Skip to main content

TrNN- EDAS Strategy for MADM with Entropy Weight Under Trapezoidal Neutrosophic Number Environment

  • Chapter
  • First Online:
Neutrosophic Operational Research

Abstract

The main purpose of this chapter is to extend the evaluation based on distance from average solution (EDAS) strategy for trapezoidal neutrosophic number environment which we call TrNN-EDAS strategy. EDAS strategy is a very susceptible multi-attribute decision-making strategy. In this chapter, we first time use entropy for calculating weights of the attributes in trapezoidal neutrosophic number environment. To develop this chapter, we briefly describe trapezoidal neutrosophic number, weighted arithmetic, and geometric average operators on trapezoidal neutrosophic numbers, score function, accuracy function, certainty function, and Hamming distance. Then we develop EDAS strategy for multi-attribute decision-making problem in trapezoidal neutrosophic number environment. A numerical example is solved to show the practicality and the utility of proposed strategy. At the end, to demonstrate the effectiveness of the proposed strategy, we present a comparative analysis between the ranking of alternatives obtained from arithmetic averaging operator and geometric averaging operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making methods and applications, a state-of-the-art survey. New York: Springer-Verlag.

    Google Scholar 

  2. Karni, R., Sanchez, P., & Tummala, V. M. R. (1990). A comparative study of multiattribute decision making methodologies. Theory and Decision, 29, 203–222.

    Article  Google Scholar 

  3. Zeleny, M. (2012). Multiple criteria decision making Kyoto 1975 (Vol. 123). Springer Science & Business Media.

    Google Scholar 

  4. Zeleny, M. (2011). Multiple criteria decision making (MCDM): From paradigm lost to paradigm regained? Journal of Multi-Criteria Decision Analysis., 18(1–2), 77–89. https://doi.org/10.1002/mcda.473.

    Article  Google Scholar 

  5. Weber, M., & Borcherding, K. (1993). Behavioral influences on weight judgments in multiattribute decision making. European Journal of Operational Research, 67(1), 1–12.

    Article  Google Scholar 

  6. Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: A simulation comparison of select methods. European Journal of Operational Research, 107(3), 507–529.

    Article  Google Scholar 

  7. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  8. Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179.

    Article  Google Scholar 

  9. Aouam, T., Chang, S. I., & Lee, E. S. (2003). Fuzzy MADM: An outranking method. European Journal of Operational Research, 145(2), 317–3

    Article  Google Scholar 

  10. Li, D. F., & Wan, S. P. (2014). Fuzzy heterogeneous multiattribute decision making method for outsourcing provider selection. Expert Systems with Applications, 41(6), 3047–3059.

    Article  Google Scholar 

  11. Mousavi, S. M., Vahdani, B., Tavakkoli-Moghaddam, R., Ebrahimnejad, S., & Amiri, M. (2013). A multi-stage decision-making process for multiple attributes analysis under an interval-valued fuzzy.

    Book  Google Scholar 

  12. Smarandache, F. (1998). A unifying field of logics. In Neutrosophy: Neutrosophic probability, set and logic. Rehoboth: American Research Press.

    Google Scholar 

  13. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Multi-space and Multi-structure, 4, 410–413.

    Google Scholar 

  14. Ali, M., & Smarandache, F. (2017). Complex neutrosophic set. Neural Computing and Applications, 28(7), 1817–1834.

    Article  Google Scholar 

  15. Şahin, M., Alkhazaleh, S., & Uluçay, V. (2015). Neutrosophic soft expert sets. Applied Mathematics, 6, 116–127.

    Article  Google Scholar 

  16. Mondal, K., & Pramanik, S. (2015e). Tri-complex rough neutrosophic similarity measure and its application in multi-attribute decision making. Critical Review, 11, 26–40.

    Google Scholar 

  17. Deli, I., Ali, M., & Smarandache, F. (2015). Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In 2015 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 249-254). IEEE.

    Google Scholar 

  18. Ali, M., Deli, I., & Smarandache, F. (2016). The theory of neutrosophic cubic sets and their applications in pattern recognition. Journal of Intelligent & Fuzzy Systems, 30(4), 1957–1963.

    Article  Google Scholar 

  19. Pramanik, S., & Mondal, S. (2016). Rough neutrosophic bipolar set. Global Journal of Engineering Science and Research Management, 3(6), 71–81.

    Google Scholar 

  20. Mondal, K., Pramanik, S., & Smarandache, F. (2016c). Rough neutrosophic hyper-complex set and its application to multi attribute decision making. Critical Review, 13, 111–124.

    Google Scholar 

  21. Ye, J. (2016). Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Journal of Intelligent Systems, 24(1), 23–36.

    Article  Google Scholar 

  22. Smarandache, F. (2013). N-valued refined neutrosophic logic and its applications in physics. Progress in Physics, 4, 43–146.

    Google Scholar 

  23. Biswas, P., Pramanik, S., & Giri, B. C. (2014a). Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neutrosophic Sets and Systems, 2, 102–110. https://doi.org/10.5281/zenodo.571363.

    Article  Google Scholar 

  24. Biswas, P., Pramanik, S., & Giri, B. C. (2014b). A new methodology for neutrosophic multi-attribute decision-making with unknown weight information. Neutrosophic Sets and Systems, 3, 42–50. https://doi.org/10.5281/zenodo.571212.

    Article  Google Scholar 

  25. Biswas, P., Pramanik, S., & Giri, B. C. (2016). TOPSIS method for multi-attribute group decision making under single-valued neutrosophic environment. Neural Computing and Applications, 27(3), 727–737. https://doi.org/10.1007/s00521-015-1891-2.

    Article  Google Scholar 

  26. Biswas, P., Pramanik, S., & Giri, B. C. (2018a). Neutrosophic TOPSIS with group decision making. In I. Otay (Ed.), Kahraman C (pp. 543–585). Studies in Fuzziness and Soft Computing: Fuzzy Multicriteria Decision Making Using Neutrosophic Sets. https://doi.org/10.1007/978-3-030-00045-5_21.

    Chapter  Google Scholar 

  27. Biswas, P., Pramanik, S., & Giri, B. C. (2018b). TOPSIS strategy for multi attribute decision making with trapezoidal numbers. Neutrosophic Sets System, 19, 29–39. https://doi.org/10.5281/zenodo.123533584.

    Article  Google Scholar 

  28. Biswas, P., Pramanik, S., & Giri, B. C. (2019a). Non-linear programming approach for single-valued neutrosophic TOPSIS method. New Mathematics and Natural Computation. https://doi.org/10.1142/S1793005719500169.

  29. Biswas, P., Pramanik, S., & Giri, B. C. (2019b). NH-MADM strategy in neutrosophic hesitant fuzzy set environment based on extended GRA. Informatica, 30(2), 213–242.

    Article  Google Scholar 

  30. Mondal, K., & Pramanik, S. (2015a). Neutrosophic decision making model of school choice. Neutrosophic Sets and Systems, 7, 62–68. https://doi.org/10.5281/zenodo.571507.

    Article  Google Scholar 

  31. Mondal, K., & Pramanik, S. (2015d). Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets and Systems, 9, 80–87. https://doi.org/10.5281/zenodo.571578.

    Article  Google Scholar 

  32. Mondal, K., Pramanik, S., & Giri, B. C. (2018a). Single valued neutrosophic hyperbolic sine similarity measure based MADM strategy. Neutrosophic Sets and Systems, 20, 3–11. https://doi.org/10.5281/zenodo.1235383.

    Article  Google Scholar 

  33. Mondal, K., Pramanik, S., & Giri, B. C. (2018b). Hybrid binary logarithm similarity measure for MAGDM problems under SVNS assessments. Neutrosophic Sets and Systems, 20, 12–25. https://doi.org/10.5281/zenodo.1235365.

    Article  Google Scholar 

  34. Şahin, R., & Küçük, A. (2015). Subsethood measure for single valued neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 29(2), 525–530.

    Article  Google Scholar 

  35. Şahin, R., & Liu, P. (2016). Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Computing and Applications, 27(7), 2017–2029.

    Article  Google Scholar 

  36. Smarandache, F., & Pramanik, S. (Eds.). (2016). New trends in neutrosophic theory and applications. Brussels: Pons Editions.

    Google Scholar 

  37. Smarandache, F., & Pramanik, S. (Eds.). (2018). New trends in neutrosophic theory and applications, Vol.2. Brussels: Pons Editions.

    Google Scholar 

  38. Ye, J. (2014). Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 27(5), 2453–2462.

    Article  Google Scholar 

  39. Dalapati, S., Pramanik, S., Alam, S., Smarandache, F., & Roy, T. K. (2017). IN-cross entropy based MAGDM strategy under interval neutrosophic set environment. Neutrosophic Sets and Systems, 18, 43–57. https://doi.org/10.5281/zenodo.1175162.

    Article  Google Scholar 

  40. Dey, P. P., Pramanik, S., & Giri, B. C. (2016a). Extended projection-based models for solving multiple attribute decision making problems with interval valued neutrosophic information. In F. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and applications (pp. 127–140). Brussels: Pons Editions.

    Google Scholar 

  41. Dey, P. P., Pramanik, S., & Giri, B. C. (2016b). TOPSIS for solving multi-attribute decision making problems under bi-polar neutrosophic environment. In F. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and applications (pp. 65–77). Brussels: Pons Editions.

    Google Scholar 

  42. Pramanik, S., Dey, P. P., & Giri, B. C. (2015). An extended grey relational analysis-based interval neutrosophic multi-attribute decision making for weaver selection. Journal of New Theory, 9, 82–93. ISSN: 2149-1402.

    Google Scholar 

  43. Mondal, K., & Pramanik, S. (2015b). Rough neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets and Systems, 7, 8–17. https://doi.org/10.5281/zenodo.571603.

    Article  Google Scholar 

  44. Mondal, K., & Pramanik, S. (2015c). Rough neutrosophic multi-attribute decision-making based on rough accuracy score function. Neutrosophic Sets and Systems, 8, 14–21. https://doi.org/10.5281/zenodo.571604.

    Article  Google Scholar 

  45. Mondal, K., Pramanik, S., & Giri, B. C. (2019). Rough neutrosophic aggregation operators for multi-criteria decision-making. In C. Kahraman & I. Otay (Eds.), Fuzzy multicriteria decision making using neutrosophic sets, studies in fuzziness and soft computing (p. 369). https://doi.org/10.1007/978-3-030-00045-5_5.

    Chapter  Google Scholar 

  46. Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. (2020). A bipolar neutrosophic multi criteria decision making framework for professional selection. Applied Sciences, 10(4), 1202. https://doi.org/10.3390/app10041202.

    Article  Google Scholar 

  47. Dey, P. P., Pramanik, S., Giri, B. C., & Smarandache, F. (2017). Bipolar neutrosophic projection based models for solving multi-attribute decision-making problems. Neutrosophic Sets and Systems, 15, 70–79. https://doi.org/10.5281/zenodo.570936.

    Article  Google Scholar 

  48. Pramanik, S., Dalapati, S., Alam, S., & Roy, T. K. (2018a). VIKOR based MAGDM strategy under bipolar neutrosophic set environment. Neutrosophic Sets and Systems, 19, 57–69. https://doi.org/10.5281/zenodo.1235341.

    Article  Google Scholar 

  49. Pramanik, S., Dalapati, S., Alam, S., & Roy, T. K. (2018b). NC-VIKOR based MAGDM strategy under neutrosophic cubic set environment. Neutrosophic Sets and Systems, 20, 95–108. https://doi.org/10.5281/zenodo.1235367.

    Article  Google Scholar 

  50. Pramanik, S., Dey, P. P., Smarandache, F., & Ye, J. (2018). Cross entropy measures of bipolar and interval bipolar neutrosophic sets and their application for multi-attribute decision-making. Axioms, 7(21), 1–25. https://doi.org/10.3390/axioms7020021.

    Article  Google Scholar 

  51. Biswas, P., Pramanik, S., & Giri, B. C. (2016b). Some distance measures of single valued neutrosophic hesitant fuzzy sets and their applications to multiple attribute decision making. In F. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and applications (pp. 55–63). Pons Editions: Brussels.

    Google Scholar 

  52. Biswas, P., Pramanik, S., & Giri, B. C. (2016c). GRA method of multiple attribute decision making with single valued neutrosophic hesitant fuzzy set information. In F. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and applications (pp. 55–63). Brussels: Pons Editions.

    Google Scholar 

  53. Biswas, P., Pramanik, S., & Giri, B. C. (2016d). Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets and Systems, 12, 20–40. https://doi.org/10.5281/zenodo.571125.

    Article  Google Scholar 

  54. Pramanik, S., & Dalapati, S. (2016). GRA based multi criteria decision making in generalized neutrosophic soft set environment. Global Journal of Engineering Science and Research Management, 3(5), 153–169. https://doi.org/10.5281/zenodo.53753.

    Article  Google Scholar 

  55. Pramanik, S., Dey, P. P., & Giri, B. C. (2016a). Neutrosophic soft multi-attribute group decision making based on grey relational analysis method. Journal of New Results in Science, 10, 25–37. https://doi.org/10.5281/zenodo.34869.

    Article  Google Scholar 

  56. Pramanik, S., Dey, P. P., & Giri, B. C. (2016b). Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neutrosophic Sets and Systems, 11, 98–106. https://doi.org/10.5281/zenodo.571576.

    Article  Google Scholar 

  57. Mondal, K., & Pramanik, S. (2015f). Neutrosophic refined similarity measure based on tangent function and its application to multi attribute decision making. Journal of New Theory, 8, 41–50. https://doi.org/10.5281/zenodo.23176.

    Article  Google Scholar 

  58. Mondal, K., & Pramanik, S. (2015g). Neutrosophic refined similarity measure based on cotangent function and its application to multi-attribute decision making. Global Journal of Advanced Research, 2(2), 486–494.

    Google Scholar 

  59. Mondal, K., Pramanik, S., & Smarandache, F. (2018). NN-harmonic mean aggregation operators-based MCGDM strategy in a neutrosophic number environment. Axioms, 7(12). https://doi.org/10.3390/axioms7010012.

  60. Pramanik, S., Roy, R., & Roy, T. K. (2016). Teacher selection strategy based on bidirectional projection measure in neutrosophic number environment. In F. Smarandache, M. A. Basset, & V. Chang (Eds), Neutrosophic operational research Volume II, 29-53, Brussels: Pons asbl.

    Google Scholar 

  61. Dalapati, S., & Pramanik, S. (2018). A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment. Neutrosophic Sets and Systems, 21, 131–141. https://doi.org/10.5281/zenodo.1408665.

    Article  Google Scholar 

  62. Pramanik, S., Dalapati, S., Alam, S., & Roy, T. K. (2017). NC-TODIM-based MAGDM under a neutrosophic cubic set environment. Information, 8(4), 149. https://doi.org/10.3390/info8040149.

    Article  Google Scholar 

  63. Pramanik, S., Dalapati, S., Alam, S., Roy, T. K., & Smarandache, F. (2017). Neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets and Systems, 16, 44–56. https://doi.org/10.5281/zenodo.831934.

    Article  Google Scholar 

  64. Pramanik, S., Dey, P. P., & Smarandache, F. (2017). An extended TOPSIS for multi-attribute decision making problems with neutrosophic cubic information. Neutrosophic Sets and Systems, 17, 20–28. https://doi.org/10.5281/zenodo.1012217.

    Article  Google Scholar 

  65. Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry, 106, 94–110.

    Article  Google Scholar 

  66. Abdel-Basset, M., Mohamed, M., Hussien, A. N., & Sangaiah, A. K. (2018). A novel group decision-making model based on triangular neutrosophic numbers. Soft Computing, 22(20), 6629–6643.

    Article  Google Scholar 

  67. Ye, J. (2017). Some weighted aggregation operator of trapezoidal neutrosophic number and their multiple attribute decision making method. Informatica, 28(2), 387–402.

    Article  Google Scholar 

  68. Liang, R. X., Wang, J. Q., & Zhang, H. Y. (2018). A multi-criteria decision-making method based on single valued trapezoidal neutrosophic preference relation with complete weight information. Neural Computing Application, 30(11), 3383–3398. https://doi.org/10.1007/s00521017-2925-8.

    Article  Google Scholar 

  69. Pramanik, S., & Mallick, R. (2018). VIKOR based MAGDM strategy with trapezoidal neutrosophic number. Neutrosophic Sets System, 22, 118–130. https://doi.org/10.5281/zenodo.2160840.

    Article  Google Scholar 

  70. Pramanik, S., & Mallick, R. (2019). TODIM strategy for multi-attribute group decision making in trapezoidal neutrosophic number environment. Complex and Intelligent Systems, 5(4), 379–389.

    Article  Google Scholar 

  71. Keshavarz-Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Information, 26(3), 435–451.

    Google Scholar 

  72. Keshavarz-Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Turskis, Z. (2016). Extended EDAS method for fuzzy multi-criteria decision-making: An application to supplier selection. International Journal of Computer Communication and Control, 11(3), 358–371.

    Article  Google Scholar 

  73. Kahraman, C., Keshavarz-Ghorabaee, M., Zavadskas, E. K., Cevikonar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: An application to solid waste disposal site selection. Journal of Environment Engineering and Landscape Management, 25(01), 1–12.

    Article  Google Scholar 

  74. Li, Y., Wang, J. Q., & Wang, T. (2019). A linguistic neutrosophic multi-criteria group decision making approach with EDAS method. The Arabian Journal for Science and Engineering, 44(3), 2737–2749.

    Article  Google Scholar 

  75. Dubois, D., & Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30(3), 183–224.

    Article  Google Scholar 

  76. Chen, Y., & Li, B. (2011). Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers. Scientia Iranica, 18(2), 268–274.

    Article  Google Scholar 

  77. Uluc, V., Deli, I., & Sahin, M. (2018). Trapezoidal fuzzy multi-number and its application to multi-criteria decision-making problems. Neutral computing and application, 30, 1469–1478.

    Article  Google Scholar 

  78. Pramanik, S., & Mukhopadhyaya, D. (2011). Grey relational analysis based intuitionistic fuzzy multi criteria group decision-making approach for teacher selection in higher education. International Journal of Computer Applications, 34(10), 21–29. https://doi.org/10.5120/4138-5985.

    Article  Google Scholar 

  79. San, J., & Cristobal, R. (2011). Multi-criteria decision-making in the selection of renewable energy project in Spain: The VIKOR method. Renewable Energy, 36, 1927–1934.

    Google Scholar 

  80. Mondal, K., Pramanik, S., & Smarandache, F. (2016b). Role of neutrosophic logic in data mining. In F. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and applications. Pons Editions (pp. 15–23). Brussels.

    Google Scholar 

  81. Mondal, K., Pramanik, S., & Giri, B. C. (2018c). Multi-criteria group decision making based onlinguistic refined neutrosophic strategy. In F. Smarandache & S. Pramanik (Eds.), New trendsin neutrosophic theory and applications (Vol. 2, pp. 125–139). Brussels: Pons editions.

    Google Scholar 

  82. Mondal, K., Pramanik, S., & Smarandache, F. (2016a). Several trigonometric hammingsimilarity measures of rough neutrosophic sets and their applications in decision making. InF. Smarandache & S. Pramanik (Eds.), New trends in neutrosophic theory and application (pp93–103). Brussels, Belgium: Pons Editions.

    Google Scholar 

  83. Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: An introduction.Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  84. Zavadskas, E. K., Liias, R., & Turskis, Z. (2008). Multi-attribute decision-making methodsfor assessment of quality in bridges and road construction: State-of-the-art surveys. The BalticJournal of Road and Bridge Engineering, 3(3), 152–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, R., Pramanik, S. (2021). TrNN- EDAS Strategy for MADM with Entropy Weight Under Trapezoidal Neutrosophic Number Environment. In: Smarandache, F., Abdel-Basset, M. (eds) Neutrosophic Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-030-57197-9_26

Download citation

Publish with us

Policies and ethics