Skip to main content

AIM in Unsupervised Data Mining

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

This chapter explores the differences between association rules extracted using the likelihood mining criterion (LMC) and rules extracted by using frequent item-set rule mining (FRM). LMC provides a change in perspective for rule selection, from a measure of frequency in the dataset to a measure of relationship between the rule items. For illustration, this chapter presents the evaluation of qualitative differences between LMC and FRM rules with three examples: (1) a basic rule mining scenario to illustrate LMC properties, (2) an analysis relating socioeconomic information and chemical exposure data, and (3) mining behavior routines in patients undergoing neurological rehabilitation. Results show that LMC is capable of extracting rare rules and does not suffer from support dilution. Furthermore, LMC focuses on the individual event generating processes, while FRM focuses on their commonalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal R, Imieliński T, Swami A. Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. SIGMOD ’93. ACM; 1993. p. 207–216. Available from: https://doi.org/10.1145/170035.170072.

  2. Lopera Gonzalez LI, Amft O. Mining Hierarchical Relations in Building Management Variables. Pervasive and Mobile Computing. 2016;26:91–101. Available from: http://www.sciencedirect.com/science/article/pii/S1574119215001935.

  3. Liu S, Pan H. Rare itemsets mining algorithm based on RP-Tree and Spark framework. AIP Conf Proc. 1967(1):040070. https://doi.org/10.1063/1.5039144.

  4. Grabot B. Rule mining in maintenance: analysing large knowledge bases. Comp Indust Eng. 2018; 139:1–15. Available from: https://hal.archives-ouvertes.fr/hal-02134705

  5. Li J, Fu AWC, Fahey P. Efficient discovery of risk patterns in medical data. 2009;45(1):77–89. Available from: https://www.sciencedirect.com/science/article/pii/S0933365708000900.

  6. Bashir S, Jan Z, Baig AR. Fast algorithms for mining interesting frequent itemsets without minimum support. 2009, Available from: http://arxiv.org/abs/0904.3319.

  7. Djenouri Y, Djenouri D, Belhadi A, Fournier-Viger P, Lin JCW. A new framework for metaheuristic-based frequent itemset mining. Appl Intell. 2018;48(12):4775–4791. Available from: https://doi.org/10.1007/s10489-018-1245-8.

  8. Tahyudin I, Nambo H. The combination of evolutionary algorithm method for numerical association rule mining optimization. In: Xu J, Hajiyev A, Nickel S, Gen M, editors. Proceedings of the tenth international conference on management science and engineering management. Advances in intelligent systems and computing. Singapore: Springer. 2017;p. 13–23.

    Google Scholar 

  9. Borah A, Nath B. Identifying risk factors for adverse diseases using dynamic Rare association rule mining. Expert Syst Appl. 2018;113:233–263. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0957417418304251.

  10. Li J, Fu AWc, He H, Chen J, Jin H, McAullay D, et al. Mining risk patterns in medical data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. KDD ‘05. ACM; 2005. p. 770–775. Available from: https://doi.org/10.1145/1081870.1081971.

  11. Erwin A, Gopalan RP, Achuthan NR. Efficient mining of high utility itemsets from large datasets. In: Advances in knowledge discovery and data mining. Springer, Berlin, Heidelberg; 2008. p. 554–561. Available from: https://doi.org/10.1007/978-3-540-68125-0_50.

  12. Fournier-Viger P, Lin JCW, Truong-Chi T, Nkambou R. A survey of high utility itemset mining. In: High-utility pattern mining. Cham: Springer; 2019. p. 1–45. https://doi.org/10.1007/978-3-030-04921-8_1.

  13. Nguyen LTT, Mai T, Vo B. High utility association rule mining. In: High-utility pattern mining. Cham: Springer; 2019. p. 161–74. https://doi.org/10.1007/978-3-030-04921-8_6.

  14. Zaki M. Scalable algorithms for association mining. IEEE Trans Knowl Data Eng. 2000;12(3):372–90.

    Google Scholar 

  15. Lin WY, Tseng MC, Su JH. A confidence-lift support specification for interesting associations mining. In: Chen MS, Yu PS, Liu B, editors. Advances in knowledge discovery and data mining, Lecture notes in computer science. Berlin: Springer; 2002. p. 148–58.

    Google Scholar 

  16. Brin S, Motwani R, Silverstein C. Beyond market baskets: generalizing association rules to correlations. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data. SIGMOD ‘97. ACM; 1997. p. 265–276. https://doi.org/10.1145/253260.253327.

  17. Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data. SIGMOD ‘97. ACM; 1997. p. 255–264. https://doi.org/10.1145/253260.253325.

  18. Yan X, Zhang C, Zhang S. Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Syst Appl. 2009;36(2):3066–76.

    Google Scholar 

  19. Liu L, Wang S, Peng Y, Huang Z, Liu M, Hu B. Mining intricate temporal rules for recognizing complex activities of daily living under uncertainty. Pattern Recogn. 2016;60:1015–28. Available from: http://www.sciencedirect.com/science/article/pii/S003132031630173X

  20. Srinivasan V, Koehler C, Jin H. RuleSelector: selecting conditional action rules from user behavior patterns. Proc ACM Interact Mobile Wearable Ubiquitous Technol. 2018;2(1):35:1–35:34. https://doi.org/10.1145/3191767.

  21. Padillo F, Luna JM, Herrera F, Ventura S. Mining association rules on big data through mapreduce genetic programming. Integr Comp Aided Eng. 2017;25(1):31–48. https://doi.org/10.3233/ICA-170555.

  22. Guillame-Bert M, Crowley JL. Learning temporal association rules on symbolic time sequences. In: Proceedings of the 4th Asian conference on machine learning, ACML; 2012. p. 159–174.

    Google Scholar 

  23. Liu B, Hsu W, Ma Y. Mining association rules with multiple supports. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining. KDD ‘99. ACM; 1999. p. 15–18.

    Google Scholar 

  24. Tsang S, Koh YS, Dobbie G. RP-Tree: rare pattern tree mining. In: Data warehousing and knowledge discovery. Berlin, Heidelberg: Springer; 2011. p. 277–88. https://doi.org/10.1007/978-3-642-23544-3_21.

  25. Webb GI. OPUS: an efficient admissible algorithm for unordered search. J Artif Intell Res. 1995;3:431–65. Available from: https://www.jair.org/index.php/jair/article/view/10152

  26. Webb GI. Efficient search for association rules. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining. KDD ‘00. ACM; 2000. p. 99–107. Available from: https://doi.org/10.1145/347090.347112.

  27. Fournier-Viger P, Tseng VS. Mining top-K NoN-REDUNdant association rules. In: Chen L, Felfernig A, Liu J, Raś ZW, editors. Foundations of intelligent systems, Lecture notes in computer science. Berlin: Springer; 2012. p. 31–40.

    Google Scholar 

  28. Cheung DW, Han J, Ng VT, Wong CY. Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the twelfth international conference on data engineering; 1996. p. 106–114.

    Google Scholar 

  29. Tobji MB, Gouider M. Incremental maintenance of association rules under support threshold change. In: Proceedings of the IADIS international conference on applied computing. IADIS; 2006. Available from: http://arxiv.org/abs/1701.08191.

  30. Aqra I, Abdul Ghani N, Maple C, Machado J, Sohrabi SN. Incremental algorithm for association rule mining under dynamic threshold. Appl Sci. 2019;9(24):5398. Available from: https://www.mdpi.com/2076-3417/9/24/5398

  31. Tian D, Gledson A, Antoniades A, Aristodimou A, Dimitrios N, Sahay R, et al. A Bayesian association rule mining algorithm. In: 2013 IEEE international conference on systems, man, and cybernetics. IEEE; 2013. p. 3258–3264.

    Google Scholar 

  32. Gay D, Boullé M. A Bayesian approach for classification rule mining in quantitative databases. In: Machine learning and knowledge discovery in databases. Berlin, Heidelberg: Springer; 2012. p. 243–59. https://doi.org/10.1007/978-3-642-33486-3_16.

  33. Lopera Gonzalez LI. Mining functional and structural relationships of context variables in smart-buildings [PhD Thesis]. 2018. Available from: https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/573.

  34. Lopera Gonzalez LI, Derungs A, Amft O. A Bayesian approach to rule mining. 2019. Available from: https://arxiv.org/abs/1912.06432v1.

  35. Huang H, Tornero-Velez R, Barzyk TM. Associations between socio-demographic characteristics and chemical Concentrations contributing to cumulative exposures in the United States. J Expos Sci Environ Epidemiol. 2017;27(6):544–50. https://doi.org/10.1038/jes.2017.15.

  36. Derungs A, Schuster-Amft C, Amft O. Longitudinal walking analysis in hemiparetic patients using wearable motion sensors: is there convergence between body sides?. Front Bioeng Biotechnol. 2018;6. https://doi.org/10.3389/fbioe.2018.00057/full.

  37. Prosiegel M, Böttger S, Schenk T, König N, Marolf M, Vaney C, et al. Der Erweiterte Barthel-Index (EBI)–eine Neue Skala Zur Erfassung von Fähigkeitsstörungen Bei Neurologischen Patienten. Neurol Rehabil. 1996;1:7–13.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful for the permission to utilize the datasets used for illustration in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis I. Lopera González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lopera González, L.I., Derungs, A., Amft, O. (2021). AIM in Unsupervised Data Mining. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_300-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_300-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics