Skip to main content

AIM in Respiratory Disorders

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Historically, the field of respiratory medicine has been a breeding ground for pioneering applications of artificial intelligence (AI). Recently, the field has seen an explosion of interest in AI applications that has been primarily driven by advances in computing power, algorithmic innovations, and availability of large datasets. In this chapter, we examine the applications of AI across different modalities of respiratory medicine, such as chest imaging, lung function testing, telemedicine, sleep medicine, etc. We provide a historical context of these applications as well as highlight the latest trends, including the remarkable successes of deep neural networks (DNNs). Finally, we share our future perspective while pointing out the existing barriers to the implementation of AI systems in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Russell SJ, Norvig P. Artificial Intelligence: a modern approach [Internet]. Neurocomputing. 1995;9:215–218. http://portal.acm.org/citation.cfm?id=773294

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  Google Scholar 

  3. Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. PUFF: an expert system for interpretation of pulmonary function data. Comput Biomed Res. 1983;16(3):199–208.

    Article  CAS  Google Scholar 

  4. van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–32.

    Article  Google Scholar 

  5. Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax [Internet]. 2020;75(8):695 LP–701. http://thorax.bmj.com/content/75/8/695.abstract

  6. Lodwick GS. Computer-aided diagnosis in radiology: a research plan. Investig Radiol. 1966;1(1):72–80.

    Article  CAS  Google Scholar 

  7. Lodwick GS, Keats TE, Dorst JP. The coding of roentgen images for computer analysis as applied to lung cancer. Radiology. 1963;81(2):185–200.

    Google Scholar 

  8. Toriwaki J-I, Suenaga Y, Negoro T, Fukumura T. Pattern recognition of chest X-ray images. Comput Graph Image Process [Internet]. 1973;2(3):252–71. http://www.sciencedirect.com/science/article/pii/0146664X73900051

  9. Kruger RP. A survey of computer processing of chest radiographs. In: Fifth international conference on information processing on medical imaging [Internet]. Nashville; 1977. p. 1689–99. https://www.osti.gov/biblio/7214513

  10. Di Cataldo S, Ficarra E. Mining textural knowledge in biological images: applications, methods and trends. Comput Struct Biotechnol J [Internet]. 2017;15:56–67. https://doi.org/10.1016/j.csbj.2016.11.002.

    Article  CAS  Google Scholar 

  11. Srinivasan G, Shobha G. Statistical texture analysis. Proc world Acad … [Internet]. 2008;36(December):1264–9. http://staff.fh-hagenberg.at/wbackfri/Teaching/FBA/Uebungen/UE07charRecog/StatTextAnalysisSrinivasan08.pdf

  12. Sørensen L, Shaker SB, De Bruijne M. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging. 2010;29(2):559–69.

    Article  Google Scholar 

  13. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–211.

    Google Scholar 

  14. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (ed.), Adv Neural Inf Process Syst. 2012;1097–1105. Curran Associates, Inc.

    Google Scholar 

  15. Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer F, et al. Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Sci Rep. 2019;9:6268. https://doi.org/10.1038/s41598-019-42557-4.

  16. Qin ZZ, Sander MS, Rai B, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019;9:15000. https://doi.org/10.1038/s41598-019-51503-3.

  17. Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. 2017;3–9. http://arxiv.org/abs/1711.05225

  18. Nam JG, Park S, Hwang EJ, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290(1):218–228.

    Google Scholar 

  19. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018;15(11):e1002686. https://doi.org/10.1371/journal.pmed.1002686.

  20. Hwang EJ, Park S, Jin KN, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095. https://doi.org/10.1001/jamanetworkopen.2019.1095.

  21. Hwang EJ, Nam JG, Lim WH, et al. Deep learning for chest radiograph diagnosis in the emergency department. Radiology. 2019:293(3):573–580.

    Google Scholar 

  22. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology. 2019;291(1):196–202.

    Google Scholar 

  23. Cohen JP, Dao L, Roth K, et al. Predicting COVID-19 pneumonia severity on chest x-ray with deep learning. Cureus. 2020;12(7):e9448. https://doi.org/10.7759/cureus.9448.

  24. Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-COVID: predicting COVID-19 from chest x-ray images using deep transfer learning. Med Image Anal. 2020;65:101794. https://doi.org/10.1016/j.media.2020.101794. PMID: 32781377; PMCID: PMC7372265.

  25. Wynants L, Van Calster B, Collins G S, Riley R D, Heinze G, Schuit E et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020; 369:m1328. https://doi.org/10.1136/bmj.m1328.

  26. Gonzalez G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193–203.

    Google Scholar 

  27. Humphries SM, Notary AM, Centeno JP, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology. 2020;294(2):434–444.

    Google Scholar 

  28. Das N, Topalovic M, Janssens W. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential. Curr Opin Pulm Med [Internet]. 2018;24(2). https://journals.lww.com/co-pulmonarymedicine/Fulltext/2018/03000/Artificial_intelligence_in_diagnosis_of.4.aspx

  29. Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med. 2018;6(11):837–845.

    Google Scholar 

  30. Bermejo-Peláez D, Ash SY, Washko GR, et al. Classification of interstitial lung abnormality patterns with an ensemble of deep convolutional neural networks. Sci Rep. 2020;10:338. https://doi.org/10.1038/s41598-019-56989-5.

  31. Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35(5):1299–312.

    Article  Google Scholar 

  32. Liu W, Liu M, Guo X, et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol. 2020;30(6):3567––3575.

    Google Scholar 

  33. Delzell DAP, Magnuson S, Peter T, Smith M, Smith BJ. Machine learning and feature selection methods for disease classification with application to lung cancer screening image data. Front Oncol. 2019;9:1393. https://doi.org/10.3389/fonc.2019.01393. Erratum in: Front Oncol. 2020 Jun 05;10:866. PMID: 31921650; PMCID: PMC6917601.

  34. Tu SJ, Wang CW, Pan KT, Wu YC, Wu CT. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Phys Med Biol. 201814;63(6):065005. https://doi.org/10.1088/1361-6560/aaafab. PMID: 29446758.

  35. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–961.

    Google Scholar 

  36. Baldwin DR, Gustafson J, Pickup L, et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax. 2020;75:306–312.

    Google Scholar 

  37. Shen S, Han SX, Aberle DR, Bui AA, Hsu W. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst Appl. 2019;128:84–95.

    Google Scholar 

  38. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, Bussink J, Gillies RJ, Mak RH, Aerts HJWL. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11):e1002711. https://doi.org/10.1371/journal.pmed.1002711. PMID: 30500819; PMCID: PMC6269088.

  39. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian J. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019;53(3):1800986. https://doi.org/10.1183/13993003.00986-2018. PMID: 30635290; PMCID: PMC6437603.

  40. Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology [Internet]. 2020;296(2):E65–71. http://europepmc.org/abstract/MED/32191588

  41. Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, Wang M, Qiu X, Li H, Yu H, Gong W, Bai Y, Li L, Zhu Y, Wang L, Tian J. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. 2020;56(2):2000775. https://doi.org/10.1183/13993003.00775-2020. PMID: 32444412; PMCID: PMC7243395.

  42. Huang L, Han R, Ai T, et al. Serial quantitative chest CT assessment of COVID-19: a deep-learning approach. Radiol Cardiothorac Imaging. 2020;2(2):e200075. Published 2020 Mar 30. https://doi.org/10.1148/ryct.2020200075.

  43. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425–434.

    Google Scholar 

  44. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–1567.

    Google Scholar 

  45. Sha L, Osinski BL, Ho IY, Tan TL, Willis C, Weiss H, Beaubier N, Mahon BM, Taxter TJ, Yip SSF. Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J Pathol Inform. 2019;10:24. https://doi.org/10.4103/jpi.jpi_24_19. PMID: 31523482; PMCID: PMC6669997.

  46. Gertych A, Swiderska-Chadaj Z, Ma Z, et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci Rep. 2019;9:1483. https://doi.org/10.1038/s41598-018-37638-9.

  47. Wei JW, Tafe LJ, Linnik YA, et al. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep. 2019;9:3358. https://doi.org/10.1038/s41598-019-40041-7.

  48. Pham HHN, Futakuchi M, Bychkov A, Furukawa T, Kuroda K, Fukuoka J. Detection of lung cancer lymph node metastases from whole-slide histopathologic images using a two-step deep learning approach. Am J Pathol. 2019;189(12):2428–2439.

    Google Scholar 

  49. Courtiol P, Maussion C, Moarii M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med. 2019;25:1519–1525.

    Google Scholar 

  50. Tan T, Li Z, Liu H, et al. Optimize transfer learning for lung diseases in bronchoscopy using a new concept: sequential fine-tuning. IEEE J Transl Eng Heal Med. 2018;6:1800808. Published 2018 Aug 16. https://doi.org/10.1109/JTEHM.2018.2865787.

  51. Feng PH, Chen TT, Lin YT, Chiang SY, Lo CM. Classification of lung cancer subtypes based on autofluorescence bronchoscopic pattern recognition: a preliminary study. Comput Methods Prog Biomed. 2018;163:33–38.

    Google Scholar 

  52. Melgarejo S, Schaub A, DVEN. Point of care ultrasound: an overview [Internet]. American College of Cardiology. https://www.acc.org/latest-in-cardiology/articles/2017/10/31/09/57/point-of-care-ultrasound

  53. Cristiana B, Grzegorz T, Seungsoo K, et al. Automated lung ultrasound B-line assessment using a deep learning algorithm. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67:2312.

    Article  Google Scholar 

  54. Roy S, Menapace W, Oei S, et al. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans Med Imaging. 2020;39(8):2676–2687.

    Google Scholar 

  55. GINA. Diagnosis of diseases of chronic airflow limitation: Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Global Initiative for Chronic Obstructive Lung Disease; 2015.

    Google Scholar 

  56. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68.

    Article  CAS  Google Scholar 

  57. Snow MG, Fallat RJ, Tyler WR, Hsu SP. Pulmonary consult: concept to application of an expert system. J Clin Eng [Internet]. 1988;13(3):201–5. http://journals.lww.com/jcejournal/Fulltext/1988/05000/Pulmonary_Consult__Concept_To_Application_Of_An.10.aspx

  58. Topalovic M, Das N, Burgel PR, Daenen M, Derom E, Haenebalcke C, Janssen R, Kerstjens HAM, Liistro G, Louis R, Ninane V, Pison C, Schlesser M, Vercauter P, Vogelmeier CF, Wouters E, Wynants J, Janssens W. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. Eur Respir J. 2019;53(4):1801660. https://doi.org/10.1183/13993003.01660-2018. PMID: 30765505.

  59. Le-Dong N-N, Hua-Huy T, Nguyen-Ngoc H-M, Dinh-Xuan A-T. Applying machine learning and pulmonary function data to detect interstitial lung disease in systemic sclerosis. Eur Respir J. 2017;50(suppl 61):OA3438. https://doi.org/10.1183/1393003.congress-2017.OA3438.

  60. Bodduluri S, Nakhmani A, Reinhardt JM, et al. Deep neural network analyses of spirometry for structural phenotyping of chronic obstructive pulmonary disease. JCI Insight. 2020;5(13):e132781. Published 2020 Jul 9. https://doi.org/10.1172/jci.insight.132781.

  61. Kaplan A, Cao H, Fitzgerald JM, et al. Asthma/COPD Differentiation Classification (AC/DC): Machine Learning to Aid Physicians in Diagnosing Asthma, COPD and Asthma-COPD Overlap (ACO). In: D22 COMORBIDITIES IN PEOPLE WITH COPD [Internet]. American Thoracic Society; 2020. p. A6285–A6285. (American Thoracic Society International Conference Abstracts). https://doi.org/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A6285

  62. Das N, Verstraete K, Stanojevic S, Topalovic M, Aerts J-M, Janssens W. Deep learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria. Eur Respir J [Internet]. 2020;2000603. http://erj.ersjournals.com/content/early/2020/06/08/13993003.00603-2020.abstract

  63. Brashier B, Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe. 2015;11(1):57–65.

    Article  Google Scholar 

  64. Amaral JLM, Lopes AJ, Jansen JM, Faria ACD, Melo PL. Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput Methods Programs Biomed [Internet]. 2012;105(3):183–93. https://doi.org/10.1016/j.cmpb.2011.09.009.

    Article  Google Scholar 

  65. Amaral JLM, Lopes AJ, Faria ACD, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Prog Biomed. 2015;118(2):186–97.

    Article  Google Scholar 

  66. Amaral JLM, Lopes AJ, Jansen JM, Faria ACD, Melo PL. An improved method of early diagnosis of smoking-induced respiratory changes using machine learning algorithms. Comput Methods Programs Biomed [Internet]. 2013;112(3):441–54. https://doi.org/10.1016/j.cmpb.2013.08.004.

    Article  PubMed  Google Scholar 

  67. Amaral JLM, Lopes AJ, Veiga J, Faria ACD, Melo PL. High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements. Comput Methods Prog Biomed. 2017;144:113–25.

    Article  Google Scholar 

  68. Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms in-home monitoring of chronic obstructive pulmonary disease and asthma: a systematic review. Chron Respir Dis [Internet]. 2016;13(3):264–83. http://www.sagepub.com/journalsProdDesc.nav?prodId=Journal201805%5Cn http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed14&NEWS=N&AN=20160583437

  69. Orchard P, Agakova A, Pinnock H, Burton CD, Sarran C, Agakov F, McKinstry B. Improving prediction of risk of hospital admission in chronic obstructive pulmonary disease: application of machine learning to telemonitoring data. J Med Internet Res. 2018;20(9):e263. https://doi.org/10.2196/jmir.9227. PMID: 30249589; PMCID: PMC6231768.

  70. Shah SA, Velardo C, Farmer A, Tarassenko L. Exacerbations in chronic obstructive pulmonary disease: identification and prediction using a digital health system. J Med Internet Res. 2017;19(3):e69.

    Article  Google Scholar 

  71. Chamberlain DB, Kodgule R, Fletcher RR. A mobile platform for automated screening of asthma and chronic obstructive pulmonary disease. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. 2016.

    Google Scholar 

  72. Finkelstein J, Jeong IC. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y Acad Sci. 2017;1387(1):153–165.

    Google Scholar 

  73. Luo G, Stone BL, Fassl B, et al. Predicting asthma control deterioration in children. BMC Med Inform Decis Mak. 2015;15(8). https://doi.org/10.1186/s12911-015-0208-9.

  74. Medical Advisory Secretariat. Polysomnography in patients with obstructive sleep apnea: an evidence-based analysis. Ont Health Technol Assess Ser. 2006;6(13):1–38.

    Google Scholar 

  75. Allocca G, Ma S, Martelli D, et al. Validation of ‘Somnivore’, a machine learning algorithm for automated scoring and analysis of polysomnography data. Front Neurosci. 2019;13:207. Published 2019 Mar 18. https://doi.org/10.3389/fnins.2019.00207.

  76. Mousavi S, Afghah F, Acharya UR. SleepEEGNet: automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One. 2019;14(5):e0216456. Published 2019 May 7. https://doi.org/10.1371/journal.pone.0216456.

  77. Yildirim O, Baloglu UB, Acharya UR. A deep learning model for automated sleep stages classification using PSG signals. Int J Environ Res Public Health. 2019;16(4):599. Published 2019 Feb 19. https://doi.org/10.3390/ijerph16040599.

  78. Nikkonen S, Afara IO, Leppänen T, Töyräs J. Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea. Sci Rep. 2019;9(1):13200. https://doi.org/10.1038/s41598-019-49330-7. Erratum in: Sci Rep. 2020 Mar 13;10(1):4977. PMID: 31519927; PMCID: PMC6744469.

  79. Christiansen A, Davidsen JR, Titlestad I, et al. A systematic review of breath analysis and detection of volatile organic compounds in COPD. J Breath Res [Internet]. 2016;10(3):034002. http://stacks.iop.org/1752-7163/10/i=3/a=034002?key=crossref.92312f7e0ef6e081d8e4d215ece42a9e

  80. Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest. 2010;137(4):790–6.

    Article  CAS  Google Scholar 

  81. Pifferi M, Bush A, Pioggia G, et al. Monitoring asthma control in children with allergies by soft computing of lung function and exhaled nitric oxide. Chest. 2011;139(2):319–27.

    Article  Google Scholar 

  82. Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of severe asthma research program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–8.

    Article  Google Scholar 

  83. Phillips CO, Syed Y, Parthaláin NM, Zwiggelaar R, Claypole TC, Lewis KE. Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls. J Breath Res [Internet]. 2012;6(3):036003. http://stacks.iop.org/1752-7163/6/i=3/a=036003?key=crossref.504b3410c7803d5c45812740e3fb1868

  84. Huang CH, Zeng C, Wang YC, Peng HY, Lin CS, Chang CJ, Yang HY. A study of diagnostic accuracy using a chemical sensor array and a machine learning technique to detect lung cancer. Sensors (Basel). 2018;18(9):2845. https://doi.org/10.3390/s18092845. PMID: 30154385; PMCID: PMC6164114.

  85. Basanta M, Ibrahim B, Dockry R, et al. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir Res [Internet]. 2012;13(1):72. http://respiratory-research.com/content/13/1/72

  86. Pramono RXA, Bowyer S, Rodriguez-Villegas E. Automatic adventitious respiratory sound analysis: a systematic review. PLoS One. 2017;12(5):e0177926.

    Article  Google Scholar 

  87. Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound analysis for asthma detection. Comput Methods Programs Biomed. 2018;159:111–123.

    Google Scholar 

  88. Jácome C, Marques A. Computerized respiratory sounds in patients with COPD: a systematic review. COPD [Internet]. 2014;2555(November):1–9. http://www.ncbi.nlm.nih.gov/pubmed/24914587

  89. Flietstra B, Markuzon N, Vyshedskiy A, et al. Automated analysis of crackles in patients with interstitial pulmonary fibrosis. Pulm Med. 2011;2011:590506.

    Google Scholar 

  90. Porter P, Abeyratne U, Swarnkar V, et al. A prospective multicentre study testing the diagnostic accuracy of an automated cough sound centred analytic system for the identification of common respiratory disorders in children. Respir Res. 2019;20:81. https://doi.org/10.1186/s12931-019-1046-6.

  91. Bardou D, Zhang K, Ahmad SM. Lung sounds classification using convolutional neural networks. Artif Intell Med. 2018;88:58–69.

    Google Scholar 

  92. Ravishankar H, Sudhakar P, Venkataramani R, et al. Understanding the mechanisms of deep transfer learning for medical images. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2016.

    Google Scholar 

  93. Open Source Imaging Consortium (OSIC). Interstitial Lung Disease (ILD) Experts and Advocates Announce Formation of Open Source Imaging Consortium (OSIC) [Internet]. 2019 [cited 2019 Nov 10]. https://www.osicild.org/press/osicild-attends-ucl

  94. Naudet F, Sakarovitch C, Janiaud P, Cristea I, Fanelli D, Moher D, Ioannidis JPA. Data sharing and reanalysis of randomized controlled trials in leading biomedical journals with a full data sharing policy: survey of studies published in The BMJ and PLOS Medicine. BMJ. 2018;360:k400. https://doi.org/10.1136/bmj.k400. PMID: 29440066; PMCID: PMC5809812.

  95. Palanica A, Flaschner P, Thommandram A, Li M, Fossat Y. Physicians’ perceptions of chatbots in health care: cross-sectional web-based survey. J Med Internet Res. 2019;21(4):e12887. Published 2019 Apr 5. https://doi.org/10.2196/12887.

  96. Wahl B, Cossy-Gantner A, Germann S, et alArtificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018;3:e000798.

    Google Scholar 

  97. Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural language processing of clinical notes on chronic diseases: systematic review. JMIR Med informatics [Internet]. 2019;7(2):e12239. https://www.ncbi.nlm.nih.gov/pubmed/31066697

  98. Viceconti M, Hunter P, Hose R. Big data, big knowledge: big data for personalized healthcare. IEEE J Biomed Heal Informatics. 2015;19(4):1209–15.

    Article  Google Scholar 

  99. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining explanations: an overview of interpretability of machine learning. In: Proceedings – 2018 IEEE 5th international conference on data science and advanced analytics, DSAA 2018. 2019.

    Google Scholar 

  100. Heaven D. Why deep-learning AIs are so easy to fool. Nature. 2019;574(7777):163–166. https://doi.org/10.1038/d41586-019-03013-5. PMID: 31597977.

  101. Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. NPJ Digit Med. 2019;2:77.

    Article  Google Scholar 

  102. Sung JJY, Stewart CL, Freedman B. Artificial intelligence in health care: preparing for the fifth Industrial Revolution. Med J Aust [Internet]. 2020. https://doi.org/10.5694/mja2.50755.

  103. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety. BMJ Qual Saf. 2019;28:231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilakash Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, N., Topalovic, M., Janssens, W. (2021). AIM in Respiratory Disorders. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_178-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_178-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics