Skip to main content

Artificial Intelligence in Ophthalmology

Technical and Clinical Uses and Clinical Practice Challenges

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Ophthalmology presents as an exciting field in medicine for artificial intelligence (AI) systems, with its numerous digital imaging techniques – only surpassed, perhaps, by radiology – and the increasing prevalence of eye diseases that cause preventable vision loss that accompanies the global increase in life expectancy. Machine learning and deep learning can be applied for screening, detection, identification of progression, and assessment of the response to treatment of the main eye diseases. Recent studies demonstrated that these systems show good performance in the detection of diabetic retinopathy, glaucoma, age-related macular degeneration, retinopathy of prematurity, refractive errors, and in the identification of risk factors for systemic diseases using eye fundus photos. This chapter describes the technical and clinical uses of AI in ophthalmology and discusses the challenges for its incorporation into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Klein R, Klein BE. The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci. 2013;54(14):ORSF5-13. https://doi.org/10.1167/iovs.13-12789.

  2. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77. https://doi.org/10.1111/ceo.12696.

    Article  PubMed  Google Scholar 

  3. Chua J, Baskaran M, Ong PG, Zheng Y, Wong TY, Aung T, et al. Prevalence, risk factors, and visual features of undiagnosed glaucoma: the Singapore epidemiology of eye diseases study. JAMA Ophthalmol. 2015;133(8):938–46. https://doi.org/10.1001/jamaophthalmol.2015.1478.

    Article  PubMed  Google Scholar 

  4. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e34. https://doi.org/10.1016/s2214-109x(17)30393-5.

    Article  PubMed  Google Scholar 

  5. Wheatley CM, Dickinson JL, Mackey DA, Craig JE, Sale MM. Retinopathy of prematurity: recent advances in our understanding. Arch Dis Child Fetal Neonatal Ed. 2002;87(2):F78–82. https://doi.org/10.1136/fn.87.2.f78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Molina-Casado JM, Carmona EJ, García-Feijoó J. Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge. Comput Methods Prog Biomed. 2017;149:55–68. https://doi.org/10.1016/j.cmpb.2017.06.022.

    Article  Google Scholar 

  7. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64. https://doi.org/10.1038/s41551-018-0195-0.

    Article  PubMed  Google Scholar 

  8. Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying Normal versus age-related macular degeneration OCT images. Ophthalmol Retina. 2017;1(4):322–7. https://doi.org/10.1016/j.oret.2016.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36. https://doi.org/10.1016/S0140-6736(09)62124-3.

    Article  PubMed  Google Scholar 

  10. Jeganathan VSE, Wang JJ, Wong TY. Ocular associations of diabetes other than diabetic retinopathy. Diabetes Care. 2008;31(9):1905–12.

    Article  Google Scholar 

  11. Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018;125(8):1264–72. https://doi.org/10.1016/j.ophtha.2018.01.034.

    Article  PubMed  Google Scholar 

  12. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23. https://doi.org/10.1001/jama.2017.18152.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–6. https://doi.org/10.1167/iovs.16-19964.

    Article  PubMed  Google Scholar 

  14. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10. https://doi.org/10.1001/jama.2016.17216.

    Article  PubMed  Google Scholar 

  15. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9. https://doi.org/10.1016/j.ophtha.2017.02.008.

    Article  PubMed  Google Scholar 

  16. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20. https://doi.org/10.1016/s0140-6736(04)16257-0.

    Article  PubMed  Google Scholar 

  17. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article  PubMed  Google Scholar 

  18. Chang RT, Singh K. Glaucoma suspect: diagnosis and management. Asia Pac J Ophthalmol (Phila). 2016;5(1):32–7. https://doi.org/10.1097/apo.0000000000000173.

    Article  Google Scholar 

  19. Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology. 2019;126(4):513–21. https://doi.org/10.1016/j.ophtha.2018.12.033.

    Article  PubMed  Google Scholar 

  20. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol. 2020. https://doi.org/10.1001/jamaophthalmol.2019.5983.

  21. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R. A feature agnostic approach for glaucoma detection in OCT volumes. PLoS One. 2019;14(7):e0219126. https://doi.org/10.1371/journal.pone.0219126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jammal AA, Thompson AC, Mariottoni EB, Berchuck SI, Urata CN, Estrela T, et al. Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2019. https://doi.org/10.1016/j.ajo.2019.11.006.

  23. Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):14665. https://doi.org/10.1038/s41598-018-33013-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, et al. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am J Ophthalmol. 2019;198:136–45. https://doi.org/10.1016/j.ajo.2018.10.007.

    Article  PubMed  Google Scholar 

  25. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol. 2019;203:37–45. https://doi.org/10.1016/j.ajo.2019.02.028.

    Article  PubMed  Google Scholar 

  26. Xu BY, Chiang M, Chaudhary S, Kulkarni S, Pardeshi AA, Varma R. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images. Am J Ophthalmol. 2019;208:273–80. https://doi.org/10.1016/j.ajo.2019.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Åsman P, Heijl A. Glaucoma Hemifield test: automated visual field evaluation. Arch Ophthalmol. 1992;110(6):812–9. https://doi.org/10.1001/archopht.1992.01080180084033.

    Article  PubMed  Google Scholar 

  28. Elze T, Pasquale LR, Shen LQ, Chen TC, Wiggs JL, Bex PJ. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface. 2015;12(103). https://doi.org/10.1098/rsif.2014.1118.

  29. Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123(9):1974–80. https://doi.org/10.1016/j.ophtha.2016.05.029.

    Article  PubMed  Google Scholar 

  30. Shigueoka LS, Vasconcellos JPC, Schimiti RB, Reis ASC, Oliveira GO, Gomi ES, et al. Automated algorithms combining structure and function outperform general ophthalmologists in diagnosing glaucoma. PLoS One. 2018;13(12):e0207784. https://doi.org/10.1371/journal.pone.0207784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mariottoni EB, Datta S, Dov D, Jammal AA, Berchuck SI, Tavares IM, et al. Artificial intelligence mapping of structure to function in glaucoma. Transl Vis Sci Technol. 2020;9(2):19. https://doi.org/10.1167/tvst.9.2.19.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berchuck SI, Mukherjee S, Medeiros FA. Estimating rates of progression and predicting future visual fields in glaucoma using a deep variational autoencoder. Sci Rep. 2019;9(1):18113. https://doi.org/10.1038/s41598-019-54653-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Park K, Kim J, Lee J. Visual field prediction using recurrent neural network. Sci Rep. 2019;9(1):8385. https://doi.org/10.1038/s41598-019-44852-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728–38. https://doi.org/10.1016/S0140-6736(12)60282-7.

    Article  PubMed  Google Scholar 

  35. Bressler NM, Doan QV, Varma R, Lee PP, Suñer IJ, Dolan C, et al. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch Ophthalmol. 2011;129(6):709–17. https://doi.org/10.1001/archophthalmol.2011.140.

    Article  PubMed  Google Scholar 

  36. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1–29. https://doi.org/10.1016/j.preteyeres.2018.07.004.

    Article  PubMed  Google Scholar 

  37. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50. https://doi.org/10.1038/s41591-018-0107-6.

    Article  PubMed  CAS  Google Scholar 

  38. Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017;8(7):3440–8. https://doi.org/10.1364/boe.8.003440.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu Y, Yan K, Kim J, Wang X, Li C, Su L, et al. Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy. Biomed Opt Express. 2017;8(9):4061–76. https://doi.org/10.1364/BOE.8.004061.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prahs P, Radeck V, Mayer C, Cvetkov Y, Cvetkova N, Helbig H, et al. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefes Arch Clin Exp Ophthalmol. 2018;256(1):91–8. https://doi.org/10.1007/s00417-017-3839-y.

    Article  PubMed  Google Scholar 

  41. Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM. Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med. 2017;82:80–6.

    Article  Google Scholar 

  42. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125(9):1410–20. https://doi.org/10.1016/j.ophtha.2018.02.037.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shigueoka, L.S., Jammal, A.A., Medeiros, F.A., Costa, V.P. (2021). Artificial Intelligence in Ophthalmology. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_201-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_201-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics