Skip to main content

AIM and Transdermal Optical Imaging

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Cardiovascular parameters like blood pressure, heart rate, heart rhythm, and heart rate variability are highly useful in assessing patient health, disease risk, and response to treatment. However, technological limitations curtail their measurement in many cases. The recent development of transdermal optical imaging (TOI) technology has made it possible to extract high-quality blood flow information from conventional video of a patient’s face and then use it to accurately estimate these cardiovascular parameters. TOI technology could thus be implemented on any device capable of capturing and processing video (e.g., any modern smartphone) and thus constitute a comfortable, convenient, and ubiquitous tool for measuring cardiovascular parameters.

TOI builds upon remote photoplethysmography in part by using machine learning to extract robust blood flow information from video of the face. This signal can be used directly to compute heart rate, heart rhythm, and heart rate variability. Information from signal features containing blood pressure information has been combined with the help of machine learning to accurately estimate systolic and diastolic pressures. Further development of this technology is likely to enable the assessment of additional physiological parameters (e.g., respiration rate, SpO2), disease risks (e.g., hypertension, diabetes), blood biomarker concentrations (e.g., cholesterol, HbA1c), and even mental health conditions (e.g., depression, anxiety).

With the necessary regulatory approvals and clinical trials, TOI-based tools would enable accurate, convenient, and contactless screening, diagnosis, and monitoring of patient health. They would revolutionize healthcare delivery through better access and efficiency and thus not only reduce costs but also improve health worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control. Circulation. 2016;134(6):441–50.

    Article  Google Scholar 

  2. Barszczyk A, Yang D, Wei J, Huang W, Feng Z-P, Lee K, et al. Potential impact of the 2017 high blood pressure guideline beyond the United States: a case study of the People’s Republic of China. Am J Hypertens. 2020;33(9):846–51.

    Article  Google Scholar 

  3. Oparil S. Global blood pressure screening: a wakeup call. Hypertension. Lippincott Williams and Wilkins. 2020;76:318–20.

    CAS  Google Scholar 

  4. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. J Am Coll Cardiol. 2018;71(19):e127–248.

    Article  Google Scholar 

  5. Mahdi A, Watkinson P, McManus RJ, Tarassenko L. Circadian blood pressure variations computed from 1.7 million measurements in an acute hospital setting. Am J Hypertens. 2019;32(12):1154–61.

    Article  Google Scholar 

  6. Bartels K, Esper SA, Thiele RH. Blood pressure monitoring for the anesthesiologist. Anesth Analg. 2016;122(6):1866–79.

    Article  CAS  Google Scholar 

  7. Ponikowski P, Spoletini I, Coats AJ, Piepoli MF, Rosano GM. Heart rate and blood pressure monitoring in heart failure. European Heart Journal Supplements. 2019;21(Supplement_M):M13–16.

    Google Scholar 

  8. Stauss HM. Heart rate variability. Am J Physiol – Regul Integr Comp Physiol. 2003;285(5):R927–R931.

    Google Scholar 

  9. Ahmad S, Tejuja A, Newman KD, Zarychanski R, Seely AJE. Clinical review: a review and analysis of heart rate variability and the diagnosis and prognosis of infection. Crit Care. 2009;13(6):1–7.

    Google Scholar 

  10. Kleiger RE, Thomas Bigger J, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, et al. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991;68:626.

    Article  CAS  Google Scholar 

  11. Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. Korean Neuropsychiatric Association. 2018;15:235–45.

    Article  Google Scholar 

  12. Liu J, Luo H, Zheng PP, Wu SJ, Lee K. Transdermal optical imaging revealed different spatiotemporal patterns of facial cardiovascular activities. Sci Rep. 2018;8(1):10588.

    Article  Google Scholar 

  13. Wei J, Luo H, Wu SJ, Zheng PP, Fu G, Lee K. Transdermal optical imaging reveal basal stress via heart rate variability analysis: a novel methodology comparable to electrocardiography. Front Psychol. 2018;9:98.

    Article  Google Scholar 

  14. Luo H, Yang D, Barszczyk A, Vempala N, Wei J, Wu SJ, et al. Smartphone-based blood pressure measurement using transdermal optical imaging technology. Circ Cardiovasc Imaging. 2019;12(8):e008857.

    Google Scholar 

  15. Barszczyk A, Lee K. Measuring blood pressure: from cuff to smartphone. Curr Hypertens Rep. 2019;21(11):1–4.

    Google Scholar 

  16. Mukkamala R. Blood pressure with a click of a camera? Circulation: Cardiovasc Imaging. 2019;12(8):e009531–e009531.

    Google Scholar 

  17. Yang D, Xiao G, Wei J, Luo H. Preliminary assessment of video-based blood pressure measurement according to ANSI/AAMI/ISO81060-2:2013 guideline accuracy criteria: Anura smartphone app with transdermal optimal imaging technology. Blood Press Monit. 2020;25(5):295–298.

    Google Scholar 

  18. Gallagher D, Adji A, O’Rourke MF. Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. Am J Hypertens. 2004;17(11):1059–1067.

    Google Scholar 

  19. Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient light. Opt Express. 2008;16(26):21434–21445.

    Google Scholar 

  20. Kamshilin AA, Margaryants NB. Origin of photoplethysmographic waveform at green light. Phys Procedia. 2017;86:72–80.

    Google Scholar 

  21. Takano C, Ohta Y. Heart rate measurement based on a time-lapse image. Med Eng Phys. 2007;29(8):853–857.

    Google Scholar 

  22. Lewandowska M, Rumiński J, Kocejko T, Nowak J. Measuring pulse rate with a webcam – a non-contact method for evaluating cardiac activity. In: 2011 Federated conference on computer science and information systems, FedCSIS 2011. 2011.

    Google Scholar 

  23. Jain M, Deb S, Subramanyam AV. Face video based touchless blood pressure and heart rate estimation. In: 2016 IEEE 18th international workshop on multimedia signal processing, MMSP 2016. 2017.

    Google Scholar 

  24. De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE Trans Biomed Eng. 2013;60(10):2878–2886.

    Google Scholar 

  25. Moço A V., Stuijk S, de Haan G. Motion robust PPG-imaging through color channel mapping. Biomed Opt Express. 2016;7(5):1737–1754.

    Google Scholar 

  26. Adachi Y, Edo Y, Ogawa R, Tomizawa R, Iwai Y, Okumura T. Noncontact blood pressure monitoring technology using facial photoplethysmograms. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. 2019.

    Google Scholar 

  27. Drummond PD. Psychophysiology of the blush. In: The psychological significance of the blush. Cambridge University Press; 2009.

    Google Scholar 

  28. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8(1):14–25.

    Article  Google Scholar 

  29. Fisher JP, Paton JFR. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. Nature Publishing Group. 2012;26:463–75.

    Article  CAS  Google Scholar 

  30. Association for the Advancement of Medical Instrumentation. ANSI/AAMI/ISO 81060-1:2007/(R)2013 Non-invasive sphygmomanometers – Part2: Clinical investigation of automated measurement type. 2013.

    Google Scholar 

  31. Roy B, Ghatak S. Nonlinear methods to assess changes in heart rate variability in Type 2 diabetic patients. Arq Bras Cardiol. 2013;101:317–327.

    Google Scholar 

  32. Melillo P, Bracale M, Pecchia L. Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomed Eng Online. 2011;10:96.

    Article  Google Scholar 

  33. GSMA MC. mHealth: a new vision for healthcare [Internet]. 2012. https://www.gsma.com/iot/wp-content/uploads/2012/03/gsmamckinseymhealthreport.pdf

  34. Tarride J-E, Lim M, DesMeules M, Luo W, Burke N, O’Reilly D, et al. A review of the cost of cardiovascular disease. Can J Cardiol. 2009;25(6):e195–202.

    Article  Google Scholar 

  35. Ottawa Heart Institute: Telehome Monitoring [Internet]. https://www.ottawaheart.ca/healthcare-professionals/regional-national-programs/telehome-monitoring

  36. Broderick A, Lindeman D. Scaling telehealth programs: lessons from early adopters. The Commonwealth Fund. 2013;1654(1):1–10.

    Google Scholar 

  37. Lakhdar K, Black G. Blurring the lines: convergence in Canadian Health & Life Sciences [Internet]. KPMG. https://assets.kpmg/content/dam/kpmg/pdf/2016/05/Blurringthelines-Convergence-in-Canadian-HLS.pdf

  38. Kayyali B, Kimmel Z, van Kuiken S. Spurring the market for high-tech home health care. McKinsey & Company [Internet]. http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/spurring-the-market-for-high-tech-home-health-care

  39. Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159(4):303–312.

    Google Scholar 

  40. Association for the Advancement of Medical Instrumentation. ANSI/AAMI/EC13:2002 Cardiac monitors, heart rate meters, and alarms. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Lee .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Introduction to the topic of artificial intelligence and transdermal optical imaging (MP4 69462 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barszczyk, A., Zhou, W., Lee, K. (2021). AIM and Transdermal Optical Imaging. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_250-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_250-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics