Skip to main content

AIM in Amyotrophic Lateral Sclerosis

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disease of motor neurons with substantial heterogeneity in its clinical presentation. Survival ranges from 3 to 5 years after symptom onset depending on genetic, geographic, and phenotypic factors. Despite tireless research efforts, the cause of ALS remains unknown, and therapy development efforts are confounded by the lack of accurate prognosis markers. Artificial intelligence (AI) with machine learning (ML) methods offers unprecedented opportunities to construct accurate prognosis and diagnostic models. Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) dataset is the largest public ALS clinical trial data that various researches were accomplished on this framework with ML approach. In this chapter, we study the causal analysis of ALS with AI perspective, and also ML methods for predicting the evolution of ALS will be explained on the PRO-ACT dataset. This study reveals that AI-based longitudinal study of ALS by considering clinical, genetic, and imaging factors could bring new insight to the core etiology of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. Nature Publishing Group. 2017;3:1–19.

    Google Scholar 

  2. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. Karger Publishers. 2013;41:118–30.

    Article  Google Scholar 

  3. Grollemund V, Pradat P-F, Querin G, Delbot F, Le Chat G, Pradat-Peyre J-F, et al. Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci. Frontiers. 2019;13:135.

    Article  Google Scholar 

  4. Bede P. From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. Future Med. 2017;5–8.

    Google Scholar 

  5. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. Elsevier. 1999;169:13–21.

    Article  CAS  Google Scholar 

  6. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. Nature Publishing Group. 2013;9:617.

    Article  CAS  Google Scholar 

  7. Chiò A, Moglia C, Canosa A, Manera U, D’Ovidio F, Vasta R, et al. ALS phenotype is influenced by age, sex, and genetics: a population-based study. Neurology. AAN Enterprises. 2020;94:1–9.

    Google Scholar 

  8. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, De Carvalho M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. Elsevier. 2013;12:310–22.

    Article  CAS  Google Scholar 

  9. Schuster C, Hardiman O, Bede P. Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol. BioMed Central. 2017;17:1–10.

    Article  Google Scholar 

  10. van der Burgh HK, Schmidt R, Westeneng H-J, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage: Clin. Elsevier. 2017;13:361–9.

    Article  Google Scholar 

  11. Atassi N, Berry J, Shui A, Zach N, Sherman A, Sinani E, et al. The PRO-ACT database design, initial analyses, and predictive features. Neurology. 2014;83:1719–25.

    Article  CAS  Google Scholar 

  12. Seibold H, Zeileis A, Hothorn T. Individual treatment effect prediction for amyotrophic lateral sclerosis patients. Stat Methods Med Res. SAGE Publications Sage UK: London, England. 2018;27:3104–25.

    Article  Google Scholar 

  13. Ong M-L, Tan PF, Holbrook JD. Predicting functional decline and survival in amyotrophic lateral sclerosis. PLoS One. Public Library of Science San Francisco, CA USA. 2017;12:e0174925.

    Google Scholar 

  14. Jahandideh S, Taylor AA, Beaulieu D, Keymer M, Meng L, Bian A, et al. Longitudinal modeling to predict vital capacity in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. Taylor & Francis. 2018;19:294–302.

    Article  Google Scholar 

  15. Huang Z, Zhang H, Boss J, Goutman SA, Mukherjee B, Dinov ID, et al. Complete hazard ranking to analyze right-censored data: an ALS survival study. PLoS Comput Biol. Public Library of Science. 2017;13:e1005887.

    Article  Google Scholar 

  16. Ahangaran M, Jahed-Motlagh MR, Minaei-Bidgoli B. Causal discovery from sequential data in ALS disease based on entropy criteria. J Biomed Inform. 2019;89:41–55.

    Article  CAS  Google Scholar 

  17. Ahangaran M, Jahed-Motlagh MR, Minaei-Bidgoli B. A novel method for predicting the progression rate of ALS disease based on automatic generation of probabilistic causal chains. Artif Intell Med. Elsevier. 2020;107:101879.

    Article  CAS  Google Scholar 

  18. Küffner R, Zach N, Norel R, Hawe J, Schoenfeld D, Wang L, et al. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nat Biotechnol. 2015;33:51–7.

    Article  Google Scholar 

  19. Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17.

    Article  CAS  Google Scholar 

  20. Cedarbaum JM, Stambler N. Performance of the amyotrophic lateral sclerosis functional rating scale (ALSFRS) in multicenter clinical trials. J Neurol Sci. 1997;152:s1–9.

    Article  Google Scholar 

  21. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis. Springer. 2009;4:3.

    Article  Google Scholar 

  22. Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. Oxford University Press. 1999;122:871–82.

    Google Scholar 

  23. Romero K, De Mars M, Frank D, Anthony M, Neville J, Kirby L, et al. The coalition against major diseases: developing tools for an integrated drug development process for Alzheimer’s and Parkinson’s diseases. Clin Pharmacol Ther. Wiley Online Library. 2009;86:365–7.

    Article  CAS  Google Scholar 

  24. PRO-ACT data set [Internet]. www.ALSdatabase.org. Accessed Sept 2020.

  25. Bishop CM. Pattern recognition and machine learning. Springer; 2006.

    Google Scholar 

  26. Schuster C, Hardiman O, Bede P. Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: a quantitative disease-state classification study. PLoS One. Public Library of Science San Francisco, CA USA. 2016;11:e0167331.

    Google Scholar 

  27. Querin G, El Mendili M-M, Bede P, Delphine S, Lenglet T, Marchand-Pauvert V, et al. Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd. 2018;89:1220–1.

    Article  Google Scholar 

  28. Taylor AA, Fournier C, Polak M, Wang L, Zach N, Keymer M, et al. Predicting disease progression in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. Wiley Online Library. 2016;3:866–75.

    Article  Google Scholar 

  29. Hothorn T, Jung HH. RandomForest4Life: a random forest for predicting ALS disease progression. Amyotroph Lateral Scler Frontotemporal Degener. Taylor & Francis. 2014;15:444–52.

    Article  Google Scholar 

  30. Shannon CE. A mathematical theory of communication. Bell Syst Techn J [Internet]. 1948;27:379–423. http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

    Article  Google Scholar 

  31. Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd. 2010;81:385–90.

    Article  Google Scholar 

  32. Gordon PH, Mehal JM, Holman RC, Rowland LP, Rowland AS, Cheek JE. Incidence of amyotrophic lateral sclerosis among American Indians and Alaska natives. JAMA Neurol. American Medical Association. 2013;70:476–80.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health (Ministero della Salute, Ricerca Sanitaria Finalizzata, grant RF-2016-02362405); the Progetti di Rilevante Interesse Nazionale program of the Ministry of Education, University, and Research (grant 2017SNW5MB); the European Commission’s Health Seventh Framework Programme (FP7/2007–2013 under grant agreement 259867); and the Joint Programme-Neurodegenerative Disease Research (Strength, ALS-Care, and Brain-Mend projects), granted by Italian Ministry of Education, University and Research. This study was performed under the Department of Excellence grant of the Italian Ministry of Education, University, and Research to the “Rita Levi Montalcini” Department of Neuroscience, University of Torino, Italy.

Declaration of Competing Interests

Adriano Chiò serves on the Scientific Advisory Board for Mitsubishi Tanabe, Roche, Biogen, Denali, and Cytokinetics.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MP4 11256 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahangaran, M., Chiò, A. (2021). AIM in Amyotrophic Lateral Sclerosis. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_252-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_252-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics