Skip to main content

AIM in Neonatal and Paediatric Intensive Care

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Infections are one of the leading causes of death in infants and detecting life-threatening events in infants is challenging. Thus, providing effective life-saving interventions in time is essential. As infants’ immune and autonomic control system are under development, signs preceding potentially life-threatening events are subtle. Clinical detection is aided by analysis of biomarkers, which unfortunately requires invasive sampling and is time consuming. Infection and inflammation interfere with the autonomic control systems and consequently affect vital signs. Constantly monitoring vital signs at a high frequency enables the immediate detection of discrepancies and is thus a key, noninvasive instrument in modern intensive care units. For pediatric intensive care, several predictive monitoring systems have been developed over the last decade that aim to utilize vital sign monitoring to mitigate the risk of developing life-threatening events, such as sepsis. Recent advances in the field of machine learning have provided novel techniques for big data analysis. This enables an individualized risk assessment via continuous multimodal inputs and development of better clinical decision support systems. These more advanced systems are able to detect sepsis 24 hours earlier than clinical practice and enable an overall risk assessment for future sepsis, life-threatening events, and death at the time of hospitalization or during the first week of life.

This chapter summarizes the current evidence on machine learning-based monitoring systems and provides an overview on the strengths, limitations, and potential future roles of novel machine learning-based methods for the early detection of pedatric sepsis and potentially life-threatening events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Herlenius E, Kuhn P. Sudden unexpected postnatal collapse of newborn infants: a review of cases, definitions, risks, and preventive measures. Transl Stroke Res. 2013;4(2):236–47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fairchild K, Mohr M, Paget-Brown A, Tabacaru C, Lake D, Delos J, et al. Clinical associations of immature breathing in preterm infants: part 1 – central apnea. Pediatr Res. 2016;80(1):21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siljehav V, Hofstetter AM, Leifsdottir K, Herlenius E. Prostaglandin E2 mediates cardiorespiratory disturbances during infection in neonates. J Pediatr. 2015;167(6):1207–1213.e3.

    Article  CAS  PubMed  Google Scholar 

  4. Iroh Tam P-Y, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res. 2017;82(4):574–83.

    Article  PubMed  Google Scholar 

  5. Adams-Chapman I. Long-term impact of infection on the preterm neonate. Semin Perinatol. 2012;36(6):462–70.

    Article  PubMed  Google Scholar 

  6. Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schindler T, Koller-Smith L, Lui K, Bajuk B, Bolisetty S, New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection. Causes of death in very preterm infants cared for in neonatal intensive care units: a population-based retrospective cohort study. BMC Pediatr. 2017;17(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cailes B, Kortsalioudaki C, Buttery J, Pattnayak S, Greenough A, Matthes J, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch Dis Child Fetal Neonatal Ed. 2018;103(6):F547–53.

    Article  PubMed  Google Scholar 

  9. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6(3):223–30.

    Article  PubMed  Google Scholar 

  10. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ohlin A, Björkqvist M, Montgomery SM, Schollin J. Clinical signs and CRP values associated with blood culture results in neonates evaluated for suspected sepsis. Acta Paediatr Oslo Nor 1992. 2010;99(11):1635–40.

    Google Scholar 

  12. Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet Lond Engl. 2017;390(10104):1770–80.

    Article  Google Scholar 

  13. Kumar N, Akangire G, Sullivan B, Fairchild K, Sampath V. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr Res. 2020;87(2):210–20.

    Article  PubMed  Google Scholar 

  14. Cortese F, Scicchitano P, Gesualdo M, Filaninno A, De Giorgi E, Schettini F, et al. Early and late infections in newborns: where do we stand? A review. Pediatr Neonatol. 2016;57(4):265–73.

    Article  PubMed  Google Scholar 

  15. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172(4):313.

    Article  Google Scholar 

  17. Wynn JL, Wong HR, Shanley TP, Bizzarro MJ, Saiman L, Polin RA. Time for a neonatal-specific consensus definition for sepsis. Pediatr Crit Care Med. 2014;15(6):523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Menon K, Schlapbach LJ, Akech S, Argent A, Chiotos K, Chisti MJ, et al. Pediatric sepsis definition – a systematic review protocol by the pediatric sepsis definition taskforce. Crit Care Explor. 2020;2(6):e0123.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuhn P, Messer J, Paupe A, Espagne S, Kacet N, Mouchnino G, et al. A multicenter, randomized, placebo-controlled trial of prophylactic recombinant granulocyte-colony stimulating factor in preterm neonates with neutropenia. J Pediatr. 2009;155(3):324–330.e1.

    Article  CAS  PubMed  Google Scholar 

  20. Auriti C, Fiscarelli E, Ronchetti MP, Argentieri M, Marrocco G, Quondamcarlo A, et al. Procalcitonin in detecting neonatal nosocomial sepsis. Arch Dis Child Fetal Neonatal Ed. 2012;97(5):F368–70.

    Article  PubMed  Google Scholar 

  21. Wu T-W, Tabangin M, Kusano R, Ma Y, Ridsdale R, Akinbi H. The utility of serum hepcidin as a biomarker for late-onset neonatal sepsis. J Pediatr. 2013;162(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  22. Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr. 2016;28(2):135–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gordon A, Jeffery HE. Antibiotic regimens for suspected late onset sepsis in newborn infants. Cochrane Database Syst Rev. 2005;3:CD004501.

    Google Scholar 

  24. Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis [Internet]. 2017 Apr [cited 2021 Mar 31];9(4). https://jtd.amegroups.com/article/view/12738

  25. Herlenius E. An inflammatory pathway to apnea and autonomic dysregulation. Respir Physiol Neurobiol. 2011;178(3):449–57.

    Article  CAS  PubMed  Google Scholar 

  26. Gang Y, Malik M. Heart rate variability in critical care medicine. Curr Opin Crit Care. 2002;8(5):371–5.

    Article  PubMed  Google Scholar 

  27. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.

    Article  CAS  PubMed  Google Scholar 

  28. Bainton CR, Richter DW, Seller H, Ballantyne D, Klein JP. Respiratory modulation of sympathetic activity. J Auton Nerv Syst. 1985;12(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  29. Trowbridge HO. Inflammation: a review of the process. 5th ed. Chicago: Quintessence; 1997.

    Google Scholar 

  30. Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A. Inflammatory response: pathway across the blood-brain barrier. Nature. 2001;410(6827):430–1.

    Article  CAS  PubMed  Google Scholar 

  31. Engblom D, Saha S, Engstrom L, Westman M, Audoly LP, Jakobsson PJ, et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci. 2003;6(11):1137–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hofstetter AO, Saha S, Siljehav V, Jakobsson P-J, Herlenius E. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. Proc Natl Acad Sci. 2007;104(23):9894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim SO, Dozier BL, Kerry JA, Duffy DM. EP3 receptor isoforms are differentially expressed in subpopulations of primate granulosa cells and couple to unique G-proteins. Reproduction. 2013;146(6):625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta BBA – Mol Cell Biol Lipids. 2015;1851(4):414–21.

    CAS  Google Scholar 

  35. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5:e14170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guerra FA, Savich RD, Wallen LD, Lee CH, Clyman RI, Mauray FE, et al. Prostaglandin E2 causes hypoventilation and apnea in newborn lambs. J Appl Physiol. 1988;64(5):2160–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hofstetter A, Legnevall L, Herlenius E, Katz-Salamon M. Cardiorespiratory development in extremely preterm infants: vulnerability to infection and persistence of events beyond term-equivalent age: cardiorespiratory development in extremely preterm infants. Acta Paediatr. 2008;97(3):285–92.

    Article  CAS  PubMed  Google Scholar 

  38. Siljehav V, Olsson Hofstetter A, Jakobsson P-J, Herlenius E. mPGES-1 and prostaglandin E2: vital role in inflammation, hypoxic response and survival. Pediatr Res. 2012;72(5):460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siljehav V, Shvarev Y, Herlenius E. Il-1β and prostaglandin E 2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice. J Appl Physiol. 2014;117(9):1027–36.

    Article  CAS  PubMed  Google Scholar 

  40. Parshuram CS, Dryden-Palmer K, Farrell C, Gottesman R, Gray M, Hutchison JS, et al. Effect of a pediatric early warning system on all-cause mortality in hospitalized pediatric patients: the EPOCH randomized clinical trial. JAMA. 2018;319(10):1002–12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kowalski RL, Lee L, Spaeder MC, Moorman JR, Keim-Malpass J. Accuracy and monitoring of pediatric early warning score (PEWS) scores prior to emergent pediatric intensive care unit (ICU) transfer: retrospective analysis. JMIR Pediatr Parent. 2021;4(1):e25991.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sullivan BA, McClure C, Hicks J, Lake DE, Moorman JR, Fairchild KD. Early heart rate characteristics predict death and morbidities in preterm infants. J Pediatr. 2016;174:57–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mithal LB, Yogev R, Palac HL, Kaminsky D, Gur I, Mestan KK. Vital signs analysis algorithm detects inflammatory response in premature infants with late onset sepsis and necrotizing enterocolitis. Early Hum Dev. 2018;117:83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Honoré A, Liu D, Forsberg D, Coste K, Herlenius E, Chatterjee S, et al. Hidden Markov Models for sepsis detection in preterm infants. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). 2020. p. 1130–4.

    Google Scholar 

  45. Joshi R, Kommers D, Oosterwijk L, Feijs L, van Pul C, Andriessen P. Predicting neonatal sepsis using features of heart rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J Biomed Health Inform. 2020;24(3):681–92.

    Article  PubMed  Google Scholar 

  46. Moss TJ, Lake DE, Calland JF, Enfield KB, Delos JB, Fairchild KD, et al. Signatures of subacute potentially catastrophic illness in the ICU: model development and validation*. Crit Care Med. 2016;44(9):1639–48.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hicks JH, Fairchild KD. Heart rate characteristics in the NICU: what nurses need to know. Adv Neonatal Care. 2013;13(6):396–401.

    Google Scholar 

  48. Fairchild K, Aschner J. HeRO monitoring to reduce mortality in NICU patients. Res Rep Neonatol. 2012;2012(default):65–76.

    Google Scholar 

  49. Sullivan BA, Fairchild KD. Predictive monitoring for sepsis and necrotizing enterocolitis to prevent shock. Semin Fetal Neonatal Med. 2015;20(4):255–61.

    Article  PubMed  Google Scholar 

  50. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr. 2011;159(6):900–906.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sullivan B, Wallman-Stokes A, Isler J, Sahni R, Moorman J, Fairchild K, et al. Early pulse oximetry data improves prediction of death and adverse outcomes in a two-center cohort of very low birth weight infants. Am J Perinatol. 2018;35(13):1331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gur I, Riskin A, Markel G, Bader D, Nave Y, Barzilay B, et al. Pilot study of a new mathematical algorithm for early detection of late-onset sepsis in very low-birth-weight infants. Am J Perinatol. 2014;32(04):321–30.

    Article  PubMed  Google Scholar 

  53. Kamaleswaran R, Akbilgic O, Hallman MA, West AN, Davis RL, Shah SH. Applying artificial intelligence to identify physiomarkers predicting severe sepsis in the PICU. Pediatr Crit Care Med. 2018;19(10):e495–503.

    Article  PubMed  Google Scholar 

  54. Lamping F, Jack T, Rübsamen N, Sasse M, Beerbaum P, Mikolajczyk RT, et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children – a data-driven approach using machine-learning algorithms. BMC Pediatr. 2018;18(1):112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Balamuth F, Alpern ER, Grundmeier RW, Chilutti M, Weiss SL, Fitzgerald JC, et al. Comparison of two sepsis recognition methods in a pediatric emergency department. Acad Emerg Med. 2015;22(11):1298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scott HF, Colborn KL, Sevick CJ, Bajaj L, Kissoon N, Deakyne Davies SJ, et al. Development and validation of a predictive model of the risk of pediatric septic shock using data known at the time of hospital arrival. J Pediatr. 2020;217:145–151.e6.

    Article  PubMed  Google Scholar 

  57. Monga V, Li Y, Eldar YC. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process Mag. 2021;38(2):18–44.

    Article  Google Scholar 

  58. Javorka K, Lehotska Z, Kozar M, Uhrikova Z, Kolarovszki B, Javorka M, et al. Heart rate variability in newborns. Physiol Res. 2017;66(Suppl 2):S203–14.

    Article  CAS  PubMed  Google Scholar 

  59. Stojanovska V, Miller SL, Hooper SB, Polglase GR. The consequences of preterm birth and chorioamnionitis on brainstem respiratory centers: implications for neurochemical development and altered functions by inflammation and prostaglandins. Front Cell Neurosci. 2018;12:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Värri A, Kallonen A, Helander E, Ledesma A, Pladys P. The Digi-NewB project for preterm infant sepsis risk and maturity analysis. Finn J EHealth EWelfare [Internet]. 2018 May 21 [cited 2019 Jun 4];10(2–3). https://journal.fi/finjehew/article/view/69152

  61. Verstraete EH, Blot K, Mahieu L, Vogelaers D, Blot S. Prediction models for neonatal health care-associated sepsis: a meta-analysis. Pediatrics. 2015;135(4):e1002–14.

    Article  PubMed  Google Scholar 

  62. Griffin MP, Lake DE, Bissonette EA, Harrel FE, O’Shea TM, Moorman JR. Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics. 2005;116(5):1070–4.

    Article  PubMed  Google Scholar 

  63. Cabon S, Porée F, Simon A, Rosec O, Pladys P, Carrault G. Video and audio processing in paediatrics: a review. Physiol Meas. 2019;40(2):02TR02.

    Article  CAS  PubMed  Google Scholar 

  64. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018;24(11):1716–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Herlenius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forsberg, D. et al. (2021). AIM in Neonatal and Paediatric Intensive Care. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_309-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_309-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics