Skip to main content

Artificial Intelligence in Predicting Kidney Function and Acute Kidney Injury

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Acute kidney injury (AKI) is a disease defined as an abrupt decline in kidney function and is a common complication in hospitalized patients with high clinical significance. Recently, a model for predicting the onset of AKI clinical data by machine learning using electronic medical record data has attracted researchers’ attention. The state-of-the-art model has achieved high discrimination performance of area under the curve ≥0.9. Accordingly, these models are expected to be used for appropriate clinical intervention and disease prevention. In this chapter, we review the studies on AKI onset prediction and discuss their major issues. Since the event definitions, prediction timepoints, and prediction target periods used in the models widely vary, we categorize them based on previous studies. In addition, we describe various input features; algorithms, including deep learning; model performance; and recent topics such as model explainability. Finally, we summarize achievements and challenges in implementing these models as clinical decision support tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Li PKT, Burdmann EA, Mehta RL. Acute kidney injury: global health alert. Kidney Int. 2013;83:372–6. https://doi.org/10.1038/ki.2012.427.

    Article  PubMed  Google Scholar 

  2. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93. https://doi.org/10.2215/CJN.00710113.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lewington AJP, Cerdá J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84:457–67. https://doi.org/10.1038/ki.2013.153.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204. https://doi.org/10.1186/cc2872.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. https://doi.org/10.1186/cc5713.

    Article  PubMed  PubMed Central  Google Scholar 

  6. KDIGO. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  7. Mehta RL, McDonald B, Gabbai F, Pahl M, Farkas A, Pascual MTA, et al. Nephrology consultation in acute renal failure does timing matter? Am J Med. 2002;113:456–61. https://doi.org/10.1016/s0002-9343(02)01230-5.

    Article  PubMed  Google Scholar 

  8. Endre ZH. The role of nephrologist in the intensive care unit. Blood Purif. 2017;43:78–81. https://doi.org/10.1159/000452318.

    Article  PubMed  Google Scholar 

  9. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30:505–15. https://doi.org/10.1681/asn.2018090886.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson PF, Shashaty M, Testani J, Aqeel I, Borovskiy Y, Ellenberg SS, et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet. 2015;385:1966–74. https://doi.org/10.1016/S0140-6736(15)60266-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thakar CV, Arrigain S, Worley S, Yared J-P, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162–8. https://doi.org/10.1681/asn.2004040331.

    Article  PubMed  Google Scholar 

  12. Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114:2208–16. https://doi.org/10.1161/circulationaha.106.635573.

    Article  PubMed  Google Scholar 

  13. Aronson S, Fontes ML, Miao Y, Mangano DT. Risk index for perioperative renal dysfunction/failure. Circulation. 2007;115:733–42. https://doi.org/10.1161/circulationaha.106.623538.

    Article  PubMed  Google Scholar 

  14. Brown JR, Cochran RP, Leavitt BJ, Dacey LJ, Ross CS, MacKenzie TA, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation. 2007;116:I-139–43. https://doi.org/10.1161/circulationaha.106.677070.

    Article  Google Scholar 

  15. Wijeysundera DN, Karkouti K, Dupuis J-Y, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297:1801–9. https://doi.org/10.1001/jama.297.16.1801.

    Article  PubMed  CAS  Google Scholar 

  16. Palomba H, de Castro I, Neto ALC, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;72:624–31. https://doi.org/10.1038/sj.ki.5002419.

    Article  PubMed  CAS  Google Scholar 

  17. Simonini M, Lanzani C, Bignami E, Casamassima N, Frati E, Meroni R, et al. A new clinical multivariable model that predicts postoperative acute kidney injury: impact of endogenous ouabain. Nephrol Dial Transplant. 2014;29:1696–701. https://doi.org/10.1093/ndt/gfu200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zambetti BR, Thomas F, Hwang I, Brown AC, Chumpia M, Ellis RT, et al. A web-based tool to predict acute kidney injury in patients with ST-elevation myocardial infarction: development, internal validation and comparison. PLoS One. 2017;12:e0181658. https://doi.org/10.1371/journal.pone.0181658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Malhotra R, Kashani KB, Macedo E, Kim J, Bouchard J, Wynn S, et al. A risk prediction score for acute kidney injury in the intensive care unit. Nephrol Dial Transplant. 2017;32:814–22. https://doi.org/10.1093/ndt/gfx026.

    Article  PubMed  CAS  Google Scholar 

  20. Deng F, Peng M, Li J, Chen Y, Zhang B, Zhao S. Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data. Ren Fail. 2020;42:428–36. https://doi.org/10.1080/0886022x.2020.1761832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang L, McGregor TL, Jones DP, Bridges BC, Fleming GM, Shirey-Rice J, et al. Electronic health record-based predictive models for acute kidney injury screening in pediatric inpatients. Pediatr Res. 2017;82:465–73. https://doi.org/10.1038/pr.2017.116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sanchez-Pinto LN, Khemani RG. Development of a prediction model of early acute kidney injury in critically ill children using electronic health record data. Pediatr Crit Care Med. 2016;17:508–15. https://doi.org/10.1097/pcc.0000000000000750.

    Article  PubMed  Google Scholar 

  23. Raman S, Tai CW, Marsney RL, Schibler A, Gibbons K, Schlapbach LJ. Prediction of acute kidney injury on admission to pediatric intensive care. Pediatr Crit Care Med. 2020;21:811–9. https://doi.org/10.1097/pcc.0000000000002411.

    Article  PubMed  Google Scholar 

  24. Drawz PE, Miller RT, Sehgal AR. Predicting hospital-acquired acute kidney injury – a case-controlled study. Ren Fail. 2009;30:848–55. https://doi.org/10.1080/08860220802356515.

    Article  CAS  Google Scholar 

  25. Matheny ME, Miller RA, Ikizler TA, Waitman LR, Denny JC, Schildcrout JS, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decis Mak. 2010;30:639–50. https://doi.org/10.1177/0272989X10364246.

    Article  Google Scholar 

  26. Forni LG, Dawes T, Sinclair H, Cheek E, Bewick V, Dennis M, et al. Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract. 2013;123:143–50. https://doi.org/10.1159/000351509.

    Article  PubMed  Google Scholar 

  27. Bedford M, Stevens P, Coulton S, Billings J, Farr M, Wheeler T, et al. Development of risk models for the prediction of new or worsening acute kidney injury on or during hospital admission: a cohort and nested study, vol. 4. Health Services and Delivery Research; 2016. p. 1–160. https://doi.org/10.3310/hsdr04060.

    Book  Google Scholar 

  28. Wu L, Hu Y, Zhang X, Chen W, Yu ASL, Kellum JA, et al. Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study. BMC Nephrol. 2020;21:321. https://doi.org/10.1186/s12882-020-01980-w.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Hu Y, Zhang X, Wu L, Liu K, He J, et al. Causal risk factor discovery for severe acute kidney injury using electronic health records. BMC Med Inform Decis Mak. 2018;18:13. https://doi.org/10.1186/s12911-018-0597-7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheng P, Waitman LR, Hu Y, Liu M. Predicting inpatient acute kidney injury over different time horizons: how early and accurate? AMIA Annu Symp Proc. 2017;2017:565–74.

    PubMed  Google Scholar 

  31. Chen Y-S, Chou C-Y, Chen ALP. Early prediction of acquiring acute kidney injury for older inpatients using most effective laboratory test results. BMC Med Inform Decis Mak. 2020;20:36. https://doi.org/10.1186/s12911-020-1050-2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu L, Hu Y, Liu X, Zhang X, Chen W, Yu ASL, et al. Feature ranking in predictive models for hospital-acquired acute kidney injury. Sci Rep. 2018;8:17298. https://doi.org/10.1038/s41598-018-35487-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. He J, Hu Y, Zhang X, Wu L, Waitman LR, Liu M. Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records. JAMIA Open. 2019;2:ooy043. https://doi.org/10.1093/jamiaopen/ooy043.

    Article  Google Scholar 

  34. Hsu C-N, Liu C-L, Tain Y-L, Kuo C-Y, Lin Y-C. Machine learning model for risk prediction of community-acquired acute kidney injury hospitalization from electronic health records: development and validation study. J Med Internet Res. 2020;22:e16903. https://doi.org/10.2196/16903.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kate RJ, Perez RM, Mazumdar D, Pasupathy KS, Nilakantan V. Prediction and detection models for acute kidney injury in hospitalized older adults. BMC Med Inform Decis Mak. 2016;16:39. https://doi.org/10.1186/s12911-016-0277-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cronin RM, VanHouten JP, Siew ED, Eden SK, Fihn SD, Nielson CD, et al. National Veterans Health Administration inpatient risk stratification models for hospital-acquired acute kidney injury. J Am Med Inform Assoc. 2015;22:1054–71. https://doi.org/10.1093/jamia/ocv051.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc. 2017;24:1052–61. https://doi.org/10.1093/jamia/ocx030.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koyner JL, Adhikari R, Edelson DP, Churpek MM. Development of a multicenter ward-based AKI prediction model. Clin J Am Soc Nephrol. 2016;11:1935–43. https://doi.org/10.2215/CJN.00280116.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a machine learning inpatient acute kidney injury prediction model. Crit Care Med. 2018;46:1070–7. https://doi.org/10.1097/ccm.0000000000003123.

    Article  PubMed  Google Scholar 

  40. Mohamadlou H, Lynn-Palevsky A, Barton C, Chettipally U, Shieh L, Calvert J, et al. Prediction of acute kidney injury with a machine learning algorithm using electronic health record data. Can J Kid Heal Dis. 2018;5:2054358118776326. https://doi.org/10.1177/2054358118776326.

    Article  Google Scholar 

  41. Simonov M, Ugwuowo U, Moreira E, Yamamoto Y, Biswas A, Martin M, et al. A simple real-time model for predicting acute kidney injury in hospitalized patients in the US: a descriptive modeling study. PLoS Med. 2019;16:e1002861. https://doi.org/10.1371/journal.pmed.1002861.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572:116–9. https://doi.org/10.1038/s41586-019-1390-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Song X, Waitman LR, Hu Y, Luo B, Li F, Liu M. The impact of medical big data anonymization on early acute kidney injury risk prediction. AMIA Jt Summits Transl Sci Proc. 2020;2020:617–25.

    PubMed  PubMed Central  Google Scholar 

  44. Song X, Yu ASL, Kellum JA, Waitman LR, Matheny ME, Simpson SQ, et al. Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction. Nat Commun. 2020;11:5668. https://doi.org/10.1038/s41467-020-19551-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li Y, Yao L, Mao C, Srivastava A, Jiang X, Luo Y. Early prediction of acute kidney injury in critical care setting using clinical notes. IEEE Int Conf Bioinformatics Biomed. 2018;2018:683–6. https://doi.org/10.1109/bibm.2018.8621574.

    Article  Google Scholar 

  46. Flechet M, Falini S, Bonetti C, Güiza F, Schetz M, den Berghe GV, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKI predictor. Crit Care. 2019;23:282. https://doi.org/10.1186/s13054-019-2563-x.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zimmerman LP, Reyfman PA, Smith ADR, Zeng Z, Kho A, Sanchez-Pinto LN, et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med Inform Decis Mak. 2019;19:16. https://doi.org/10.1186/s12911-019-0733-z.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun M, Baron J, Dighe A, Szolovits P, Wunderink RG, Isakova T, et al. Early prediction of acute kidney injury in critical care setting using clinical notes and structured multivariate physiological measurements. Stud Health Technol Inform. 2019;264:368–72. https://doi.org/10.3233/shti190245.

    Article  PubMed  Google Scholar 

  49. Gong K, Lee HK, Yu K, Xie X, Li J. A prediction and interpretation framework of acute kidney injury in critical care. J Biomed Inform. 2021;113:103653. https://doi.org/10.1016/j.jbi.2020.103653.

    Article  PubMed  Google Scholar 

  50. Xu Z, Luo Y, Adekkanattu P, Ancker JS, Jiang G, Kiefer RC, et al. Stratified mortality prediction of patients with acute kidney injury in critical care. Stud Health Technol Inform. 2019;264:462–6. https://doi.org/10.3233/shti190264.

    Article  PubMed  Google Scholar 

  51. Morid MA, Sheng ORL, Fiol GD, Facelli JC, Bray BE, Abdelrahman S. Temporal pattern detection to predict adverse events in critical care: case study with acute kidney injury. JMIR Med Inform. 2020;8:e14272. https://doi.org/10.2196/14272.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Parreco J, Soe-Lin H, Parks JJ, Byerly S, Chatoor M, Buicko JL, et al. Comparing machine learning algorithms for predicting acute kidney injury. Am Surg. 2019;85:725–9. https://doi.org/10.1177/000313481908500731.

    Article  PubMed  Google Scholar 

  53. Chiofolo C, Chbat N, Ghosh E, Eshelman L, Kashani K. Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin Proc. 2019;94:783–92. https://doi.org/10.1016/j.mayocp.2019.02.009.

    Article  PubMed  Google Scholar 

  54. Wang Y, Wei Y, Yang H, Li J, Zhou Y, Wu Q. Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model. BMC Med Inform Decis Mak. 2020;20:238. https://doi.org/10.1186/s12911-020-01245-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ibrahim NE, McCarthy CP, Shrestha S, Gaggin HK, Mukai R, Magaret CA, et al. A clinical, proteomics, and artificial intelligence-driven model to predict acute kidney injury in patients undergoing coronary angiography. Clin Cardiol. 2019;42:292–8. https://doi.org/10.1002/clc.23143.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang C, Murugiah K, Mahajan S, Li S-X, Dhruva SS, Haimovich JS, et al. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: a retrospective cohort study. PLoS Med. 2018;15:e1002703. https://doi.org/10.1371/journal.pmed.1002703.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huang C, Li S-X, Mahajan S, Testani JM, Wilson FP, Mena CI, et al. Development and validation of a model for predicting the risk of acute kidney injury associated with contrast volume levels during percutaneous coronary intervention. JAMA Netw Open. 2019;2:e1916021. https://doi.org/10.1001/jamanetworkopen.2019.16021.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tseng P-Y, Chen Y-T, Wang C-H, Chiu K-M, Peng Y-S, Hsu S-P, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care. 2020;24:478. https://doi.org/10.1186/s13054-020-03179-9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rank N, Pfahringer B, Kempfert J, Stamm C, Kühne T, Schoenrath F, et al. Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit Med. 2020;3:139. https://doi.org/10.1038/s41746-020-00346-8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, Rashidi P, Pardalos P, Momcilovic P, et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative complications. PLoS One. 2016;11:e0155705. https://doi.org/10.1371/journal.pone.0155705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Adhikari L, Ozrazgat-Baslanti T, Ruppert M, Madushani RWMA, Paliwal S, Hashemighouchani H, et al. Improved predictive models for acute kidney injury with IDEA: intraoperative data embedded analytics. PLoS One. 2019;14:e0214904. https://doi.org/10.1371/journal.pone.0214904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lei VJ, Luong T, Shan E, Chen X, Neuman MD, Eneanya ND, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw Open. 2019;2:e1916921. https://doi.org/10.1001/jamanetworkopen.2019.16921.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jeon N, Staley B, Henriksen C, Lipori GP, Winterstein AG. Development and validation of an automated algorithm for identifying patients at higher risk for drug-induced acute kidney injury. Am J Health Syst Pharm. 2019;76:654–66. https://doi.org/10.1093/ajhp/zxz043.

    Article  PubMed  Google Scholar 

  64. Martinez DA, Levin SR, Klein EY, Parikh CR, Menez S, Taylor RA, et al. Early prediction of acute kidney injury in the emergency department with machine-learning methods applied to electronic health record data. Ann Emerg Med. 2020;76:501–14. https://doi.org/10.1016/j.annemergmed.2020.05.026.

    Article  PubMed  Google Scholar 

  65. Weisenthal SJ, Quill C, Farooq S, Kautz H, Zand MS. Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data. PLoS One. 2018;13:e0204920. https://doi.org/10.1371/journal.pone.0204920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Park N, Kang E, Park M, Lee H, Kang H-G, Yoon H-J, et al. Predicting acute kidney injury in cancer patients using heterogeneous and irregular data. PLoS One. 2018;13:e0199839. https://doi.org/10.1371/journal.pone.0199839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sandokji I, Yamamoto Y, Biswas A, Arora T, Ugwuowo U, Simonov M, et al. A time-updated, parsimonious model to predict AKI in hospitalized children. J Am Soc Nephrol. 2020;31:1348–57. https://doi.org/10.1681/asn.2019070745.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein SL, et al. Utilizing electronic health records to predict acute kidney injury risk and outcomes: workgroup statements from the 15th ADQI consensus conference. Can J Kidney Health Dis. 2016;3:99. https://doi.org/10.1186/s40697-016-0099-4.

    Article  Google Scholar 

  69. Churpek MM, Carey KA, Edelson DP, Singh T, Astor BC, Gilbert ER, et al. Internal and external validation of a machine learning risk score for acute kidney injury. JAMA Netw Open. 2020;3:e2012892. https://doi.org/10.1001/jamanetworkopen.2020.12892.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035. https://doi.org/10.1038/sdata.2016.35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lundberg S, Lee SI. A unified approach to interpreting model predictions. 2017. arXiv:1705.07874v2.

    Google Scholar 

  72. Ugwuowo U, Yamamoto Y, Arora T, Saran I, Partridge C, Biswas A, et al. Real-time prediction of acute kidney injury in hospitalized adults: implementation and proof of concept. Am J Kidney Dis. 2020;76:806–14. https://doi.org/10.1053/j.ajkd.2020.05.003.

    Article  PubMed  CAS  Google Scholar 

  73. Driest SLV, Wang L, McLemore MF, Bridges BC, Fleming GM, McGregor TL, et al. Acute kidney injury risk-based screening in pediatric inpatients: a pragmatic randomized trial. Pediatr Res. 2020;87:118–24. https://doi.org/10.1038/s41390-019-0550-1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Okuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Uchino, E., Sato, N., Okuno, Y. (2021). Artificial Intelligence in Predicting Kidney Function and Acute Kidney Injury. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_270-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_270-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics