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Abstract. Agile software development and Formal Methods are tradi-
tionally seen as being in conflict. From an Agile perspective, there is
pressure to deliver quickly, building vertical prototypes and doing many
iterations/sprints, refining the requirements; from a Formal Methods per-
spective, there is pressure to deliver correctly and any change in require-
ments often necessitates changes in the formal specification and might
even impact all arguments of correctness.

Over the years, the need to “be agile” has become a kind of mantra
in software development management, and there is a prevalent prejudice
that using formal methods was an impediment to being agile. In this
paper, we contribute to the refutation of this stereotype, by providing a
real-world example of using good practices from formal methods and agile
software engineering to deliver software that is simultaneously reliable,
effective, testable, and that can also be iterated and delivered rapidly.
We thus present how a lightweight software engineering methodology,
drawing from appropriate formal methods techniques and providing the
benefits of agile software development, can look like. Our methodology
is informed and motivated by practical experience. We have devised and
adapted it in the light of experience in delivering a large-scale software
system that needs to meet complex real-world requirements: the Cardano
blockchain and its cryptocurrency ada.

The cryptocurrency domain is a rather new application area for which
no clear engineering habit exists, so it is fitting well for agile methods.
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At the same time, there is a lot of real monetary value at stake, making
it a good fit for using formal methods to ensure high quality and correct-
ness. This paper reports on the issues that have been faced and overcome,
and provides a number of real-world lessons that can be used to leverage
the benefits of both agile and formal methods in other situations.

1 Introduction

There has long been a tension between Software Engineering and Formal Meth-
ods. From a software engineer’s perspective, there is pressure to deliver quickly;
from a formal methods perspective, it is essential to deliver correctly. In this
paper, we argue that rather than fueling this tension, formal methods not only
can, but should, be fused with agile software engineering methods. The goal is
to promote a flexible software engineering methodology that aims to combine
the best aspects of both agile and formal methods to deliver properly engineered
and correct software solutions quickly and effectively. We illustrate how such a
methodology can look like by referring to our experience at IOHK, a company
that is using strongly typed and functional programming (specifically Haskell)
to deliver a new cryptocurrency.

1.1 Formality Versus Agility

Agile software development [BBvB+-01] has, since its inception at the turn of
the century, risen to become one of the most prevalent software development
methodologies. Agile methodologies are attractive because they promise rapid
delivery, and fit normal development approaches. When done well, with a focus
on what needs to be delivered, rather than what is easily delivered, agile tech-
niques allow effort to be focused towards the most important goals, and away
from unimportant goals. However, if they are to be used successfully, discipline
1s essential and management must exercise strong control.

Agile techniques can appeal to undisciplined developers precisely because
they can deflect attention from what needs to be done (which is often hard)
towards what can quickly be done. This allows an illusion of progress to be
maintained. Management is then happy because they can apparently observe
progress, and the software is close to product, or only needs a few more small
adaptations; and software developers feel valued because they are producing code
that is apparently appreciated, and there are continual exciting challenges that
they must overcome. Unfortunately, the software may have little real utility, may
be hard to maintain, and may also be unreliable. When this happens, “agile”
methods are both costly and ineffective: the precise opposite of the motivation
for adopting them.

In contrast, classical formal methods require careful thought and design. It
is necessary to first carefully specify a system, then to laboriously translate this
into an implementation, and finally to verify the result against some complex
and often hard-to-understand semantics. Since a large fraction of the overall
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time and work is spent on writing specifications, it can be hard to demonstrate
progress unless the specifications are accessible to management. Furthermore,
changes to the software product require changes in the specification, code, and
verification, which can act as a barrier to accepting changes in requirements.
For this reason, commercial product teams can be very wary of adapting for-
mal methods, and startups can feel that they cannot afford the costs. This is a
pity, since modern formal methods do not have to suffer from these drawbacks.
For example, using executable specifications are a great tool to demonstrate
progress, and automated tools like QuickCheck can be used to check correctness
of software in a way that is stable against local changes. We hope that by pro-
viding our own positive experience, we can help reducing the bad reputation of
formal methods being too slow and inflexible for practical things, and ultimately
encourage more practitioners to consider using some formal techniques.

1.2 Owur Contribution

In this paper, we argue from our own experience that the perceived dichotomy
between “being agile” and “being formal” is mostly a consequence of an out-
dated view on the landscape of formal methods!, and that using modern formal
techniques not only does not contradict the goals of quickly delivering software in
the presence of changing requirements, but that they are indeed rather helpful.
This paper makes the following contributions:

— We describe the motivation that led to the real-world adoption of for-
mal methods techniques and functional programming technologies within an
advanced technology company (IOHK);

— We provide examples of the real-world use of lightweight formal methods and
functional programming as part of a large software development process;

— We consider the positive and negative aspects of both formal and agile tech-
niques in the light of experience with both approaches, as well as the gap in
left between the methodologies;

— Based on this analysis we outline a flexible formal software engineering
methodology that provides the most significant benefits of both agile and
formal software development;

— We discuss the advantages of functional programming for flexible formal soft-
ware development.

Moreover, there are relatively few reports of real-world experiences of using
functional programming technologies as an intrinsic part of large-scale, dis-
tributed software development (exceptions include e.g. reports on Erlang). This
paper provides another addition to this corpus.

! In fact, we would go even further and say that the the picture of a waterfall-style
development, with a strictly linear succession of gathering requirements, writing
specifications, writing code, and proving correctness against the specification, was
always more of a caricature of a bad approach than an accurate description of how
people were using formal techniques in practice.
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2 Cardano: A Proof-of-Stake Cryptocurrency

Cardano (https://www.cardano.org) is a novel decentralised blockchain and
cryptocurrency that is being developed by IOHK. cryptocurrencies are dis-
tributed systems that contain a public shared transaction ledger, which allows
participants to track and send funds in a virtual currency. The striking feature is
that these systems are permissionless and decentralised, in the sense that anyone
can run a node and take part in maintaining the ledger without needing to be
registered with a central authority.

This poses an immediate problem: since there is no central authority, it is nec-
essary to reach consensus on how to progress the construction of the blockchain.
The consensus algorithm has to be resistant to a malicious actor setting up any
number of nodes with the aim of taking over the decision finding process (a so-
called Sybil attack [Dou02]). Bitcoin [Nak(09], the first cryptocurrency, achieves
this using a Proof-of-Work (PoW) mechanism, where taking part in the consen-
sus requires computational resources that are proportional to the total amount
of computational resources in the system. This renders a Sybil attack highly
expensive. The cost is in making the whole system ridiculously inefficient: Bit-
coin is now at a stage where it consumes as much electrical power as a mid-sized
nation state, but can only enter a handful of transactions into its ledger per
second. Were it not for the computational cost of the PoW Sybil protection, this
could be easily achieved using a single commodity laptop or other small device.

In contrast, Cardano uses an alternative Proof-of-Stake mechanism (PoS).
Under PoS, the price of participating in the consensus algorithm is not paid in
computational power, but instead by having to own some of the virtual currency
in the system. The larger your share of the total funds (the higher your stake),
the greater is the probability of your being elected as the leader in the next
consensus round.

While PoS has many advantages over PoW — it is ecologically sustainable,
and automatically incentivises powerful parties in the consensus to behave hon-
estly (since large stakeholders have a lot to lose if the system is found to be
manipulated) — it is hard to get right. For this reason, IOHK committed itself
to base Cardano on a solid foundation of original peer-reviewed research, and to
using formal methods in the development process.

There are already a lot of moving parts to the Cardano cryptocurrency sys-
tem. In time, it will additionally become a smart contracts platform, running the
languages Plutus? and Marlowe [LST18], which have been specifically designed
to be used on Cardano.

3 Formal and Agile Development of Cardano

While IOHK has always been devoted to getting things right, building upon
sound academic research and robust, reliable engineering, the company is also
aware of commercial realities, such as the importance of time-to-market in a

2 https://github.com /input-output-hk/plutus.
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relatively young and quickly evolving sector. For this reason, it set out on a two-
pronged approach for Cardano: a team A of energetic developers would quickly
develop, in an Agile manner, a Minimal Viable Product (MVP) to release to
market. Meanwhile, a second team B would aim for a high-assurance version,
using formal methods, that would, once ready, replace the first implementation.
Team A would deliver swiftly, and Team B would use the experience from having
a working system in production to guide their design and development. Both
implementations were done in Haskell.

Some time after releasing the MVP, it became clear that maintaining it and
adding new features was much harder than anticipated. The organically grown
code, which had been developed under time pressure in an agile style, lacked a
proper separation of concerns or good documentation of the design. This resulted
in poor testability and extensibility for the codebase. Crucially, the implemen-
tation of some key features (namely, a proper system for stake delegation) had
been delayed until the very end, and by that time, design choices that had been
made while implementing other, simpler, functionality, had made that task more
complicated than it would have needed to be. As a consequence, estimated devel-
opment times for the missing features, as well as for future features, were much
longer than they needed to be.

At the same time, team B had achieved a first success, in successfully imple-
menting a wallet? for Cardano based on a semi-formal specification. A decision
was thus made to pivot, cutting back development effort on the existing imple-
mentation to a bare minimum. Team B would scale up and accelerate their
efforts, and the next features on the roadmap would be implemented exclusively
in the follow-on to the MVP. At this point, Team B faced a number of challenges:

— Since team A was no longer adding new features, they had to accelerate their
pace in order to quickly get to a point where the new implementation could
be used to deliver new features.

— Compromising on the quality and robustness, or future maintenance costs,
was not an option; Cardano has to safely manage and secure large-scale finan-
cial transactions, and needs to be fit for that purpose.

— They had to ensure backwards compatibility with the already released code.
The lack of good documentation meant that they had to write a specification
based on the existing code. Writing specifications and code adhering to them
is like time travel, in that one direction is significantly easier than the other.

— As the research and design for the new features were still somewhat in flux,
they would need to be flexible to adjust to changing requirements.

To overcome those challenges, the team chose a pragmatic approach — with a
well-dosed, non-dogmatic use of lightweight formal methods, and a focus on rapid
delivery — that we will describe in this paper.

3 A cryptocurrency wallet is a piece of software that allows users to track their balance
in the system and submit transactions.
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4 “Flexible Formal Development”: A Fusion of Formal
Methods and Agile Software Engineering

Both agile software development and formal methods aim at helping their prac-
titioners to become “better” at producing software, but they focus on different
aspects: agile is all about speed and flexibility; formal methods is all about cor-
rectness and method. This is not helped by the number of books, papers and
experts that promote specific methods (whether formal or agile) as a complete
solution. Examples include Agile Scrum Methodology [SBO1]; Lean Software
Development [PP03]; Kanban [Brel5]; Extreme Programming (XP) [Bec00]; Fea-
ture Driven Development (FDD) [PF01]; Model Checking [CGP99]; Abstract
Interpretation [CC77]; Type-Driven Development [Bral6] etc. In this section, we
will explore the broad differences, similarities, and potential synergies between
formal and agile approaches and aim to understand how their fusion can ensure
software that is both high-assurance and reasonably time- and cost-effective to
produce.

4.1 What Do We Need?

Fundamentally, software development needs are quite simple. In general, we need
to produce software that does what it is supposed to do; is produced quickly;
costs no more to produce than is necessary; can be easily maintained, at rea-
sonable cost; and doesn’t require expensive support. Other issues are generally
secondary or specific to particular domains (e.g. telecommunications applica-
tions may have real-time constraints, aerospace applications may have overriding
safety concerns, autonomous vehicles may have regulatory concerns, etc). The
basic criteria for a successful methodology which is shared by many software
development domains is presented in Table 1.

Table 1. Criteria for software engineering methodologies, along with stereotypical
expectations of whether agile or formal methodologies satisfy them. This is to be taken
with a grain of salt, as there is a large variety of both agile and formal techniques.

Issue Agile | Formal
Identify the requirements for the software Y? Y
Ensure that the software meets these requirements | Y7 Y
Provide usable prototypes rapidly Y Y?
Minimise the costs of development Y? N?
Ensure that code is high quality N Y
Ensure that software is easy to use N N
Ensure that changes can be made easily Y N

Be easily applied without extensive training N N
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The details of this table can be argued, of course, mainly because there are
many different agile techniques and many different formal methods. Different
development teams may also have different levels of experience and be more
or less familiar with specific techniques and technologies. They will also have
different competencies in terms of e.g. mathematical backgrounds or training
in specific development techniques. Effective deployment of either technology,
however, needs extensive specific training and practice. We will consider each of
the issues from the table in detail, considering how well they are met by agile
and formal development techniques.

Identify Requirements. Here, the key issue is to have a strong product vision.
Ideally, there should be a dialogue between the product manager and the software
developers. Agile developers should then interact with the product manager to
deliver the capabilities in the software that is needed, and the product manager
should adapt the capability requirements of the product to make it easier to
implement/maintain, without compromising on essential features. In practice,
there may be no distinct product manager, meaning that the development team
acts as the designers. This can create a number of problems, including failure to
deliver a successful product, repeated non-converging iterations, missing essen-
tial features, and included non-essential features. Requirements gathering and
design is done on the fly. Because it is easy to change requirements, the software
design and implementation will frequently change direction. The final solution
will then have no clear design pathway. Formal methods techniques on the
other hand often require detailed and careful analysis of alternatives, followed
by months of painstaking work to laboriously craft out possible solutions, prove
that they are sound with respect to some formal model or semantics, and then
to verify that the software matches those requirements. Even small changes may
require major alterations to the formal specification, and significant effort to
re-prove, re-verify and then re-implement the software. In this approach, it is
therefore essential for the product owner to be involved in the requirements
analysis and problem specification. Unfortunately, they will often lack the tech-
nical/mathematical knowledge to be able to understand the implications of the
design decision.

Meet Requirements. Since formal methods use mathematical techniques to
specify requirements, provided that they are properly captured and the process
is followed correctly, then the software will always meet these requirements. This
is a major strength of a formal approach. When using agile methods, on the
other hand, the product owner — and also users, where early delivery is used
— can easily see the current version of the software, identify any mistakes or
misunderstandings and feed corrections into the development process.

Provide Prototypes. Good agile methods will always ensure that a prototype is
available. By using continuous integration and continuous testing, a non-breaking
version will always be available for deployment. Non-breaking means, of course,
that the code will compile and that none of the tests have failed, not that the code
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works perfectly. However, it is easy to observe change, and therefore to measure
(real or apparent) progress. Some formal methods also allow the production
of prototypes. For example, where a modelling approach is used, an executable
specification might be produced, or where a refinement process is used, then
successive refinements will produce gradually more detailed prototypes. However,
this is not a feature of all formal methods techniques. Because it is usually
necessary to formally prove software correctness, there may be long periods when
no new software versions are produced. Since there is no observable change, it
is difficult to measure progress during such periods.

Minimise Development Cost. A key goal of agile (especially lean) software devel-
opment is to minimise software costs by producing precisely the minimal product
that is required, and by focusing attention on the most important features. By
avoiding implementing unnecessary features or by delaying less useful features,
the software can be brought to market more quickly, and at an adequate cost.
In practice, achieving this requires strong discipline. It is easy to focus atten-
tion instead on short-term, but less important bug fixes, on easy-to-implement
features, or on features that are nice-to-have. While daily “stand-up” meetings
allow good team communication, they need to be properly organised if a priority
task list is to be produced and followed. By using continuous testing, software
is not accepted that does not pass regression tests, so fewer bugs will enter the
code base. However, this same process can also act as a barrier to major change
— completely new tests will then be necessary. In contrast, reducing development
cost is not usually a major goal of formal methods development. If correctness
is paramount, then spending effort to ensure correctness is always the right thing
to do. Although there has been major progress in e.g. automated proof assistants
and model checking, most formal methods tooling is not well integrated into the
usual software development process.

Ensure High Quality. The primary aim of formal methods is to produce very
high quality, high reliability, high assurance software. This is, however, rarely an
explicit goal of agile methods.

Mazimise Fase of Use. Ease of use is not a primary goal for either agile software
development or when using formal methods. Rather, it must be layered as an
additional concern.

Enable Change. Software is notoriously hard to change. While agile meth-
ods allow design changes to be incorporated during development, as discussed
above, they do not encourage major design changes: any significant change will
break not only the existing code, but also testing, documentation, etc. Similarly,
traditional formal methods do not provide any assistance with major design
changes. While small changes can usually be incorporated without major work,
large changes will often require significant and laborious specification, verifica-
tion, proof or other work. In both cases, it is often easier to start with a blank
canvas and produce a completely new design. This can also be cheaper and
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quicker than adapting an existing design. However, it means that significant
effort has been wasted.

Do Not Require Extensive Training. There is a major software skills shortage.
As evidenced by e.g. salary levels, good software developers are rare and in high
demand. It is not cost effective to require them to learn to use new tools and
techniques on a regular basis. While they may be highly effective once mastered,
mathematical techniques may also require extensive study and practice, which is
also costly. Unfortunately, much of the available tooling to support both agile
software development and formal methods is special-purpose and requires
extensive time to learn to use effectively. This creates stickiness: better tooling
is not used because it takes time to learn to use (or sometimes, especially in
smaller companies, because it costs money). It also means that few people have
experience with both kinds of tools or the expertise to move easily between them.

Our Goal: Flexible Formal Software Engineering. Based on the analysis
above, we argue for a flexible formal approach. Our goal is to combine the best
elements of agile and formal software engineering so that we can produce software
that meets all of the criteria above. In particular, it should be high quality, quick
and cost effective to produce, easy to change, clearly meet the requirements and
not require extensive training to develop. This is naturally highly ambitious,
and in this paper we will only be able to report on the initial steps that we have
taken. However, it is important that the software development community does
not simply settle for the status quo but strives to achieve these goals. In this
way, we will be able to deliver software that is better, less costly, and easier to
adapt both by design and by construction. Modern functional programming is
key to helping us achieve this.

5 Key Messages and Lessons

5.1 Approach(es) Taken at IOHK

When rebuilding Cardano, we separated concerns into layers, as is common when
dealing with larger projects. This allowed us to parallelise work, test things in
isolation, and will allow us to swap out individual components when needed, to
produce customised variants. It turns out that there is sufficient difference in
nature between the components to make each amenable to a different approach
in designing and implementing them. In the following, we will briefly describe
each layer, and explain the methodology chosen for each, and why.

Ledger Layer. The ledger layer contains the main logic of the cryptocurrency.
It is where all the data is kept, and has to ensure that users’ balances are recorded
correctly, that money can not be arbitrarily created or destroyed, that no one
can spend funds they do not own (or spend their funds twice), etc. Correctness
of the ledger is thus of utmost importance to the integrity of the system.
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The Cardano ledger is of moderate complexity. It does not have to deal with
any concurrency issues — those are contained in the consensus and networking
layers — but it is more than just a simple book-keeping device. In addition to
listing and ordering transactions, and keeping balances, it has to also keep track
of state that is important for the operation of the system itself. Parameters
of operation (such as the frequency with which new blocks* are created) can be
adjusted during operation, by announcing the new value on the ledger. Similarly,
new versions of the software itself can be announced via an update mechanism.
Another aspect of the ledger is delegation: while every stakeholder has the right
to participate in the consensus algorithm, it is unlikely that each and every
user of the system would want to continuously run and maintain a node in the
system. In Cardano, users can chose to delegate their stake to people who do run
a node, forming a stake pool. Rewards that the system pays out for maintaining
consensus are automatically shared between operators and participants of such
pools.

All of this lead to a rather voluminous design; the informal document describ-
ing the mechanisms of delegation and incentives alone [SL-D1] runs at roughly
60 pages, and builds upon two papers of original research conducted for Car-
dano [KKL18,BKKS18]. While none of the individual parts are rocket science,
they can interact in subtle ways. Since the ledger is where the value is being
held, correctness has to be on the top of the list of priorities of the development
methodology chosen. However, we also needed a flexible approach: commercial
reality required us to start work on the implementation before the design and
research of the whole ledger was truly finished, so choosing an approach where
small changes in the design would require massive amounts of work to be done
had to be ruled out.

We decided to simplify the ledger design by defering all stateful operations
— in particular data storage and issues related to eventual consistency — to the
consensus layer. This allows us to express the whole ledger logic in a purely
functional way, in terms of a set of valid state transitions and transition rules.
The approach we followed in defining operational semantics is called small-step
semantics (see [FM-TR-2018-01]). We can use these operational semantics to
define valid state transitions in a deterministic way, e.g. what sequences of trans-
actions forms a valid ledger. We will not discuss here the language and rules itself,
but instead summarize the principles we follow in constructing rules and types
with this approach:

— There should always be a unique way to represent every state transition as
a sequence of these “small steps”. E.g., to apply a block, the sequence of
intermediate states must contain each of the states resulting from applying
every transaction in the block individually to the ledger ledger state resulting
from preceding.

4 Cryptocurrencies are built on a data structure called blockchain, which are essentially
linked lists, where each block contains a page of a transaction ledger.
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— There should not be any partial state transition rules or unnecessary data
dependencies between state transitions. E.g., we do not want to make
separate state transition rules for processing the inputs and the outputs of a
transaction.

The first principle requires us to define rules with high granularity, so that
we don’t miss any intermediate steps. The second principle discourages us from
having unnecessary intermediate steps, during which some invariants we expect
from the system may not hold.

We call the transition types, together with the transition rules we defined
in this way, a semi-formal specification, since it is formal, but not machine
checked. Translating this specification into valid Haskell code is straightforward
and mostly mechanical: every transition rule corresponds to a pure Haskell func-
tion, with some pre- and postconditions. This gives us an executable specification.

This is a very powerful tool: the typechecker is very good at finding subtle
self-consistency errors. Since it is executable, this specification can serve as a
prototype and demonstrate tangible progress to stakeholders. You can also start
running tests with the executable specification. Lastly, it can either serve as a
basis for developing a production implementation through a series of refinement
steps, or as a testing oracle for the production implementation (we chose the
former here).

We did not, initially, produce any proofs about the emergent properties of the
ledger (such as conservation of value, delegating stake properly modifying the
stake of a pool, etc.). Instead, we got reasonable confidence by having the exe-
cutable specification pass the type checker (we got the plumbing right), and by
writing the desired properties as QuickCheck properties. Not performing proofs
at this stage allowed us to move quickly, and react to changes in the design.
Having the type checker and QuickCheck properties allowed us to do so with
confidence that the changes were not breaking parts of the system. In that way,
the approach combines elements from formal methods and agile practices like
test-driven development. As things became more stable, we also started proving
a subset of the properties, most of them in a traditional, pen and paper style,
and some also formally in Isabelle.

This approach requires two techniques that are not stock items in the reper-
toire of software engineers: formal specifications, and efficient use of property
based testing®. We organised a one-week intensive on-site training course in those
techniques for our engineers to make up for that, run by Well-Typed, QuviQ,
and the IOHK education department. The course was very well-received, and
our engineers report that programming from executable specifications was a very
pleasant experience.

5 While the use of property based testing has surged in recent years, with QuickCheck
clones available in most languages, experience in efficient use, including writing good
generators and shrinkers, is not common.
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Here is a list of the things that we found worked well, or not so well:

+ The language of transition rules in a small-step operational semantics formed a
lingua franca to talk about the ledger within the company. While it might look
intimidating when unfamiliar, we found that after a little bit of introduction
to the framework, we could use it to communicate not only with engineers,
but also other stakeholders within the company (researchers, product man-
agement, and the CEQ). Subtle questions from the researchers were easier
to answer by looking at the formal spec than by looking at code. Addition-
ally, we received a lot of very helpful feedback from our auditors, concerning
details in the specification.

+ The simple mathematical style of the small-step operational semantics trans-
lated extremely well to Haskell. Comparing the two specs side-by-side is very
easy to do, therefore strengthening our trust in the translation from paper to
machine.

+ In most cases, small-step semantics combined nicely with agile methodology.
Adhering to the two principles we stated above encouraged us to maintain
the right granularity in our rule definitions. That is, in response to a require-
ment change, the scope of the type-level changes and associated semantic rule
changes was often contained to a single transition type and an (often singu-
lar) relevant rule, or at least easily traceable over several rules. Because of
this, implementing incremental local changes could be done in a rather a non-
disruptive and tractable way. Note, however, that even with this approach,
not all small local changes can be made to be non-breaking.

+ Flexibility with confidence, through the type-checker and QuickCheck.

+ Extensibility: even before the first version of the ledger was finished, we had
one team member work on integrating the next feature, integration of the
smart contract language Plutus, on the level of the specification. This required
adding some new types, some new transition rules, and modifications to a few
existing rules. We expect a massive reduction in lead times for future features.

+ The formal spec made the job of estimating the work required to implement
new features much easier than it would have been with code alone: the spec
provided a view on the system that had enough detail to see which parts
would have to be changed in order to implement a new feature, while still
being concise enough to quickly analyse the impact on the whole system.
Similarly, when integration issues made us consider the impact of refactoring,
the formal spec was valuable for choosing the path forward.

— We had to keep two versions of essentially the same document — the semi-
formal and executable specification — in sync. Performing formal proofs
in Isabelle required yet another version of the same specification. Ideally,
we would like to derive all of those documents from one single source.
While there are some tools available (such as Ihs2texS, Ott [SZNO+10], and
Lem [OBZNS11,MOG+14]), we chose to do this manually on the first project,
for pragmatic reasons: we did not have enough time to research the existing
tools sufficiently to convince ourselves that we would not run into limitations

5 http://hackage.haskell.org/package/lhs2tex.
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along the way. We intend to improve this, by evaluating existing tools, and
possibly modifying one, or even writing our own.

Consensus Layer. The consensus layer determines who is allowed to pro-
duce a block at which point in time. It is based upon Ouroboros [KRDO17], the
first provably secure PoS protocol, and variants [DGKR17, BGK+18]. Ouroboros
guarantees — as long as more than half of the participants (weighted by their
stake) behave according to the protocol — that transactions submitted to the
network will be included in the ledger, and that the ledger stabilises, so that
transactions can not be dropped after they have been in the ledger for a cer-
tain amount of time. Having those guarantees for Cardano requires a faithful
implementation of the consensus protocol.

Unavoidably, the consensus protocol inherently involves concurrency, which
is notoriously hard to get correctness guarantees about. While we do want to
ultimately get a high-assurance implementation of Ouroboros, we decided that
going for that right away was too risky in terms of development time.

So again, we chose an approach of two development streams, with different
speeds and levels of formality. But we took a lesson from the past, and asked
very experienced and disciplined engineers to do the initial implementation. They
would produce code that was well documented, designed with testability in mind,
modular, and solid. They would use prototyping to make informed design deci-
sions. Rigorous code review, direct communication with the Quroboros authors,
and extensive property based testing would ensure that the resulting code was
of high quality. Extensive use of polymorphism and Haskell type classes was
essential in achieving a flexible and testable design (more on that in Integration
below).

To eventually get the extra bit of assurance that comes with a formal model
and proofs, a second group of people is following their traces, and is modelling
the resulting design formally in Isabelle, using a process calculus. They should
then be able to provide machine-checked proofs about the correctness of aspects
of the implementation, or providing a basis for re-implementing parts of the
consensus to build on the fully formal core. As a first step towards this goal,
we have developed a custom process calculus [Jel19] and proved some properties
relating message relaying and broadcast based on it.

The advantage of our approach is that we do not have to make an up-front
decision about the final level of formality, but can defer this decision to a point
where we have a better understanding of the complexity of the endeavour. The
code that we do have is robust enough stay in production for the lifetime of the
system. Every step that we go on the formal side increases our confidence in the
design, and thus is not wasted, regardless of whether we will go to an actual
implementation derived from the formal model. We achieve this incremental
confidence by first performing proofs about the design that we followed in the
implementation. Those are relevant for the implementation even if the code
is not derived from the formal model underlying the proofs. The next step is
modelling the actual implementation formally and proving more elaborate global
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properties. This is still much less work than an implementation based on a formal
model, since we can abstract over many details (in particular, interactions with
other layers). The option of ultimately replacing the implementation with code
that builds upon the formal model is still open, but even if we decide not to do
that, the confidence we gained during the previous steps is not lost.

For instance, one of the proofs that we did concerns the way that chains of
blocks are distributed amongst nodes in the system. In the research paper, there
is an abstract and perfect notion of a network where every node can broadcast
their chain to every other node, and then each node will pick the “best” one
according to certain rules. The proofs of the security of the protocol assume this
perfect broadcast, but it is not feasible to directly implement this in a real world
system; for one, nodes will already agree on a long prefix of the correct chain,
so they should only interchange the latest blocks. Also, in a large network, the
abstract broadcast will be implemented in terms of communications of each node
with a limited number of peers. We have been able to prove that our design for
relaying blocks through the network is a refinement of the abstract whole chain
broadcast functionality in the paper.

Networking Layer. A PoS blockchain cryptocurrency like Cardano is very
demanding on the networking side. Ouroboros divides time into discrete slots,
and elects slot leaders for the consensus in a pseudorandom manner. For this
to work, the next block in the blockchain has to traverse the network from
one elected leader to the next leader within the available time, and it must
do so successfully in the vast majority of cases. This places a hard real-time
constraint on the networking layer. At the same time, the network should be
decentralised and permissionless, allowing anyone to join the network. Not only
is this in tension with ensuring performance, it also increases the attack surface.
Nodes in the system must interact with other potentially adversarial nodes, and
the design of this interaction has to enable honest nodes to avoid asymmetric
resource attacks, which is not simple in PoS designs’.

The networking design for Cardano consists of nodes engaging in one-to-
one protocols. To reduce complexity, this communication is divided into sepa-
rate concurrent “mini-protocols”, each with a narrow focus®. The protocols are
designed to ensure that honest nodes can work in bounded resources; they all
use consumer-driven control flow for example. The construction of the peer-to-
peer network aims to ensure rapid dispersion of information across the network,

" In PoW systems, there is a distinct computational cost advantage for the honest
nodes, in that validating a block is very cheap (just hashing the block) but producing
a block requires an enormous amount of computational work by an adversary. In PoS,
the computational costs are much more finely balanced and the validation checks
require the full ledger state, and thus a closer coupling of the networking layer with
the rest of the application.

For efficiency and to aid with network resource management complexity, we use
multiplexing to just use one network connection for all protocols between a pair of
nodes.
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and limiting an attacker’s ability to spam the network, or slow down the net-
work by intentionally delaying replies. We used simulations to verify that our
peer selection algorithm, which takes decisions locally, leads to suitable network
topologies globally. The peer selection takes into account both the number of
hops to disperse information and the network distance of each hop, relying on
local measurements of the network distance to available peers in the AQ frame-
work [Ree03,DHT99b, LGPC+16, DHT99a, DHST99].

Networking protocols are hard to get right. Reducing complexity by having
dedicated mini-protocols for specific tasks was already very helpful, but we also
wanted to reason formally about those protocols. To do that, we used session
types, modeling the communication between two nodes as state machines. We
intentionally restricted the admissible communication patterns, so that in each
state, one of the nodes could send a message, and the other had to expect and
handle any message by the other node. That restriction ensures that there can
be no deadlocks (since it there is no state in which both nodes are expecting a
message), and also no race conditions (since there is no state where two nodes
send messages at the same time). And those powerful guarantees do not have to
be proven manually, but are enforced by the Haskell type checker!

Both the network and consensus layers make significant use of concurrency
which is notoriously hard to get right and to test. We use Software Transactional
Memory (STM) to manage the internal state of a node. While STM makes it
much easier to write correct concurrent code, it is of course still possible to
get wrong, which leads to intermittent failures that are hard to reproduce and
debug.

In order to reliably test our code for such concurrency bugs, we wrote a
simulator that can execute the concurrent code with both timing determinism
and giving global observability, producing execution traces. This enables us to
write property tests that can use the execution traces, and to run the tests in a
deterministic way so that any failures are always reproducible.

The use of the mini-protocol design pattern, the encoding of protocol inter-
actions in session types, and the use of a timing reproducible simulation, has
yielded several advantages:

+ Adding new protocols (for new functionality) with strong assurance that they
will not interact adversly with existing functionality and/or performance con-
sistency.

+ Consistent approaches (re-usable design approaches) to issues of latency hid-
ing, intra mini-protocol flow control and timeouts/progress criteria.

+ Performance consistent protocol layer abstraction/substitution: construct real
world realistic timing for operation without complexity of simulating all
the underlying layer protocol complexity. This helps designs/development to
maintain performance target awareness during development.

+ Consistent error propagation and mitigation (mini protocols to a peer live/die
together) removing issues of resource lifetime management away from mini-
protocol designers/implementors.
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Integration. Having broken the design into components allowed us to paral-
lelise work, which was crucial to reduce development time. Unless done carefully,
however, this can lead to a situation where after each component is finished
and working in isolation, integration of the components becomes unexpectedly
painful and time intensive.

A common way to avoid that situation is to fix, up front, the interfaces
between the components, and ensure that every team works against those
unyielding interfaces. But this goes against our goal of flexibility: during the
design and development process, we might discover that the interfaces we put in
place were not ideal, forcing one or more team to work around those imperfec-
tions, making their component(s) clunkier, and the whole system more brittle
and inefficient than necessary. Conversely, a laissez-faire attitude to the inter-
faces is asking for trouble during the integration phase. But we can find a middle
ground.

For us, the key to avoiding problems with late integration was to perform
large parts of the integration at a very early stage, before any of the components
was actually finished.

For the consensus/ledger integration, our design puts the consensus in con-
trol. It will access functions provided by the ledger layer for things like transac-
tion validation, evolving the ledger state, or querying the distribution of stake
between actors in the system (which is relevant for the consensus itself in a PoS
system). To achieve an early integration, the consensus layer is developed against
a Haskell type class representing an arbitrary ledger, that provides exactly the
functions that consensus needs. The result is a consensus implementation that
is polymorphic in the ledger.

When we noticed during development that we needed to change that type
class, the team was free to do so — after talking to the ledger team to ensure that
there would be nothing preventing writing an instance of the new type class for
the real ledger.

The benefits of this approach go well beyond avoiding integration pains,
though. Being able to swap components proved to be very useful for running
demos, and for testing. The ability to demonstrate continuous progress to stake-
holders is a key goal emphasised by agile techniques. Performing demo sessions
where we could show working code in different stages of readiness — from a mock
implementation, to an executable specification/prototype, through refinements
of these, up to the final production code — let us achieve this goal.

We used the same technique to improve the testability of our code. Not only
could we run tests for the consensus layer before the ledger was ready, by using a
mock ledger. We also wrote a mock implementation for the cryptography layer,
that would not perform cryptographic signatures, for testing purposes. Not only
are tests using the mock cryptographic layer faster and produce test output that
is easier to analyse; it also simplified the process of generating and shrinking test
cases in property based testing.

To test resilience of the storage layer against file corruption, we wrote a mock
implementation that would simulate a file system. Not only did that allow us
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to run those tests consistently and reproducibly, it also allowed us to increase
the frequency of file system errors during tests, to find bugs during testing that
would occur only after years of running in production otherwise.

Finally, being polymorphic in the ledger allows IOHK to reuse the codebase
for other blockchain-based products.

+ Avoids both late integration pains and the inflexibility that comes with setting
interfaces in stone up front.

+ Better testability: tests can be performed independently of other components.
That allows us to run them before those components are ready, can make
tests run faster, and test output easier to understand.

+ Continuously assessing progress: we could run an early demo session using
mock components, use an executable specification (that would already have
the real logic, but might not be efficient, not feature persistence, etc) in
another demo, and plug in the production implementation when ready.

+ Facilitates code reuse in other projects.

Upcoming Features: Smart Contracts Languages Plutus and Marlowe.
In TOHKs forthcoming smart contract offering Plutus, formal methods have
been involved from the outset. Aspects of the design have been prototyped
first in Agda before implementation in Haskell [PJGK+19]. This is because
the Agda type system and its interactive programming environment provide
greater assistance to the programmer that help speed up development on cer-
tain tasks. Building on the methodology described in this paper, Plutus Core
(the compilation target for the Plutus language) has an executable specification
written in Agda [CKNW19]. Plutus is a general purpose language for designing
smart contracts that is closely related to Haskell. It is complemented by the
Marlowe [LST18] language, a domain specific language specifically targetted at
financial smart contracts. In Marlowe, formal methods also play a crucial role;
Marlowe programmers can use builtin support for static analysis when program-
ming [IOH]. This functionality makes use of the Z3 SMT solver [DMBO08].

5.2 Lessons

We have learned several lessons from our experience.

Lesson 1: Flexibility. One key lesson is about flexibility. By adopting an agile
mentality and by using suitably lightweight formal methods — most notably,
executable specifications in a functional language with a strong type system,
and property based testing via QuickCheck, we have been able to quickly and
effectively incorporate design changes, even at a late stage in the implementation
process, without either breaking code or restarting the development process.
Using the type system to bank the consensus between teams - type classes being
especially useful in this respect - proved to be an efficient technique for retaining
flexibility in a large scale project.
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Lesson 2: Communication. A second major lesson that we have learned is about
communication. Agile methods are effective partly because they are designed to
ensure good internal communication within a team (this may break down in prac-
tice, of course), but also, less obviously, because they naturally improve external
communication. Agile methods are effective precisely because the results of the
development process are visible externally: there should always be a workable
fallback once the MVP is produced, and it is easy to evaluate the differences
between the current status of the product and what is wanted/needed (the fea-
ture list).

In contrast, not all formal methods are suitable for continuously communi-
cating progress. Formal methods development may suffer from a lack of trans-
parency for several reasons. The dense and difficult to parse (for a human) proofs
and specifications result, internally, in uncertainty about the amount of effort
required to bring them to completion. This is reflected in external communi-
cation as well, as it is more difficult to communicate the current state of the
formalization to those without a formal methods background.

By enforcing better communication (both internal and external), including by
providing regular measurable results, it is possible to bring software projects to a
quicker, more successful conclusion, without compromising on software quality.
We found prototypes and demonstrations, based on executable specifications,
and a refinement approach to development, to be very helpful here.

Lesson 3: No “Big Bang”. A third, related, lesson is about iteration. Rather
than saving results until a formal process is finished, it is important to share
intermediate results, even if they are not fully worked out. This has the key ben-
efit of demonstrating progress, but also has the advantage that it is possible to
obtain constructive feedback, that can then be incorporated into new designs and
implementations. Sometimes, this reveals that some planned work is not actually
necessary, or that some part of the design or implementation can be eliminated,
because it is no longer required, or of reduced interest. This is, of course, part of
a good agile approach. Refinement-based or gradual approaches, where abstrac-
tions are made increasingly concrete, can be highly effective. An advantage is
that refinement can be stopped and restarted at any point. By connecting the
formal refinement process with software equivalents, high assurance prototypes
or demonstrators can be produced, with details left to be implemented at a later
date.

Lesson 4: Ensure Consistency. A fourth lesson relates to testing and verification.
By using a formal approach, it is easy to demonstrate consistency between the
design and the implementation. Formal properties can be derived, either manu-
ally or directly from a specification, that can then be used as part of a methodical
property-based testing approach, e.g. QuickCheck [CHOO0] or Hedgehog (https://
hackage.haskell.org/package /hedgehog). At IOHK, we manually translated the
required formal properties into property-based tests. The same properties can
be used to support formal proofs, to drive a model checker or some other formal
verification technique. It is not necessary to use multiple techniques to verify the
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same property, but this can give higher assurance. For example, a property can
be manually proved to be sound, an automated proof can be produced based
on this, and assertions can be introduced into the code. Since properties are
derived systematically from the specification, effort can be focused on the most
important issues.

Lesson 5: Maintain Progress. A final lesson relates to diversion of effort. By
maintaining focus on the end goal of the software development process, as
required by good agile development methodologies, we can avoid diverting effort
to short-term fixes that have no long-term benefit. For example, by prioritising
the properties that need to be proved or tested, we can avoid wasting effort and
so maintain progress towards the most important goals.

5.3 Flexible Formal Software Engineering

Our flexible software engineering methodology is made of up the following essen-
tial activities which together comprise a full development cycle. These may apply
at different levels of the classical software lifecycle (requirements, design, imple-
mentation, testing, deployment etc.).

Gather Informal Requirements. Start with a good understanding of the
problem, and describe the solution in an informal but unambiguous way.
Note however, that it is not always the case that all requirements can be
captured beforehand. It is permissible to add requirements iteratively (see
Iterate and Redesign below).

Isolate and Abstract. Consider how the functionality can be made modular.
Divide the problem into non-overlapping but interacting parts, figure out
what is required from each of them.

Generate Semi-Formal Specification. For each component, develop the
informal requirements into a semi-formal specification with an appropriate
choice of denotational or operational semantics.

Identify Properties. Identify important properties that the software should
have. State these precisely and formally. Prove the most important properties.
Other properties can be used either as the basis for formal verification, for
property-based testing, or for normal unit testing etc.

Build the Executable Specification. Produce an executable specification.
By writing our implementation in Haskell, it was possible to maintain a high
degree of consistency between the design and implementation.

Iterate. Work iteratively. Refine the system design to add more detail, veri-
fying that these details do not violate the required properties. By using an
executable specification approach, it is possible to ensure that a working pro-
totype is always available.

Redesign. Maintain design flexibility. Use suitable levels of abstraction (e.g. in
Haskell, type classes or polymorphic types), so that alternative implementa-
tions can be produced. Feed new or changing requirements into the design
and implementation process.
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Prove, Test and Verify. Apply the right technology (manual and automated
proof, automated testing, etc.) to obtain the required assurances in the correct
operation of the software.

Communicate. Hold regular meetings to discuss progress, focus design and
implementation effort, discuss technical issues, and ensure that the team is
aware of each other’s activities. Encourage all team members to express con-
cerns, suggest ideas, or to ask for technical help. Hold regular detailed tech-
nical seminars to discuss new techniques or to investigate specific issues in
detail. Make sure that results are communicated throughout the organisation
(it may be necessary to use different techniques for this — senior management
is unlikely to read detailed soundness proofs, for example) and that input is
taken.

By combining the best features of both agile and formal software development,
we can obtain significant advantages over either approach used independently.
Functional programming technology is, of course, critical to achieving this.
Functional programming naturally supports many lightweight formal methods,
including advanced type mechanisms such as dependent types, session types etc.
Higher-order functions provide excellent abstraction mechanisms, and enable
flexible design and implementation. Formal proofs are much easier to relate to
implementations in a functional style. High levels of abstraction mean that it
is easy to maintain consistency between the design and implementation. Prop-
erties are easy to relate to software, and there are good property-based testing
systems. Software is concise, can often be executed interactively, prototypes can
easily be produced and demonstrated. Effects can be isolated and contained
using well-understood structuring mechanisms. The semantic gap between spec-
ification and implementation languages is typically much smaller when using
functional languages.

Issue Agile | Formal | Flexible
Identify the requirements for the software Y? Y Y
Ensure that the software meets these requirements | Y7 Y Y
Provide usable prototypes rapidly Y Y? Y
Minimise the costs of development Y? N? Y
Ensure that code is high quality N Y Y
Ensure that software is easy to use N N N
Ensure that changes can be made easily Y N Y
Be easily applied without extensive training N N ?

In short, we have found that we can obtain major practical benefits from our
approach in terms of both the speed of development and the quality of code that
is produced.
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6 Related Work

There is a vast literature on software development, and an equally vast liter-
ature on formal methods. The potential for interaction between the two has
not gone unnoticed: the annual Formal Methods for Software Engineering con-
ference publishes a regular collection of the latest formal methods techniques
and suggests how they might be deployed in practice. Software engineering has
moved away from classical “Waterfall” development towards “Agile” develop-
ment. This means a move away from a rigid specification-design-implement-test-
debug-deploy cycle towards a more flexible approach where phases are intermin-
gled and a software development team can work in a less hierarchical way.

In many ways, combining the best of both approaches is more of a philoso-
phy. It reflects how actual software engineering has always been practiced, but
encourages better internal and external communication, earlier product release,
and ideally responsiveness. Continuous testing [AD14] using automated frame-
works is a key part of the corpus: no software should be committed without being
tested against the recognised test suite. Continuous integration, where changes
are continually applied to a master version, is also key to the success of an agile
approach, ensuring that fixes and improvements can quickly be made available
to end-users. In the most ambitious projects, this can result in daily, or even
more frequent, software releases.

“Lean” software development [PP03] is one of the more extreme forms of
agile development. Here, the focus is on strong product design and minimising
wasted effort. The goal is to produce a “Minimal Viable Product” as quickly
as possible. This requires very high levels of discipline: it is necessary to avoid
deviating from the most important goals, to avoid adding unnecessary features,
to test adequately but not excessively, and to quickly adapt to changing goals.

A noteworthy body of research is the work on Cleanroom Software Engineer-
ing [HLT94] from the 80-90s, an incremental engineering approach, which makes
use of specifications and refinements, and a sophisticated statistical model-based
testing approach.

What is less common is the recognition that functional programming tech-
niques can play a key part in agile software engineering. They are the glue
that holds together the flexible software engineering methodology that we
have described above, and that enables us to quickly incorporate appropriate
lightweight formal methods, while maintaining high levels of flexibility. By build-
ing on well-understood, malleable and abstract functional components, we can
quickly and easily refine designs, use existing components as part of a new design,
and the discipline that is imposed by strong type systems means that we can have
a high degree of confidence in the correctness of any software that is released.

Safety critical systems are the more traditional application area of formal
methods, as errors in software for these systems can have grave impact, poten-
tially causing accidents and hurting or even killing people. At the same time
there is a strong pressure to realize more and more functionality in software
which makes agile development approaches attractive for critical systems.
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One research project in critical systems was the openETCS? project from
the rail domain. The project developed a toolchain for ETCS (European train
control system) which supports agile development combined with formal meth-
ods [openetes-miv07]. Another research project which investigated this was the
Open-DO'? project from the avionics domain. In the hi-lite'! subproject, there
was considerable tool development for making the use of formal methods eas-
ier [hilite-L5.3], in particular by automating large parts of the formal proof effort.
Increased automation allows for more frequent changes by reducing the required
work on the formal model and proof part.

Even for interactive theorem provers, this now allows for proof-replay,
automated proof-finding [CK18] and counterexample detection [BN10]. There
have also been considerable formal verification efforts at the operating system
level [KEH+-09]. The microkernel sel4 is both high-performance and extremely
thorough in the depth of its formal verification, which includes the compiler,
assembly code, and hardware. Moreover, it follows a similar iterative cycle of
prototyping, formal specification, verification, requirements adjustment, all the
while reflecting the changes in the actual implementation. The actual implemen-
tation, however, is manually derived from the prototype and specifications. This
is potentially a source of incongruety between the specification and implementa-
tion, which is different from our approach of the specification and implementation
being one in the same. These examples of formal specification approaches are
quite specific to their application domains.

Within the last few years, there have been calls to action to devise a method-
ology that combines agile and formal methods approaches in a general way
(see [Ghel8]), but the specifics of the methodology of producing such a piece
of software are not well-documented. The approach we present is universal. As
there is currently no standard or regulation for development of cryptocurren-
cies, there is more freedom in our domain. Regardless, the approaches do share
automation as a common topic.

7 Conclusions

This paper has described the approach to complex software engineering that has
been successfully deployed at IOHK for the construction of a new distributed
blockchain. The Cardano system is designed to support large-scale, verifiable
transactions in a decentralised way, without requiring the inefficient PoW con-
sensus mechanism that is used by e.g. BitCoin. The flexible formal software
development approach that we describe in this paper combines the speed and vis-
ibility advantages of agile software development with the correctness advantages
of formal methods development, while also delivering additional new advantages
in terms of the ease of design change. This approach codifies our own experience,

9
10

www.openetcs.org.
www.open-do.org.
1 http://www.open-do.org/projects/hi-lite/.
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as well as that of others at the many companies that are using functional pro-
gramming and formal methods as part of an integrated software development
approach.

The key take-aways from our experience honing a software development
methodology that fuses formal and agile approaches in a flexible way are:

(i) it is imperative to maintain a disciplined and structured approach to pro-
totyping, implementation, verification, and testing, as the foundation of the
development (no ad-hoc solutions!)

(ii) maintaining transparecy (e.g. decision tracking), explainability (both exter-
nal and internal), clarity of requirements, and good communication during
the development process as well as the deployment cycle are key to the
success of our approach

(iii) if we faithfully adhere to these principles, we will be rewarded with the ben-
efits of both formal methods and the agile approach to engineering, which
means high-assurance software that is fast to deliver and amenable to chang-
ing requirements

7.1 Possible Improvements

We will continue to evolve our methodology, based on our experience in develop-
ing Cardano and future projects. Below, we list some concrete improvements we
will be pursuing. Firstly, in certain places, we failed to use the right abstractions
in our code. Refactoring the code to change properties on Haskell type classes
was time-consuming, for example. In hindsight, greater abstraction would have
allowed more flexibility and saved overall development time. Secondly, we could
and should have produced more prototypes and demonstrators. There was a
tendency for the team to hold back until software was correct rather than when
it was working, which could be perceived as a lack of progress. We could also
have achieved better visibility of our results both internally and externally (for
example, some documents could be hard to find, more blog posts could have
been written, more interviews given, etc.).

Thirdly, we produced our executable specification and tests manually from
the formal specification. It would have been more efficient and provided greater
confidence in their consistency if we had instead produced the executable speci-
fication and property-based tests directly from the formal specification. We are
not aware of suitably robust tooling that would allow us to do this, unfortunately,
but we would welcome any suggestions and future developments.
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