Skip to main content

Artificial Intelligence in Critical Care

The Path from Promise to Practice

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 72 Accesses

Abstract

The hectic domain of critical care is, arguably, one of the most demanding instances of multidisciplinary medical decision-making. It is also a domain infused with monitoring and life-sustaining technologies that leave behind the type of digital data trail that is ideal for the deployment of artificial intelligence and, particularly, machine learning methods and analytical pipelines. These data analysis methods should provide medical decision support to intensivists, but there is yet no clear framework or standard set of guidelines on how to do so. In this chapter, we aim to provide readers with information on the current landscape of applications of machine learning in critical care and also with a clear outline of some of the many challenges yet to overcome to guarantee the success of such applications, including the problem of model interpretability and explainability, the technology compliance with current legislation, or the education of medical practitioners in the area of data analytics using open-source software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cosgriff CV, Celi LA, Stone DJ. Critical care, critical data. Biomed Eng Comput Biol. 2019;10:1179597219856564.

    Article  Google Scholar 

  2. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Pérez J, Lo B, Yang GZ. Deep learning for health informatics. IEEE J Biomed Health. 2017;21(1):4–21.

    Article  Google Scholar 

  3. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318(6):517–8.

    Article  Google Scholar 

  4. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31.

    Article  CAS  Google Scholar 

  5. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. 2017. arXiv preprint. arXiv:1702.08608.

    Google Scholar 

  6. Bacciu D, Lisboa PJ, Martín JD, Stoean R, Vellido A. Bioinformatics and medicine in the era of deep learning. In: Proceedings of the 26th European symposium on artificial neural networks, computational intelligence and machine learning (ESANN 2018), Bruges, 2018. p. 345–54.

    Google Scholar 

  7. Vellido A, Martín JD, Rossi F, Lisboa PJG. Seeing is believing: the importance of visualization in real-world machine learning applications. In: Proceedings of the 19th European symposium on artificial neural networks (ESANN), 2011. p. 219–26.

    Google Scholar 

  8. Bhanot G, Biehl M, Villmann T, Zühlke D. Biomedical data analysis in translational research: integration of expert knowledge and interpretable models. In: Proceedings of the 25th European symposium on artificial neural networks, computational intelligence and machine learning (ESANN), 2017. p. 177–86.

    Google Scholar 

  9. Vellido A. The importance of interpretability and visualization in Machine Learning for applications in medicine and health care. Neural Comput Appl. ePub ahead of press. https://doi.org/10.1007/s00521-019-04051-w.

  10. Waring J, Lindvall C, Umeton R. Automated machine learning: review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104:101822.

    Article  Google Scholar 

  11. Safdar S, Zafar S, Zafar N, Khan NF. Machine learning based decision support systems (DSS) for heart disease diagnosis: a review. Artif Intell Rev. 2017;50(4):597–623.

    Article  Google Scholar 

  12. Vellido A, Ribas V, Morales C, Ruiz-Sanmartín A, Ruiz-Rodríguez JC. Machine learning for critical care: state-of-the-art and a sepsis case study. Biomed Eng Online. 2018;17(S1):135.

    Article  Google Scholar 

  13. Dreiseitl S, Binder M. Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artif Intell Med. 2005;33(1):25–30.

    Article  Google Scholar 

  14. Rhee C, Jones TM, Hamad Y, Pande A, Varon J, O’Brien C, Anderson DJ, Warren DK, Dantes RB, Epstein L, Klompas M. Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals. JAMA Netw Open. 2019;2(2):e187571.

    Article  Google Scholar 

  15. https://www.global-sepsis-alliance.org/sepsis

  16. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20(4):195–203.

    Article  Google Scholar 

  17. Nguyen D, Ngo B, van Sonnenberg E. AI in the intensive care unit: up-to-date review. J Intensive Care Med. 2020. ePub ahead of publication. https://doi.org/10.1177/0885066620956620.

  18. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):762–74.

    Article  CAS  Google Scholar 

  19. Seymour CW, Kennedy JN, Wang S, Chang CC, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, Huang DT. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321(20):2003–17.

    Article  CAS  Google Scholar 

  20. Ribas VJ, Vellido A, Ruiz-Rodríguez JC, Rello J. Severe sepsis mortality prediction with logistic regression over latent factors. Expert Syst Appl. 2012;39(2):1937–43.

    Article  Google Scholar 

  21. Raghu A, Komorowski M, Celi LA, Szolovits P, Ghassemi M. Continuous state-space models for optimal sepsis treatment-a deep reinforcement learning approach. arXiv preprint arXiv:1705.08422. 2017 May 23.

    Google Scholar 

  22. Aushev A, Ribas Ripoll V, Vellido A, Aletti F, Bollen Pinto B, Bendjelid K, Herpain A, Hendrik Post E, Romay Medina E, Ferrer R, Baselli G. Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase. PLoS One. 2018;13(11):e0199089.

    Article  Google Scholar 

  23. Ripoll VJ, Vellido A, Romero E, Ruiz-Rodríguez JC. Sepsis mortality prediction with the quotient basis kernel. Artif Intell Med. 2014;61(1):45–52.

    Article  Google Scholar 

  24. Goodman B, Flaxman S. European Union regulations on algorithmic decision making and a “right to explanation”. AI Mag. 2017;38(3):50–57.

    Google Scholar 

  25. Reiz AN, de la Hoz MA, García MS. Big data analysis and machine learning in intensive care units. Med Intensiva (English Edition). 2019;43(7):416–26.

    Article  Google Scholar 

  26. Yoon J, Drumright LN, Van Der Schaar M. Anonymization through data synthesis using generative adversarial networks (ADS-GAN). IEEE J Biomed Health Inform. 2020;24(8):2378–88.

    Article  Google Scholar 

  27. McLennan S, Shaw D, Celi LA. The challenge of local consent requirements for global critical care databases. Intensive Care Med. 2019;45(2):246–8.

    Article  Google Scholar 

  28. Tanner A. Our bodies, our data: how companies make billions selling our medical records. Beacon Press; 2017.

    Google Scholar 

  29. Hueso M, de Haro L, Calabia J, Dal-Ré R, Tebé C, Gibert K, Cruzado JM, Vellido A. Leveraging data science for a personalized haemodialysis. Kidney Dis. 2020. ePub ahead of print. https://doi.org/10.1159/000507291.

  30. Caban JJ, Joshi A, Nagy P. Rapid development of medical imaging tools with open-source libraries. J Digit Imaging. 2007;20(Suppl 1):83–93.

    Article  Google Scholar 

  31. Karopka T, Schmuhl H, Demski H. Free/libre open source software in health care: a review. Healthc Inform Res. 2014;20(1):11–22.

    Article  Google Scholar 

  32. Aminpour F, Sadoughi F, Ahamdi M. Utilization of open source electronic health record around the world: a systematic review. J Res Med Sci. 2014;19(1):57–64.

    PubMed  PubMed Central  Google Scholar 

  33. Alaa AM, van der Schaar M. Autoprognosis: automated clinical prognostic modeling via Bayesian optimization with structured kernel learning. arXiv preprint arXiv:1802.07207. 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vellido .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MP4 56481 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vellido, A., Ribas, V. (2021). Artificial Intelligence in Critical Care. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_174-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_174-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics