Skip to main content

AIM in Pharmacology and Drug Discovery

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Pharmaceutical products are researched and developed through many stages: target search, hit search, hit to lead, lead optimization, and preclinical and clinical trials, all of which have a complex, expensive, and time-consuming process and a low overall success rate. Therefore, there is a need to reduce research and development costs by increasing the probability of success and improving process efficiency. One of the most promising approaches to this problem is the so-called in silico drug discovery, i.e., drug discovery using information technology such as artificial intelligence (AI) and molecular simulation. In this chapter, we describe the development and application of AI in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40:D1100–7.

    Article  CAS  PubMed  Google Scholar 

  3. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–D82.

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44:D1075–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Markoff J. Scientists see promise in deep-learning programs. New York Times. 2012;23.

    Google Scholar 

  7. Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. arXiv preprint arXiv:14061231. 2014.

    Google Scholar 

  8. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inform. 2016;35:3–14.

    Article  CAS  PubMed  Google Scholar 

  9. Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform. 2019;93:103159.

    Article  PubMed  Google Scholar 

  10. Ezzat A, Wu M, Li XL, Kwoh CK. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform. 2019;20:1337–57.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson MA, Maggiora GM. Concepts and applications of molecular similarity. Wiley; 1990.

    Google Scholar 

  12. Jacob L, Vert JP. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics. 2008;24:2149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jimenez J, Skalic M, Martinez-Rosell G, De Fabritiis G. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model. 2018;58:287–96.

    Article  CAS  PubMed  Google Scholar 

  14. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins. 2019;87:1141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, et al. High accuracy protein structure prediction using deep learning. Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book). 2020;22:24.

    Google Scholar 

  16. Zheng W, Li Y, Zhang C, Pearce R, Mortuza SM, Zhang Y. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins. 2019;87:1149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Zhang C, Bell EW, Yu DJ, Zhang Y. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13. Proteins. 2019;87:1082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park H, Kim DE, Ovchinnikov S, Baker D, DiMaio F. Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Proteins. 2018;86(Suppl 1):283–91.

    Article  CAS  PubMed  Google Scholar 

  19. Hong SH, Joung I, Flores-Canales JC, Manavalan B, Cheng Q, Heo S, et al. Protein structure modeling and refinement by global optimization in CASP12. Proteins. 2018;86(Suppl 1):122–35.

    Article  CAS  PubMed  Google Scholar 

  20. UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D15.

    Article  CAS  Google Scholar 

  21. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24:i232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T, Hara T, et al. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol Syst Biol. 2011;7:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsubaki M, Tomii K, Sese J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics. 2019;35:309–18.

    Article  CAS  PubMed  Google Scholar 

  24. Lee I, Keum J, Nam H. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput Biol. 2019;15:e1007129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abbasi K, Razzaghi P, Poso A, Amanlou M, Ghasemi JB, Masoudi-Nejad A. DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics. 2020;36:4633–42.

    Article  CAS  PubMed  Google Scholar 

  26. Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, et al. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev. 2012;44:224–52.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24:1157–65.

    Article  CAS  PubMed  Google Scholar 

  28. Prentis R, Lis Y, Walker S. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol. 1988;25:387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacCoss M, Baillie TA. Organic chemistry in drug discovery. Science. 2004;303:1810–3.

    Article  CAS  PubMed  Google Scholar 

  30. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711.

    Article  CAS  PubMed  Google Scholar 

  31. Andrade EL, Bento AF, Cavalli J, Oliveira SK, Schwanke RC, Siqueira JM, et al. Non-clinical studies in the process of new drug development – Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz J Med Biol Res. 2016;49:e5646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shou WZ. Current status and future directions of high-throughput ADME screening in drug discovery. J Pharm Anal. 2020;10:201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metab Toxicol. 2015;11:259–71.

    Article  CAS  PubMed  Google Scholar 

  34. Wenzel J, Matter H, Schmidt F. Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model. 2019;59:1253–68.

    Article  CAS  PubMed  Google Scholar 

  35. Chen PC, Liu Y, Peng L. How to develop machine learning models for healthcare. Nat Mater. 2019;18:410–4.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol. 2017;14:244–54.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Liu H, Fan Y, Chen X, Yang Y, Zhu L, et al. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy. J Chem Inf Model. 2019;59:3968–80.

    Article  CAS  PubMed  Google Scholar 

  38. Lombardo F, Bentzien J, Berellini G, Muegge I. In silico models of human PK parameters. Prediction of volume of distribution using an extensive data set and a reduced number of parameters. J Pharm Sci. 2021;110:500–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kirchmair J, Goller AH, Lang D, Kunze J, Testa B, Wilson ID, et al. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14:387–404.

    Article  CAS  PubMed  Google Scholar 

  40. Zaretzki J, Matlock M, Swamidass SJ. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J Chem Inf Model. 2013;53:3373–83.

    Article  CAS  PubMed  Google Scholar 

  41. Olsen L, Montefiori M, Tran KP, Jorgensen FS. SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server. Bioinformatics. 2019;35:3174–5.

    Article  CAS  PubMed  Google Scholar 

  42. Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci. 2002;91:2489–99.

    Article  CAS  PubMed  Google Scholar 

  43. Huang W, Geng L, Deng R, Lu S, Ma G, Yu J, et al. Prediction of human clearance based on animal data and molecular properties. Chem Biol Drug Des. 2015;86:990–7.

    Article  CAS  PubMed  Google Scholar 

  44. Iwata H, Matsuo T, Mamada H, Motomura T, Matsushita M, Fujiwara T, et al. Prediction of total drug clearance in humans using animal data: proposal of a multimodal learning method based on deep learning. J Pharm Sci. 2021;110:1834.

    Article  CAS  PubMed  Google Scholar 

  45. Makady A, de Boer A, Hillege H, Klungel O, Goettsch W. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health. 2017;20:858–65.

    Article  PubMed  Google Scholar 

  46. Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther. 2016;99:285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arima C, Kajino T, Tamada Y, Imoto S, Shimada Y, Nakatochi M, et al. Lung adenocarcinoma subtypes definable by lung development-related miRNA expression profiles in association with clinicopathologic features. Carcinogenesis. 2014;35:2224–31.

    Article  CAS  PubMed  Google Scholar 

  48. FDA U. Use of real-world evidence to support regulatory decision-making for medical devices. Guidance for Industry and Food and Drug Administration Staff. 2017.

    Google Scholar 

  49. Singh G, Schulthess D, Hughes N, Vannieuwenhuyse B, Kalra D. Real world big data for clinical research and drug development. Drug Discov Today. 2018;23:652–60.

    Article  PubMed  Google Scholar 

  50. Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2020;26:1256.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Yang X, Bian J, Hogan WR, Wu Y. Clinical concept extraction using transformers. J Am Med Inform Assoc. 2020;27:1935–42.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fu S, Chen D, He H, Liu S, Moon S, Peterson KJ, et al. Clinical concept extraction: a methodology review. J Biomed Inform. 2020;109:103526.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Christopoulou F, Tran TT, Sahu SK, Miwa M, Ananiadou S. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. J Am Med Inform Assoc. 2020;27:39–46.

    Article  PubMed  Google Scholar 

  54. Yang X, Bian J, Gong Y, Hogan WR, Wu Y. MADEx: a system for detecting medications, adverse drug events, and their relations from clinical notes. Drug Saf. 2019;42:123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Opella SJ. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif). 2013;6:305–28.

    Article  CAS  Google Scholar 

  56. Xu H, Aldrich MC, Chen Q, Liu H, Peterson NB, Dai Q, et al. Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality. J Am Med Inform Assoc. 2015;22:179–91.

    Article  PubMed  Google Scholar 

  57. Xu H, Li J, Jiang X, Chen Q. Electronic health records for drug repurposing: current status, challenges, and future directions. Clin Pharmacol Ther. 2020;107:712–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Okuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iwata, H., Kojima, R., Okuno, Y. (2021). AIM in Pharmacology and Drug Discovery. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_145-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_145-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics