],T [u][m + 1] ←

T [u][m + 1],T [u][m]

42:
43: � PBM + PT Main Routine
44:
45: � Initialize System
46: for u ← 1, U do
47: T [u] ← InitFoldedLadder()
48: for m ← 1, M do
49: T [m] ← Tmin + incr ∗ (m − 1)
50: φ[u][m] ← random

51: φmin[u][m] ← φ[u][m]
52: HP[u][m] ← (13)
53: E[u][m] ← (2)
54: Emin[u][m] ← E[u][m]

55:
56: � Run Optimization
57: while EBKS not in Emin do
58: #parallel loop threads(U)
59: for u ← 1, U do
60: #parallel loop threads(C)
61: for thread ← 1, C do
62: for i ← 1, M/C do
63: m ← thread∗(M/C)+i
64: RUN R(u, m)

65:
66: #parallel loop threads(U)
67: for u ← 1, U do
68: PTexchange(u)

69:
70: return Emin, φmin

Energies are stored using fp64 while F, D, BP, and HP elements are stored using
fp32. Floats allow for the use of fused-multiply-add operations when implementing
(17) within Swap(). To fully utilize our available hardware, SIMD instructions were
used wherever possible for significant speed-ups.
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more local field updates per trial on average, increasing their run-time. In our
experiments, we observed that the number of trials accepted typically increases
linearly as T is increased as demonstrated in Fig. 4a. To load-balance the threads,
upon initialization of the system, replicas are folded and assigned in pairs to
threads as shown in Fig. 4b.

The replica-to-thread assignments are static throughout a run to ensure that
there is minimal movement of HP data between cores. Although the temperature
exchanges between replicas can cause load imbalance due to the static folding,
their stochastic nature ensures that they are temporary with minimal effects.

4.4 Multi-threaded Configuration Selection

To find the optimal number of engines (U) and threads-per-engine (C), we ran all
instances within the sko and taiXXb sets from QAPLIB [6] (excluding tai150b)
100 times each and recorded the average time-to-optimum (TtO) across all 100
runs for each instance. The TtO, reported in seconds, is measured as the average
time for a solver to reach the BKS of a problem. We measured TtO values over
the selected instances for a system with U = 1 across different C values and
compared the TtO of each instance against those of a single-threaded system
(U × C = 1 × 1). Figure 5a depicts the average speed-up of a single-engine
system as C is varied relative to a 1 × 1 system, showing that the execution
time decreases as the number of threads is increased with diminishing returns.
We repeated this experiment, testing different combinations of U and C to find
the optimal system configuration. Figure 5b compares the speed-up of different
configurations relative to a 1 × 1 system with the 2 × 32 configuration having
the highest average speed-up despite having no load-balancing. This implies that
extra engines, even with load-balancing, cannot make-up for their addtional data
movement costs.

Speed-up v Cores-per-Engine Speed-up v Multi-Engine Configs.

(a) (b)

Fig. 5. Speed-up across multi-core configurations

5 Experiments and Results

We benchmark our PBM optimizers using a 64-core AMD Threadripper 3990X
system with 128 GB of DDR4 running on CentOS 8.1. Our system was coded in
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C++, using the OpenMP API for multi-threading, and compiled with GCC-9.
Two separate variants of our solver were benchmarked: PBM (U = 1, C = 1)
and PBM64 (U = 2, C = 32). We compare the performance of our systems
against eight state-of-the-art solvers, described in Table 1. Solvers [4,5,22] use
a preset iteration/time limit as their termination criterion while [15,18–20,24]
terminate as soon as the BKS is reached. All metrics are taken directly from the
respective papers. We benchmarked instances from the QAP Library [6] along
with ones created by Palubeckis [21] and Drezner [9]. The sets of instances from
Palubeckis and Drezner are generated to be difficult with known optima, with
the Drezner set being specifically ill-conditioned for meta-heuristics.

Table 1. State-of-the-art solver descriptions

ID Year Algorithm Platform Hardware

This 2020 Boltzmann Machine + Parallel Tempering CPU AMD 3990X

[4] 2019 Hunting Search CPU Intel i5-4300

[5] 2017 Break-Out Local Search CPU Intel i7-6700

[15] 2017 Break-Out Local Search FPGA Xilinx ZCU102

[18] 2018 Genetic Algorithm + Extremal Optimization + Tabu Search CPU 8 × AMD 6376

[19] 2016 Extremal Optimization + Tabu Search CPU 8 × AMD 6376

[20] 2016 Extremal Optimization CPU 8 × AMD 6376

[22] 2018 Multistart Simulated Annealing GPU NVidia Titan X

[24] 2012 Ant Colony Optimization GPU 4 × NVidia GTX480

5.1 Benchmarks: Previously Solved QAP Instances

Table 2 contains TtO values for our two PBM variants and the solvers in Table
1, across some of the most difficult instances from literature that at least one
other solver was able to solve with a 100% success rate within a five minute
time-out window. The bur set, while not difficult, was included as it is the only
asm set used in literature. The TtO reported for PBM is the average value across
10 consecutive runs with a 5 min time-out window for each run. For the solvers
in Table 1, we report only the TtO from the best solver for each instance. The
TtOs where PBM or PBM64 outperform the best solver are highlighted in Table
2. In 44 out of 60 instances, the fastest TtO is reported by one or both of our
PBM variants with speed-ups in excess of 10× for PBM and 100× for PBM64
on certain instances. Of the remaining 16 instances, PBM64 has either identical
or marginally slower performance compared to the best reported solver.

5.2 Benchmarks: Unsolvable QAP Instances

Table 3 contains performance comparisons between PBM64 and the solver from
[19], ParEOTS, across QAP instances that no solver to date could consistently
solve within a 5 min time-out window. As neither ParEOTS or PBM64 have a
100% success rate on these instances, we also compare their Average Percentage
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Table 2. Time-to-optimum (s) comparisons across difficult QAP instances

ID
Best

PBM PBM64 ID
Best

PBM PBM64 ID
Best

PBM PBM64
Solver Solver Solver

bur26a [20] 0.027 0.017 0.010 Inst50 [19] 17 82.55 5.525 tai20a [20] 2.637 0.720 0.035

bur26b [20] 0.021 0.043 0.013 Inst60 [19] 67 58.27 1.606 tai25a [20] 6.330 0.441 0.029

bur26c [20] 0.009 0.022 0.011 Inst70 [19] 127 101.49 10.67 tai30a [22] 0.76 0.560 0.093

bur26d [4] 7.951 0.109 0.022 Inst80 [19] 116 X 27.66 tai35a [5] 19.20 2.620 0.149

bur26e [20] 0.010 0.042 0.012 sko42 [15] 0.330 0.130 0.023 tai40a [19] 64.00 X 93.68

bur26f [20] 0.009 0.176 0.012 sko49 [15] 2.460 0.972 0.081 tai12b [20] 0.001 0.004 0.009

bur26g [20] 0.006 0.052 0.012 sko56 [19] 0.600 0.891 0.082 tai15b [20] 0.001 0.012 0.010

bur26h [20] 0.010 0.037 0.011 sko64 [19] 1.300 0.568 0.046 tai20b [18] ∼0.0 0.010 0.010

dre15 [19] ∼0.0 0.016 0.010 sko72 [19] 8.700 2.733 0.205 tai25b [18] ∼0.0 0.030 0.012

dre18 [19] ∼0.0 0.017 0.026 sko81 [18] 22.40 4.125 0.210 tai30b [18] 0.100 0.076 0.017

dre21 [19] ∼0.0 0.054 0.023 sko90 [19] 92.00 8.016 0.487 tai35b [19] 0.200 0.168 0.021

dre24 [19] ∼0.0 0.139 0.028 sko100a [19] 69.00 9.597 0.561 tai40b [20] 0.061 0.149 0.016

dre28 [19] 0.1 0.299 0.053 sko100b [19] 45.00 6.772 0.574 tai50b [24] 0.200 1.938 0.111

dre30 [19] 0.1 0.483 0.087 sko100c [18] 56.00 16.02 0.747 tai60b [24] 0.400 4.064 0.222

dre42 [19] 0.7 3.069 0.276 sko100d [19] 37.00 9.579 0.841 tai80b [24] 5.500 9.332 0.594

dre56 [19] 5.6 29.25 1.590 sko100e [19] 47.00 6.138 0.609 tai100b [24] 10.10 6.766 0.481

dre72 [19] 26 152.7 11.01 sko100f [19] 57.00 10.78 0.647 tho30 [20] 0.235 0.093 0.019

Inst20 [19] ∼0.0 0.144 0.024 tai12a [20] 0.011 0.004 0.009 tho40 [19] 0.400 1.113 0.245

Inst30 [19] 0.1 3.504 0.226 tai15a [20] 0.089 0.040 0.012 wil50 [20] 27.54 0.390 0.036

Inst40 [19] 4.0 21.92 0.812 tai17a [20] 0.292 0.053 0.012 wil100 [19] 97.00 15.49 0.770

Table 3. Performance across unsolvable instances

BKS
ParEOTS [19] PBM64

BKS
ParEOTS [19] PBM64

#bks APD Time #bks APD Time #bks APD Time #bks APD Time

dre90 1838 9 0.968 167 9 0.870 69.33 tai60a 7205962 3 0.146 255 0 0.997 300.0

dre110 2264 6 6.334 223 6 4.487 229.9 tai80a 13499184 0 0.364 300 0 1.831 300.0

dre132 2744 1 22.78 294 3 7.048 244.6 tai100a 21052466 0 0.298 300 0 1.709 300.0

Inst100 15008994 1 0.120 300 0 0.185 300.0 tai150b 498896643 0 0.061 300 9 ∼0.0 111.4

Inst150 58352664 0 0.126 300 0 0.171 300.0 tai256c 44759294 0 0.178 300 0 0.139 300.0

Inst200 75405684 0 0.125 300 0 0.153 300.0 tho150 8133398 1 0.007 291 0 0.031 300.0

tai50a 4938796 3 0.077 264 3 0.151 262.9

Deviation, calculated as APD = 100 × (Avg − BKS)/BKS. Avg is calculated
as the average of the best cost found in each run. We benchmarked PBM64
using the same procedure reported in [19], running each instance 10 times with
a time-out window of 5 min and reporting the average time of the 10 runs along
with the number of runs that reached the BKS, #bks

PBM64 displays better performance on the dre instances and has a near
100% success rate on tai150b. Across other instances, ParEOTS reports equal or
better performance despite PBM64 performing better on smaller instances from
the same family of problems. Further testing is required to compare the TtO of
ParEOTS and PBM64 if ran without a time-out limit.
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6 Conclusion

We demonstrated a Permutational Boltzmann Machine with Parallel Temper-
ing, that is capable of solving NP-Hard problems such as QAP in excess of 100×
faster than other state-of-the-art solvers. The speed of the PBM is attributed
to its simple structure where we can utilize parallelism through the parallel exe-
cution of its replicas on dedicated computational units along with using SIMD
instructions when performing local field updates. Though our PBM + PT sys-
tem, which uses a 64-core CPU, was the fastest in solving the majority of the
QAP test cases by a wide margin, its flexibility allows it to be scaled to match
the user’s available hardware while maintaining competitive performance with
other state-of-the-art solvers.
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Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30698-8 17

21. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assign-
ment problem. Informatica Lith. Acad. Sci. 11, 281–296 (2000)

22. Sonuc, E., Sen, B., Bayir, S.: A cooperative GPU-based parallel multistart sim-
ulated annealing algorithm for quadratic assignment problem. Eng. Sci. Technol.
Int. J. 21(5), 843–849 (2018). https://doi.org/10.1016/j.jestch.2018.08.002

23. Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin-glasses. Phys.
Rev. Lett. 57(21), 2607–2609 (1986). https://doi.org/10.1103/physrevlett.57.2607

24. Tsutsui, S.: ACO on multiple GPUs with CUDA for faster solution of QAPs. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7492, pp. 174–184. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32964-7 18

https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.1016/0743-7315(89)90064-6
https://doi.org/10.1016/0743-7315(89)90064-6
https://doi.org/10.1287/mnsc.9.4.586
https://doi.org/10.1007/978-3-319-99253-2_35
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-30698-8_17
https://doi.org/10.1016/j.jestch.2018.08.002
https://doi.org/10.1103/physrevlett.57.2607
https://doi.org/10.1007/978-3-642-32964-7_18
https://doi.org/10.1007/978-3-642-32964-7_18


A Permutational Boltzmann Machine with Parallel Tempering 331

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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