Skip to main content

Artificial Intelligence for Autism Spectrum Disorders

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 140 Accesses

Abstract

Autism spectrum disorder (ASD) is a chronic and extremely heterogeneous neurodevelopmental disorder, difficult to diagnose and with a still unclear multifactorial etiology. Given the scarce knowledge on this condition the research cannot be hypothesis-driven and must range across various sub-fields of biology and medicine, analyzing the big data produced by last generation healthcare and smart technologies. Artificial intelligence (AI) can represent a valuable tool in this context, thanks to its ability to automatically discover complex patterns in high-dimensional data. This work represents a guide to the use of AI for research on ASD, describing various possible applications, which can differ for their objective (improving diagnosis, ranking severity, defining subtypes of ASD, drug discovery, etc.) and field (genetics, structural and functional neuroimaging, etc.). For each application, the nature of the data and the most appropriate AI techniques to analyze them are described, along with illustrative examples of successful studies. The guide also includes a discussion on the major challenges currently affecting AI-based research on ASD: the lack of data and the subsequent problems of overfitting and confounding effects. Finally promising future research avenues, such as the adoption of explainable AI and ensemble learning are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. American Psychiatric Association, et al. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, Arlington, VA; 2013.

    Google Scholar 

  2. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W, Rosenberg CR, White T, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill Summ. 2018;67(6):1.

    Article  Google Scholar 

  3. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA. 2014;311(17):1770–7.

    Article  CAS  Google Scholar 

  4. Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci. 2017;19(4):353.

    Article  Google Scholar 

  5. Ivanov HY, Stoyanova VK, Popov NT, Vachev TI. Autism spectrum disorder-a complex genetic disorder. Folia Med. 2015;57(1):19–28.

    Article  Google Scholar 

  6. Koegel LK, Koegel RL, Ashbaugh K, Bradshaw J. The importance of early identification and intervention for children with or at risk for autism spectrum disorders. Int J Speech-Lang Pathol. 2014;16(1):50–6.

    Article  Google Scholar 

  7. Bonaccorso G. Machine learning algorithms. Packt Publishing Ltd, Birmingham, UK; 2017.

    Google Scholar 

  8. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.deeplearningbook.org.

    Google Scholar 

  9. Le Couteur A, Haden G, Hammal D, McConachie H. Diagnosing autism spectrum disorders in pre-school children using two standardised assessment instruments: the adi-r and the ados. J Autism Dev Disord. 2008;38(2):362–72.

    Article  Google Scholar 

  10. Moradi E, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. NeuroImage. 2017;144:128–41.

    Article  Google Scholar 

  11. Zhuang J, Dvornek NC, Li X, Ventola P, Duncan JS. Prediction of severity and treatment outcome for ASD from fMRI. In: Rekik I, Unal G, Adeli E, Park SH, editors. Predictive intelligence in medicine. Cham: Springer International Publishing; 2018. p. 9–17.

    Google Scholar 

  12. Veatch OJ, Veenstra-VanderWeele J, Potter M, Pericak-Vance MA, Haines JL. Genetically meaningful phenotypic subgroups in autism spectrum disorders. Genes Brain Behav. 2014;13(3):276–85.

    Article  CAS  Google Scholar 

  13. Bussu G, Jones EJH, Charman T, Johnson MH, Buitelaar JK, BASIS Team, et al. Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: a longitudinal cross-domain classifier analysis. J Autism Dev Disord. 2018;48(7):2418–33.

    Article  CAS  Google Scholar 

  14. Plitt M, Barnes KA, Wallace GL, Kenworthy L, Martin A. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism. Proc Natl Acad Sci. 2015;112(48):E6699–706.

    Article  CAS  Google Scholar 

  15. Ferrari E, Bosco P, Calderoni S, Oliva P, Palumbo L, Spera G. Maria Evelina Fantacci, and Alessandra Retico. Dealing with confounders and outliers in classification medical studies: the autism spectrum disorders case study. Artif Intell Med. 2020;108:101926.

    Article  Google Scholar 

  16. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30.

    Article  CAS  Google Scholar 

  17. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. npj Digital Med. 2019;2(1):1–10.

    Article  Google Scholar 

  18. Liu R, Salisbury JP, Vahabzadeh A, Sahin NT. Feasibility of an autism-focused augmented reality smartglasses system for social communication and behavioral coaching. Front Pediatr. 2017;5:145.

    Article  CAS  Google Scholar 

  19. Costa AP, Charpiot L, Lera FR, Ziafati P, Nazarikhorram A, Van Der Torre L, Steffgen G. More attention and less repetitive and stereotyped behaviors using a robot with children with autism. In: 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, Manhattan, New York, U.S.; 2018. p. 534–9.

    Google Scholar 

  20. Haar S, Berman S, Behrmann M, Dinstein I. Anatomical abnormalities in autism? Cereb Cortex. 2014;26(4):1440–52.

    Article  Google Scholar 

  21. Abraham A. Learning functional brain atlases modeling inter-subject variability. PhD thesis, Université Paris-Saclay, 2015.

    Google Scholar 

  22. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, Elison JT, Swanson MR, Zhu H, Botteron KN, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542(7641):348–51.

    Article  CAS  Google Scholar 

  23. Duchesnay E, Cachia A, Boddaert N, Chabane N, Mangin J-F, Martinot J-L, Brunelle F, Zilbovicius M. Feature selection and classification of imbalanced datasets: application to pet images of children with autistic spectrum disorders. NeuroImage. 2011;57(3):1003–14.

    Article  Google Scholar 

  24. Brihadiswaran G, Haputhanthri D, Gunathilaka S, Meedeniya D, Jayarathna S. EEG-based processing and classification methodologies for autism spectrum disorder: a review. J Comput Sci. 2019;15(8):1161–1183

    Google Scholar 

  25. Frohlich J, Senturk D, Saravanapandian V, Golshani P, Reiter LT, Sankar R, Thibert RL, DiStefano C, Huberty S, Cook EH, et al. A quantitative electrophysiological biomarker of duplication 15q11. 2-q13. 1 syndrome. PLoS One. 2016;11(12):e0167179.

    Article  Google Scholar 

  26. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage Clin. 2018;17:16–23.

    Article  Google Scholar 

  27. Dvornek NC, Ventola P, Pelphrey KA, Duncan JS. Identifying autism from resting-state fmri using long short-term memory networks. In: International workshop on machine learning in medical imaging. Springer, Berlin, DE; 2017. p. 362–70.

    Google Scholar 

  28. Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry. 2014;19(4):504–10.

    Article  CAS  Google Scholar 

  29. Engchuan W, Dhindsa K, Lionel AC, Scherer SW, Chan JH, Merico D. Performance of case-control rare copy number variation annotation in classification of autism. BMC Med Genet. 2015;8(S1):S7.

    Google Scholar 

  30. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Mishra NK, Yilmaz A, Guda C, Radhakrishna U. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res. 2019;1724:146457.

    Article  CAS  Google Scholar 

  31. Kong SW, Collins CD, Shimizu-Motohashi Y, Holm IA, Campbell MG, Lee I-H, Brewster SJ, Hanson E, Harris HK, Lowe KR, et al. Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One. 2012;7(12):e49475.

    Article  CAS  Google Scholar 

  32. West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME, Palmer JA, Fontaine BR, Conard KR, Corbett BA, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445.

    Article  Google Scholar 

  33. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, Hartl C, Leppa V, de la Torre Ubieta L, Huang J, et al. Genome-wide changes in lncrna, splicing, and regional gene expression patterns in autism. Nature. 2016;540(7633):423–7.

    Article  CAS  Google Scholar 

  34. Brueggeman L, Koomar T, Michaelson JJ. Forecasting risk gene discovery in autism with machine learning and genome-scale data. Sci Rep. 2020;10(1):1–11.

    Article  Google Scholar 

  35. Tian Y, Min X, Zhai G, Gao Z. Video-based early asd detection via temporal pyramid networks. In: 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, Manhattan, New York, U.S.; 2019. p. 272–7.

    Google Scholar 

  36. Jaiswal S, Valstar MF, Gillott A, Daley D. Automatic detection of ADHD and ASD from expressive behaviour in RGBD data. In: 2017 12th IEEE international conference on automatic face & gesture recognition (FG 2017). IEEE, Manhattan, New York, U.S.; 2017. p. 762–9.

    Google Scholar 

  37. Boraston Z, Blakemore S-J. The application of eye-tracking technology in the study of autism. J Physiol. 2007;581(3):893–8.

    Article  CAS  Google Scholar 

  38. Lai M, Lee J, Chiu S, Charm J, So WY, Yuen FP, Kwok C, Tsoi J, Lin Y, Zee B. A machine learning approach for retinal images analysis as an objective screening method for children with autism spectrum disorder. EClinicalMedicine. 2020;28:100588.

    Article  Google Scholar 

  39. Wu T, Wang H, Lu W, Zhai Q, Zhang Q, Yuan W, Zhennan G, Zhao J, Zhang H, Chen W. Potential of gut microbiome for detection of autism spectrum disorder. Microb Pathog. 2020;149:104568.

    Article  CAS  Google Scholar 

  40. Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.

    Article  Google Scholar 

  41. Ferrari E, Retico A, Bacciu D. Measuring the effects of confounders in medical supervised classification problems: the confounding index (ci). Artif Intell Med. 2020;103:101804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Ferrari .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 79212 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferrari, E. (2021). Artificial Intelligence for Autism Spectrum Disorders. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_249-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_249-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics