
Faster Enumeration-Based LatticeReduction:
RootHermite Factor k1/(2k) Time kk/8+o(k)

Martin R. Albrecht1(B), Shi Bai2(B), Pierre-Alain Fouque3(B),
Paul Kirchner3(B), Damien Stehlé4,5(B), and Weiqiang Wen3(B)

1 Information Security Group, Royal Holloway, University of London,
Egham, England

martin.albrecht@royalholloway.ac.uk
2 Department of Mathematical Sciences, Florida Atlantic University,

Boca Raton, USA
shih.bai@gmail.com, sbai@fau.edu

3 Univ. Rennes, CNRS, IRISA, Rennes, France
pa.fouque@gmail.com, paul.kirchner@irisa.fr, weiqiang.a.wen@inria.fr
4 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France

damien.stehle@gmail.com
5 Institut Universitaire de France, Paris, France

Abstract. We give a lattice reduction algorithm that achieves root Her-
mite factor k1/(2k) in time kk/8+o(k) and polynomial memory. This im-
proves on the previously best known enumeration-based algorithms which
achieve the same quality, but in time kk/(2e)+o(k). A cost of kk/8+o(k) was
previously mentioned as potentially achievable (Hanrot-Stehlé’10) or as a
heuristic lower bound (Nguyen’10) for enumeration algorithms. We prove
the complexity and quality of our algorithm under a heuristic assump-
tion and provide empirical evidence from simulation and implementation
experiments attesting to its performance for practical and cryptographic
parameter sizes. Our work also suggests potential avenues for achieving
costs below kk/8+o(k) for the same root Hermite factor, based on the geom-
etry of SDBKZ-reduced bases.

1 Introduction

The cost of (strong) lattice reduction has received renewed attention in recent
years due to its relevance in cryptography. Indeed, lattice-based constructions are
presumed to achieve security against quantum adversaries and enable powerful
functionalities such as computation on encrypted data. Concrete parameters
for such schemes are derived from the difficulty of finding relatively short non-
zero vectors in a lattice: the parameters are chosen based on extrapolations of
the cost of the BKZ algorithm [SE94] and its variants [CN11,AWHT16,MW16].

This work was supported in part by EPSRC grants EP/S020330/1, EP/S0-
2087X/1, by European Union Horizon 2020 Research and Innovation Program Grant
780701, by Innovate UK grant AQuaSec, by BPI-France in the context of the national
project RISQ (P141580), and by NIST grants 60NANB18D216/60NANB18D217 as
well as NATO SPS Project G5448. Part of this work was done while Martin Albrecht
and Damien Stehlé were visiting the Simons Institute for the Theory of Computing.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12171, pp. 186–212, 2020.
https://doi.org/10.1007/978-3-030-56880-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56880-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-56880-1_7

Faster Enumeration-Based Lattice Reduction 187

These algorithms make repeated calls to an oracle that solves the Shortest Vector
Problem (SVP), i.e. that finds a shortest non-zero vector in any lattice. Concretely,
BKZ with block size k finds relatively short vectors in lattices of dimensions n ≥ k
using a k-dimensional SVP solver. The cost of this SVP solver is the dominating
component of the cost of BKZ and its variants.

The SVP solver can be instantiated with enumeration-based algorithms, whose
asymptotically most efficient variant is Kannan’s algorithm [Kan83]. It has a
worst-case complexity of kk/(2 e)+o(k), where k is the dimension of the lattice
under consideration [HS07]. This bound is sharp, up to the o(k) term in the
exponent [HS08]. If called on an n-dimensional lattice, then BKZ with block size k

outputs a vector of norm ≈ (k1/(2k))
n · Vol(L)1/n in time ≈ kk/(2 e), when n is

sufficiently large compared to k. The k1/(2k) term is called the root Hermite fac-
tor and quantifies the strength of BKZ. The trade-off between root Hermite factor
and running-time achieved by BKZ has remained the best known for enumeration-
based SVP solvers since the seminal work of Schnorr and Euchner almost 30 years
ago. (The analysis of Kannan’s algorithm and hence BKZ was improved in [HS07],
but not the algorithm itself.) Other algorithms, such as [GN08a,MW16,ALNS19],
achieve the same asymptotic trade-off with milder conditions on n/k.

We note that while lattice reduction libraries, such as FPLLL [dt19a], the
Progressive BKZ Library (PBKZ) [AWHT18] and NTL [Sho18], implement BKZ
with an enumeration-based SVP solver, they do not rely on Kannan’s algorithm:
NTL implements enumeration with LLL preprocessing; FPLLL and PBKZ imple-
ment enumeration with stronger preprocessing (typically BKZ with a smaller
block size) but not with sufficiently strong preprocessing to satisfy the condi-
tions of [Kan83,HS07]. Hence, the running-times of these implementations is not
established by the theorems in these works.

It has been suggested that the running-time achieved by BKZ for the same
output quality might potentially be improved. In [HS10], it was argued that the
same root Hermite factor would be achieved by BKZ in time ≈ kk/8 if the
Gram–Schmidt norms of so-called HKZ-reduced bases were decreasing geomet-
rically. In [Ngu10], the same quantity was suggested as a cost lower bound for
enumeration-based lattice reduction algorithms. On this basis, several works have
speculatively assumed this cost [ANS18,ACD+18]. However, so far, no lattice
reduction algorithm achieving root Hermite factor k1/(2k) in time ≈ kk/8 was
known.

Contributions. Our main contribution is an enumeration-based lattice reduc-
tion algorithm that runs in time kk/8 and achieves root Hermite factor k

1
2k (1+o(1)),

where k is a cost parameter akin to the “block size” of the BKZ algorithm (the
notion of “block size” for our algorithm is less straightforward, see below). It
uses polynomial memory and can be quantumly accelerated to time kk/16 us-
ing [ANS18]. Our analysis relies on a strengthened version of the Gaussian
Heuristic.

To estimate the cost of lattice reduction algorithms, the literature typi-
cally relies on concrete experiments and simulations that extrapolate them (see,

188 M. R. Albrecht et al.

e.g. [CN11,Che13,MW16,BSW18]). Indeed, the data given in [Che13] is very
broadly appealed to. However, this data only covers up to block size of 250
(below cryptographically relevant block sizes) and no source code is available.
As an intermediate contribution, we reproduce and extend the data in [Che13]
using publicly available tools such as [dt19a,dt19b] (see Sect. 2.5). Using this
extended dataset, we then argue that BKZ as implemented in public lattice
reduction libraries has running-time closely matching kk/(2 e) (Fig. 2). Our
cost improvement hence required a different algorithm and not just an improved
analysis of the state-of-the-art.

In Sect. 4 we propose a variant of our improved lattice reduction algorithm
that works well in practice. We run simulations and conduct concrete experiments
to verify its efficiency, while we leave as a future work to formally analyse
it. The simulations suggest that it achieves root Hermite factors ≈ k

1
2k in

time kk/8, at least up to k ≈ 1, 000 (which covers cryptographic parameters).
Our implementation of this algorithm beats FPLLL’s SVP enumeration from
dimension ≈ 100 onward. We consider the difference between these two variants
as similar to the difference between Kannan’s algorithm and what is routinely
implemented in practice such as in FPLLL and PBKZ. We will refer to the for-
mer as the “asymptotic variant” and the latter as the “practical variant”. Since
our results rely on empirical evidence and simulations, we provide the source code
used to produce our figures and the data being plotted as an attachment to the
electronic version of the full version of this work.

Key idea. Our new algorithms decouple the preprocessing context from the
enumeration context: they preprocess a projected sublattice of larger dimen-
sion than they aim to enumerate over (as a result, the notion of “block size”
is less obvious than in prior works). More concretely, assume that the basis
of the preprocessed projected sublattice is SDBKZ-reduced. Then, as shown
in [MW16] under the Gaussian Heuristic, the first Gram–Schmidt norms ‖b∗

i ‖
satisfy Schnorr’s Geometric Series Assumption (GSA) [Sch03]: ‖b∗

i ‖/‖b∗
i+1‖ ≈ r

for some common r, for all i’s corresponding to the start of the basis. On that
“GSA part” of the lattice basis, the enumeration runs faster than on a typical
preprocessed BKZ block of the same dimension. To achieve SDBKZ-reducedness
at a low cost, our algorithms call themselves recursively.

As a side contribution, we show in the full version of this work that the bases
output by BKZ do not satisfy the GSA (under the Gaussian Heuristic), contrarily
to a common belief (see e.g. [YD17,ANS18,BSW18]). This is why we use SDBKZ
in the asymptotic algorithm. Nevertheless, for handlable dimensions, BKZ seems
to deviate only slightly from the GSA and as it is a little simpler to implement
than SDBKZ, it seems to remain preferable in practice. This is why we use BKZ
as preprocessing in the practical algorithm.

To illustrate the idea of our new algorithms, we consider a BKZ-reduced
(resp. SDBKZ-reduced) basis with block size k, in a lattice of dimension n =
�(1 + c) · k� for various k and c. We choose n ≥ k to demonstrate the impact of
the GSA region on the enumeration cost. We then estimate the enumeration cost

Faster Enumeration-Based Lattice Reduction 189

(without pruning) for re-checking that the first basis vector is a shortest non-zero
vector in the very first block of size k. For the implementation of this simulation,
see simu_c_cost.py, attached to the electronic version of the full version of this
work. We consider c for c = 0 to 1 with a step size of 0.01. For each c, we take
k from k = 100 to 50, 000 with a step size of 10. Then for each fixed c, we fit
the coefficients a0, a1, a2 of a0 k log k + a1 k + a2 over all k on the enumeration
cost of the first block of size k. The result is plotted in Fig. 1. The x-axis denotes
the value of c and the y-axis denotes the interpolated constant in front of the
k log k term.

Let us make several remarks about Fig. 1. First, we stress that all leading
constants in Fig. 1 are hypothetical (they do not correspond to efficient
algorithms) as they assume an already (SD)BKZ-reduced basis with block size k,
i.e. this ignores the preprocessing cost. With that in mind, for c = 0, the
simulations show the interpolated constant for both BKZ and SDBKZ is close
to 1/(2 e), which corresponds to [HS07]. For c = 1, the interpolated constant is
close to 1/8. This illustrates the impact of enumeration in the GSA region (corre-
sponding to Theorem 1). As noted above, in the following section we will describe
an algorithm that achieve the corresponding cost of kk/8(1+o(1)). It is worth not-
ing that for certain c around 0.3, the a0 of the re-examination cost can be
below 0.125. We stress that we do not know how to construct an algorithm that
achieves a cost of ka0·k(1+o(1)) with a0 < 0.125. However, our practical variant of
the algorithm seems to achieve cost k0.125·k using the region corresponding to
those c ≈ 0.3.

0 0.2 0.4 0.6 0.8 1

0.1250

0.1839

c

In
te
rp

ol
at
ed

co
ns
ta
nt BKZ

SDBKZ

Fig. 1. Interpolated dominating constant a0 on k log k.

Discussion. At first sight, the endeavour in this work might appear point-
less since lattice sieving algorithms asymptotically outperform lattice enumer-
ation. Indeed, the fastest SVP solver currently known [BDGL16] has a cost of
20.292n+o(n), where n is the lattice dimension.1 Furthermore, a sieving implemen-
tation [ADH+19] now dominates the Darmstadt SVP Challenge’s Hall of Fame,
indicating that the crossover between enumeration and sieving is well below

1 When using this algorithm as the SVP subroutine in BKZ, we thus obtain a running
time of 20.292 k+o(k) for root Hermite factor k1/(2k).

190 M. R. Albrecht et al.

cryptographic parameter sizes. However, the study of enumeration algorithms is
still relevant to cryptography.

Sieving algorithms have a memory cost that grows exponentially with the
lattice dimension n. For dimensions that are currently handlable, the space
requirement remains moderate. The impact of this memory cost is unclear for
cryptographically relevant dimensions. For instance, it has yet to be established
how well sieving algorithms parallelise in non-uniform memory access architec-
tures. Especially, the exponential memory requirement might present a serious
obstacle in some scenarios. In contrast, the memory cost of enumeration grows
as a small polynomial in the dimension.

Comparing sieving and enumeration for cryptographically relevant dimensions
becomes even more complex in the context of quantum computations. Quantum
computations asymptotically enable a quadratic speed-up for enumeration, and
much less for sieving [Laa15, Sec. 14.2.10] even assuming free quantum-accessible
RAM, which would a priori favour enumeration. However, deciding on how to
compare parallelisable classical operations with strictly sequential Grover itera-
tions is unclear and establishing the significant lower-order terms in the quantum
costs of these algorithms is an ongoing research programme (see e.g. [AGPS19]).

Further, recent advances in sieving algorithms [LM18,Duc18,ADH+19] apply
lessons learned from enumeration algorithms to the sieving context: while sieving
algorithms are fairly oblivious to the Gram–Schmidt norms of the basis at
hand, the cost of enumeration algorithms critically depend on their limited
decrease. Current sieving strategies employ a simple form of enumeration (Babai’s
lifting [Bab86]) to exploit the lattice shape by sieving in a projected sublattice
and lifting candidates for short vectors to the full lattice. Here, more sophisticated
hybrid algorithmspermittingflexible trade-offsbetweenmemory consumption and
running time seem plausible.

Finally, as illustrated in Fig. 1, our work suggests potential avenues for
designing faster enumeration algorithms based on further techniques relying on
the graph of Gram–Schmidt norms.

Open problems. It would be interesting to remove the heuristics utilised in our
analysis to produce a fully proved variant, and to extend the technique to other
lattice reduction algorithms such as slide reduction [GN08a]. Further, establishing
lower bounds on the root Hermite factor achievable in time kk/8+o(k) for a given
dimension of the lattice is an interesting open problem suggested by this work.

2 Preliminaries

Matrices are denoted in bold uppercase and vectors are denoted in bold lowercase.
By B[i:j) we refer to the submatrix spanned by the columns bi, . . . , bj−1 of B.
We let matrix indices start with index 0. We let πi(·) denote the orthogonal
projection onto the linear subspace (b0, . . . , bi−1)

⊥ (this depends on a matrix B

that will always being clear from context). We let vn = πn/2

Γ (1+n/2) ≈ 1√
nπ

(
2π e
n

)n/2

Faster Enumeration-Based Lattice Reduction 191

denote the volume of the n-dimensional unit ball. We let the logarithm to base 2
be denoted by log and the natural logarithm be denoted by ln.

Below, we may refer to the cost or enumeration parameter k of our algorithms
as a “block size”.

2.1 Lattices

Let B ∈ Qm×n be a full column rank matrix. The lattice L generated by B is
L(B) = {B · x | x ∈ Zn} and the matrix B is called a basis of L(B). As soon
as n ≥ 2, any given lattice L admits infinitely many bases, and full column rank
matrices B,B′ ∈ Qm×n span the same lattice if and only if there exists U ∈ Zn×n

such that B′ = B′ · U and |det(U)| = 1. The Euclidean norm of a shortest
non-zero vector in L is denoted by λ1(L) and called the minimum of L. The task
of finding a shortest non-zero vector of L from an arbitrary basis of L is called
the Shortest Vector Problem (SVP).

We let B∗ = (b∗
0, . . . , b

∗
n−1) denote the Gram–Schmidt orthogonalisation

of B where b∗
i = πi(bi). We write ρ[a:b) for the slope of the log ‖b∗

i ‖’s with
i = a, . . . , b − 1, under a mean-squared linear interpolation. We let πi(B[i:j))
denote the local block (πi(bi), . . . , πi(bj−1)) and let πi(L[i:j)) denote the lattice
generated by πi(B[i:j)). We will also write π(L) if the index i and L are clear
from the context. The volume of a lattice L with basis B is defined as Vol(L) =∏

i<n ‖b∗
i ‖; it does not depend on the choice of basis of L. Minkowski’s convex

body theorem states that λ1(L) ≤ 2 · v
−1/n
n · Vol(L)1/n. We define the root

Hermite factor of a basis B of a lattice L as rhf(B) = (‖b0‖/Vol(L)1/n)1/(n−1).
The normalization by the (n − 1)-th root is justified by the fact that the lattice
reduction algorithms we consider in this work achieve root Hermite factors that
are bounded independently of the lattice dimension n. Given as input an arbitrary
basis of L, the task of finding a non-zero vector of L of norm ≤ γ · Vol(L)1/n is
called Hermite-SVP with parameter γ (γ-HSVP).

Lattice reduction algorithms and their analyses often rely on heuristic as-
sumptions. Let L be an n-dimensional lattice and S a measurable set in the
real span of L. The Gaussian Heuristic states that the number of lattice points
in S is |L ∩ S| ≈ Vol(S)/Vol(L). If S is an n-ball of radius r, then the latter
is ≈ vn · rn/Vol(L). By setting vn · rn ≈ Vol(L), we see that λ1(L) is close to
GH(L) := v

−1/n
n ·Vol(L)1/n. Asymptotically, we have GH(L) ≈ √

n
2π e ·Vol(L)1/n.

2.2 Enumeration and Kannan’s Algorithm

The Enum algorithm [Kan83,FP83] is an SVP solver. It takes as input a basis
matrix B of a lattice L and consists in enumerating all (xi, . . . , xn−1) ∈ Zn−i such
that ‖πi(

∑
j≥i xj · bj)‖ ≤ A for every i < n, where A is an a priori upper bound

on or estimate of λ1(L) (such as ‖b1‖ and GH(L), respectively). It may be viewed
as a depth-first search of an optimal leaf in a tree indexed by tuples (xi, . . . , xn−1),
where the singletons xn−1 lie at the top and the full tuples (x0, . . . , xn−1) are
the leaves. The running-time of Enum is essentially the number of tree nodes

192 M. R. Albrecht et al.

(up to a small polynomial factor), and its space cost is polynomial. As argued
in [HS07], the tree size can be estimated as maxi<n(vi · Ai/

∏
j≥n−i ‖b∗

j‖), under
the Gaussian Heuristic. In [ANS18], it was showed that a quadratic speedup can
be obtained quantumly using Montanaro’s quantum backtracking algorithm (and
the space cost remains polynomial). We will rely on the following (classical) cost
bound, derived from [HS07, Subsection 4.1]. It is obtained by optimising the
tree size maxi<n(vi · Ai/

∏
j≥n−i ‖b∗

j‖). We can replace A by twice the Gaussian

Heuristic GH(L) = v
−1/n
n · Vol(L)1/n, where Vol(L) =

∏
j<n ‖b∗

j‖. By using the
bounds ‖b∗

i ‖ ∈ c · δ−i · [1/2, 2], this optimisation problem boils down to maximis-
ing δni/2−i2/2 for i < n. The maximum is δn2/8 (for i = n/2). The other terms are
absorbed in the 2O(n) factor.

Theorem 1. Let B be a basis matrix of an n-dimensional rational lattice L.
Assume that there exist c > 0 and δ > 1 such that ‖b∗

i ‖ ∈ c · δ−i · [1/2, 2], for
all i < n. Then, given B as input (with A = 2 · v

−1/n
n · Vol(L)1/n), the Enum

algorithm returns a shortest non-zero vector of L within δ
n2
8 · 2O(n) ·poly(size(B))

bit operations. Its space cost is poly(size(B)).

Kannan’s algorithm [Kan83] relies on recursive calls to Enum to improve the
quality of the Gram–Schmidt orthogonalisation of B, so that calling Enum on
the preprocessed B is less expensive. Its cost bound was lowered in [HS07] and
that cost upper bound was later showed to be sharp in the worst case, up to
lower-order terms [HS08].

Theorem 2. Let B be a basis matrix of an n-dimensional rational lattice L.
Given B as input, Kannan’s algorithm returns a shortest non-zero vector of L
within n

n
2e (1+o(1)) · poly(size(B)) bit operations. Its space cost is poly(size(B)).

In practice, enumeration is accelerated using two main techniques. The first
one, inspired from Kannan’s algorithm, consists in preprocessing the basis with
a strong lattice reduction algorithm, such as BKZ (see next subsection). Note
that BKZ uses an SVP solver in a lower dimension, so these algorithms can be
viewed as calling themselves recursively, in an intertwined manner. The second
one is tree pruning [SE94,GNR10]. The justifying observation is that some tree
nodes are much more unlikely than others to have leaves in their subtrees, and
are hence discarded. More concretely, one considers the strengthened condi-
tioned ‖πi(

∑
j≥i xj · bj)‖ ≤ ti ·A, for some pruning coefficients ti ∈ (0, 1). These

coefficients can be used to extract a refined estimated enumeration cost as well
as an estimated success probability (see, e.g. [Che13, Sec. 3.3]). By making the
probability extremely small, the cost-over-probability ratio can be lowered and
the probability can be boosted by re-randomising the basis and repeating the
pruned enumeration. This strategy is called extreme pruning [GNR10].

2.3 Lattice Reduction

Given a basis matrix B ∈ Qm×n of a lattice L, the LLL algorithm [LLJL82]
outputs in polynomial time a basis C of L whose Gram–Schmidt norms cannot

Faster Enumeration-Based Lattice Reduction 193

decrease too fast: ‖c∗
i ‖ ≥ ‖c∗

i−1‖/2 for every i < n. In particular, we have
rhf(C) ≤ 2. A lattice basis B is size-reduced if it satisfies |μi,j | ≤ 1/2 for
j < i < n where μi,j = 〈bi, b

∗
j 〉/〈b∗

j , b
∗
j 〉. A lattice basis B is HKZ-reduced if

it is size-reduced and satisfies ‖b∗
i ‖ = λ1(πi(L[i:n))), for all i < n. A basis B

is BKZ-k reduced for block size k ≥ 2 if it is size-reduced and further satisfies
‖b∗

i ‖ = λ1(πi(L[i:min(i+k,n)))), for all i < n.
The Schnorr-Euchner BKZ algorithm [SE94] is the lattice reduction algo-

rithm that is commonly used in practice, to obtain bases of better quality than
those output by LLL (there exist algorithms that admit better analyses, such
as [GN08a,MW16,ALNS19], but BKZ remains the best in terms of practical
performance reported in the current literature). BKZ inputs a block size k and a
basis matrix B of a lattice L, and outputs a basis which is “close” to being BKZ-k
reduced, up to algorithm parameters. The BKZ algorithm calls an SVP solver in
dimensions ≤ k on projected sublattices of the working basis of an n-dimensional
input lattice. A BKZ sweep consists in SVP solver calls for πi(L[i:min(i+k,n)))
for i from 0 to n − 2. BKZ proceeds by repeating such sweeps, and typically
a small number of sweeps suffices. At each execution of the SVP solver, if we
have λ1(πi(L[i:min(i+k,n)))) < δ · ‖b∗

i ‖ where δ < 1 is a relaxing parameter that
is close to 1, then BKZ updates the block πi(B[i:min(i+k,n))) by inserting the
vector found by the SVP solver at index i. It then removes the created linear
dependency, e.g. using a gcd computation (see, e.g. [GN08a]). Whether there was
an insertion or not, BKZ finally calls LLL on the local block πi

(
B[i:min(i+k,n))

)
.

The procedure terminates when no change occurs at all during a sweep or after
certain termination condition is fulfilled. The higher k, the better the BKZ
output quality, but the higher the cost: for large n, BKZ achieves root Hermite
factor essentially k1/(2k) (see [HPS11]) using an SVP-solver in dimensions ≤ k a
polynomially bounded number of times.

Schnorr [Sch03] introduced a heuristic on the shape of the Gram–Schmidt
norms of BKZ-reduced bases, called theGeometric Series Assumption (GSA). The
GSA asserts that the Gram–Schmidt norms {‖b∗

i ‖}i<n of a BKZ-reduced basis
behave as a geometric series, i.e., there exists r > 1 such that ‖b∗

i ‖/‖b∗
i+1‖ ≈ r for

all i < n−1. In this situation, the root Hermite factor is
√

r. It was experimentally
observed [CN11] that the GSA is a good first approximation to the shape of
the Gram–Schmidt norms of BKZ. However, as observed in [CN11] and studied
in [YD17], the GSA does not provide an exact fit to the experiments of BKZ for
the last k indices; similarly, as observed in [YD17] and studied in [BSW18], the
GSA also does not fit for the very few first indices (the latter phenomenon seems
to vanish for large k, as opposed to the former).

We will use the self-dual BKZ algorithm (SDBKZ) from [MW16]. SDBKZ
proceeds similarly to BKZ, except that it intertwines forward and backward
sweeps (for choosing the inputs to the SVP solver), whereas BKZ uses only for-
ward sweeps. Further, it only invokes the SVP solver in dimension exactly k, so
that a forward sweep consists in considering πi(L[i:i+k)) for i from 0 to n − k
and a backward sweep consists in considering (the duals of) πi(L[i:i+k)) for i
from n − k down to 0. We assume that the final sweep is a forward sweep. We use

194 M. R. Albrecht et al.

SDBKZ in the theoretical analysis rather than BKZ because, under the Gaus-
sian Heuristic and after polynomially many sweeps, the first n−k Gram–Schmidt
norms of the basis (almost) decrease geometrically, i.e. satisfy the GSA. This
may not be necessary for our result to hold, but this simplifies the computations
significantly. We adapt [MW16] by allowing SDBKZ to rely on a γ-HSVP solver O
rather than on an exact SVP solver (which in particular is a

√
k-HSVP solver).

We let SDBKZO denote the modified algorithm. The analysis of [MW16] can
be readily adapted. We will rely on the following heuristic assumption, which
extends the Gaussian Heuristic.

Heuristic 1. Let O be a γ-HSVP solver in dimension k. During the SDBKZO

execution, each call to O for a projected k-dimensional sublattice π(L) of the
input lattice L returns a vector of norm ≈ γ · (Vol(π(L)))

1
k .

The SDBKZO algorithm makes the Gram–Schmidt norms converge to a fix-
point, very fast in terms of the number of HSVP calls [MW16, Subsection 4.2].
That fix-point is described in [MW16, Corollary 2]. Adapting these results leads
to the following.

Theorem 3 (Under Heuristic 1). Let O be a γ-HSVP solver in dimension k.
Given as input a basis of an n-dimensional rational lattice L, SDBKZO outputs
a basis B of L such that, for all i < n − k, we have

‖b∗
i ‖ ≈ γ

n−1−2i
k−1 · (Vol L)

1
n .

The number of calls to O is ≤ poly(n) and the bit-size of the output basis is
≤ poly(size(B)).

2.4 Simulating Lattice Reduction

To understand the behaviour of lattice reduction algorithms in practice, a useful
approach is to conduct simulations. The underlying idea is to model the practical
behaviour of the evolution of the Gram–Schmidt norms during the algorithm
execution, without running a costly lattice reduction. Note that this requires
only the Gram–Schmidt norms and not the full basis. Chen and Nguyen first
provided a BKZ simulator [CN11] based on the Gaussian Heuristic and with an
experiment-driven modification for the blocks at the end of the basis. It relies on
the assumption that each SVP solver call in the projected blocks (except the ones
at the end of the basis) finds a vector whose norm corresponds to the Gaussian
Heuristic applied to that local block. The remaining Gram–Schmidt norms of
the block are updated to keep the determinant of the block constant. (Note that
in the original [CN11] simulator, these Gram–Schmidt norms are not updated
to keep the determinant of the block constant, but are adjusted at the end of
the sweep to keep the global determinant constant; our variant helps for taking
enumeration costs into account.)

We extend this simulator in two ways: first, we adapt it to estimate the cost
and not only the evolution of the Gram–Schmidt norms; second, we adapt it to

Faster Enumeration-Based Lattice Reduction 195

other reduction algorithms, such as SDBKZ. To estimate the cost, we use the
estimates of the full enumeration cost, or the estimated cost of an enumeration
with (extreme) pruning. The full enumeration cost estimate is used in Sect. 3 to
model our first algorithm for which we can heuristically analyse the quality/cost
trade-off. The pruned enumeration cost estimate is used in Sect. 4, which aims
to provide a more precise study for practical and cryptographic dimensions. To
find the enumeration cost with pruning, we make use of FPyLLL’s pruning mod-
ule which numerically optimises pruning parameters for a time/success proba-
bility trade-off using a gradient descent.

In small block sizes, the enumeration cost is dominated by calls to LLL. In
our code, we simply assume that one LLL call in dimension k costs the equivalent
of visiting k3 nodes. This is an oversimplification but avoids completely ignoring
this polynomial factor. We will compare our concrete estimates with empirical
evidence from timing experiments with the implementation in FPLLL, to measure
the effect of this imprecision. This assumption enables us to bootstrap our cost
estimates. BKZ in block size up to, say, 40 only requires LLL preprocessing,
allowing us to estimate the cost of preprocessing with block size up to 40, which
in turn enables us to estimate the cost (including preprocessing) for larger block
sizes etc. To extend the simulation to SDBKZ, we simply run the simulation on
the Gram–Schmidt norms of the dual basis 1/‖b∗

n‖, . . . , 1/‖b∗
1‖. Our simulation

source code is available as simu.py, as an attachment to the electronic version
of the full version of this work.

We give pseudocode for our costed simulation in Algorithm 1. For BKZ
simulation, we call Algorithm 1 with d = k, c = 0 and with tail(x, y, z) simply
outputting x. For our simulations we prepared Gram–Schmidt shapes for LLL-
reduced lattices in increasing dimensions d on which we then estimate the cost of
running the algorithm in question for increasingly heavy preprocessing parameters
k′, selecting the least expensive one. In our search, we initialise c2 = 23 and then
iteratively compute cj+1 given c2, . . . , cj . When we instantiate Algorithm 1 we
either manually pick some small t (Sect. 4) or pick t = ∞ (Sect. 3.3) which means
to run the algorithm until no more changes are made to the basis.

2.5 State-of-the-Art Enumeration-Based SVP Solving in Practice

To the best of our knowledge, there is no extrapolated running-time for state-
of-the-art lattice reduction implementations. Furthermore, the simulation data
in [CN11,Che13] is only available up to a block size of 250. The purpose of this
section is to fill this gap by providing extended simulations (and the source code
used to produce them) and by reporting running times using the state-of-the-art
FPyLLL [dt19b] and FPLLL [dt19a] libraries.

First, in Fig. 2 we reproduce the data from [Che13, Table 5.2] for the
estimated cost of solving SVP up to dimension 250, using enumeration.

196 M. R. Albrecht et al.

We then also computed the expected cost (expressed as the number of vis-
ited enumeration nodes) up to dimension 500 for Fig. 2, see cost.py, attached
to the electronic copy of the full version of this work, and Algorithm 1. We
note that the preprocessing strategy adopted in our code is to always run two
sweeps of preprocessing but that preprocessing proceeds recursively, e.g. pre-
processing block size 80 with block size 60 may trigger a preprocessing with block
size 40, if previously we found that preprocessing to be most efficient for solving
SVP-60, as outlined above. This approach matches that of the FPLLL/FPyLLL
strategizer [dt17] which selects the default preprocessing and pruning strategies
used inFPLLL/FPyLLL. Thus, the simulation approach resembles that of the actual
implementation.

Algorithm 1: Costed simulation algorithm
Data: Gram–Schmidt profile �i = log ‖b∗

i ‖ for i = 0, . . . , d − 1.
Data: Block size k ≥ 2.
Data: Preprocessing block size k′ ≥ 2.
Data: Preprocessing sweep count t.
Data: Overshooting parameter c ≥ 0.
Data: Configuration flags.
Data: Cost estimates cj for solving (approx-)SVP in dimensions j = 2, . . . , k′,

including preprocessing cost estimates.
Result: Cost estimate for (approx-)SVP in dimension k.

1 if SDBKZ flag is set in flags then
2 (�i)i ← output of [CN11] style simulator for SDBKZ on (�i)i for block

size k′ and ≤ t sweeps;

3 else
4 (�i)i ← output of [CN11] style simulator for BKZ on (�i)i for block size k′

and ≤ t sweeps;

5 end
// account for early termination

6 t ← number of preprocessing sweeps actually performed;
7 Cp ← d3; // (estimated) cost of LLL

8 for 0 ≤ i < d − 1 do
9 k∗ ← tail(min(k′, d − i), c, d − i);

10 Cp ← Cp + t · ck∗ ;

11 end
12 if full enumeration cost flag is set in flags then
13 Ce ← full enumeration cost for �0, . . . , �k−1;
14 pe ← 1;

15 else
16 (ti)i<k ← optimised pruning coefficients for (�i)i<k and preprocessing

cost Cp;
17 Ce, pe ← pruned enumeration cost and success probability, given (ti)i<k;

18 end
19 C ← 1/pe · (Cp + Ce);
20 return C;

Faster Enumeration-Based Lattice Reduction 197

In Fig. 2, we also fitted the coefficients a1, a2 of 1/(2 e)n log n+ a1 ·n+ a2 to
dimensions n from 150 to 249.2

Furthermore, we plot the chosen preprocessing block sizes and success prob-
ability of a single enumeration (FPLLL uses extreme pruning) in Fig. 3. This
highlights that, even in dimension 500, preprocessing is still well below the n−o(n)
required for Kannan’s algorithm [Kan83,MW15].

100 150 200 250 300 350 400 450 500

100

200

300

n

lo
g(
#
no

de
s)

[Che13]
1/(2 e)n log(n) − 0.995n+ 16.25
our simulation

Fig. 2. Expected number of nodes visited during enumeration in dimension n.

Figure 4 plots the running-times of FPLLL in terms of enumeration nodes,
timed using call.py, available as an attachment to the electronic version of the
full version of this work. Concretely, running-time in seconds is first converted to
CPU cycles by multiplying with the clock speed 2.6 GHz3 and we then convert
from cycles to nodes by assuming visiting a node takes about 64 clock cycles.4

Fig. 4 illustrates that our simulation is reasonably accurate. We note that for
running the timing experiments with FPLLL we relied on FPLLL’s own (recursive
call and pruning) strategies, not those produced by our simulator.

The largest computational results known for finding short vectors in un-
structured lattices is the Darmstadt SVP Challenge [SG10]. This challenge asks
contestants to find a vector at most 1.05 times larger than the Gaussian Heuris-
tic. Thus, the challenge does not require to solve SVP exactly but the easier
(0.254

√
n)-HSVP problem. The strategy we used for SVP can be adapted to

this problem as well, see chal.py, attached to the electronic version of the full

2 Throughout this work, we fit curves to simulation data. For this, we use SciPy’s
scipy.optimize.curve_fit function [VGO+20] which implements a non-linear
least-square fit. To prevent overfitting, we err on the side of fewer parameters and
fit on a subset of the available data, using the remaining data to check the accuracy
of the fit.

3 CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz machine: “atomkohle”.
4 We note that [CN11] mentions 200 cycles per node, whereas [dt17]’s set_mdc.py

reports 64 cycles per node on our test machine in dimension 55.

198 M. R. Albrecht et al.

(a) Preprocessing block sizes used in our simulations.

0 50 100 150 200 250 300 350 400 450 500

0

200

400

n

0.87n − 20.32
simulation

(b) Success probability of a single enumeration (in log scale).

0 50 100 150 200 250 300 350 400 450 500

−50

0

n

−0.15n+ 7.92
simulation

Fig. 3. Reduction strategies used for Fig. 2.

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

n

lo
g (
#
no

de
s)

Fig. 2 simulation
FP(y)LLL: running-time
FP(y)LLL: visited nodes

In our simulations, the estimate for the number of visited nodes includes the cost
LLL (expressed as a number of nodes), whereas actually “visited nodes” does
The “running-time” (converted from seconds to a number of nodes), on the other

contains all operations as it literally is the cputime.

of
not.
hand,

Fig. 4. Number of nodes visited during enumeration in dimension n.

Faster Enumeration-Based Lattice Reduction 199

version of document. To validate our simulation methodology against this data,
we compare our estimates with various entries from the Hall of Fame for [SG10]
and the literature in Fig. 5.

60 80 100 120 140 160 180
20

40

60

80

d

lo
g(
#
no

de
s)

(0.254
√
d)-HSVP sim

SVP sim
HoF:FK15
HoF:KT17
G6K

: time

“HoF” stands for Hall of Fame [SG10]. Core hours are translated to #nodes by
multiplying by 3600 · 2 · 107, which assumes each core has a 2Ghz CPU and that one
enumeration node costs 64 clock cycles to process. Except for G6K [ADH+19] which is
a sieving implementation, all entries are for variants of lattice-point enumeration. We
translate G6K timings to #nodes in the same way as for other timings, ignoring that it
is not an enumeration implementation. In other words, #nodes is merely a unit of time
here.

Fig. 5. Darmstadt SVP Challenge.

We conclude this section by interpreting our simulation results in the context
of BKZ. The quality output by BKZ in practice has been studied in the litera-
ture [GN08b,Che13,AGVW17,YD17,BSW18]. Thus, our simulations imply that
the running time of BKZ as implemented in [dt19a] achieves root Hermite factor
k1/(2k) is bounded by kk/(2 e)+o(k). Indeed, this bound is tight, i.e. BKZ does not
achieve a lower running time. To see this, consider the sandpile model of BKZ’s
behaviour [HPS11]. It implies that even if we start with a GSA line, this line
from index i onward deteriorates as we perform updates on indices < i. Further-
more, extreme pruning, which involves rerandomising local blocks, destroys the
GSA shape. Thus, we can conclude that in practice BKZ

– achieves root Hermite factor ≈ (k
2π e · (π k)

1
k)

1
2(k−1) [Che13]

– in time poly(d) · 21/(2 e) k log k−0.995 k+16.25 ≈ poly(d) · 21/(2 e) k log k−k+16

where the unit of time is the number of nodes visited during enumeration. We
note that a similar conclusion was already drawn in [APS15] and discussed
in [ABD+16]. However, that conclusion was drawn for the unpublished imple-
mentation and limited data in [Che13].

200 M. R. Albrecht et al.

3 Reaching Root Hermite Factor k
1
2k

(1+o(1)) in Time k
k
8

This section contains our main contribution: a lattice reduction algorithm that
achieves root Hermite factor k

1
2k (1+o(1)) in time k

k
8 . We start by a quality running-

time trade-off boosting theorem, based on SDBKZ. We then give and analyze the
main algorithm, FastEnum, and finally propose a simulator for that algorithm.

3.1 A Boosting Theorem

We first show that SDBKZ allows to obtain a reduction from a γ′-HSVP solver in
dimension n′ to a γ-HSVP solver in dimension n achieving a larger root Hermite
factor. This reduction is not polynomial-time, but we will later aim at making
it no more costly than the cost of our γ-HSVP solver.

Theorem 4 (Under Heuristic 1). Let O be a γ-HSVP solver in dimension n.
Assume we are given as input a basis B of an n′-dimensional lattice L, with n′ >
n. We first call SDBKZO on B: let C denote the output basis. Then we call the
Enum algorithm on the sublattice basis made of the first n′ − n vectors of C.
This provides a γ′-HSVP solver in dimension n′, with

γ′ ≤ √
n′ − n γ

n
n−1 .

The total cost is bounded by poly(n′) calls to O and γ
(n′−n)2

4(n−1) · 2O(n′−n) ·
poly(size(B)) bit operations.

Proof. By Theorem 3, we have ‖c∗
i ‖ ∈ γ

n′−1−2i
n−1 · (Vol(L))

1
n′ · [1/2, 2], for all i <

n′ − n. Also, the number of calls to O is ≤ poly(n′) and the bit-size of C
is ≤ poly(size(B)).

By Theorem 1 (with “δ = γ
2

n−1 ”), the cost of the call to Enum is bounded as

γ
(n′−n)2

4(n−1) · 2O(n′−n) · poly(size(C)), which, by the above is ≤ γ
(n′−n)2

4(n−1) · 2O(n′−n) ·
poly(size(B)). Further, by Minkowski’s theorem, the vector output by Enum has
norm bounded from above by:

√
n′ − n ·

n′−n−1∏

i=0

(
γ

n′−1−2i
n−1 (Vol(L))

1
n′

) 1
n′−n

=
√

n′ − n · γ
n

n−1 · (Vol(L))
1

n′ .

This completes the proof of the theorem. ��
Note that the result is not interesting if n′ − n is chosen too small, as such

a choice results in an increased root Hermite factor. Also, if n′ − n is chosen
too large, then the cost grows very fast. We consider the following instructive
application of Theorem 4. By Theorem 2, Kannan’s algorithm finds a shortest
non-zero of L in time n

n
2 e (1+o(1)) · poly(size(B)), when given as input a basis

B of an n-dimensional lattice L. In particular, it solves γ-HSVP with γ =
√

n
and provides a root Hermite factor ≤ n

1
2n . We want to achieve a similar root

Faster Enumeration-Based Lattice Reduction 201

Hermite factor, but for a lower cost. Now, for a cost parameter k, we would
like to restrict the cost to k

k
8 · poly(size(B)) (ideally, while still achieving root

Hermite factor k
1
2k). We hence choose an integer k0 := e

4 (1+o(1))k. This indeed
provides a cost bounded as k

k
8 · poly(size(B)), but this only solves γ0-HSVP

with γ0 = Θ(
√

k0) in dimension k0, i.e. only provides a root Hermite factor

≈ √
k0

1
k0 = k

2
k e (1+o(1)) ≈ k

0.74
k , which is much more than k

1
2k . So far, we have

not done anything but a change of variable. Now, let us see how Theorem 4 can
help. We use it with O being Kannan’s algorithm in dimension “n = k0”. We
set “n′ = k1” with k1 = k0 + �√k0k�. This value is chosen so that the total
cost bound of Theorem 4 remains k

k
8 ·poly(size(B)). The achieved root Hermite

factor is ≤ k
1

k(e /4+
√

e /4)
(1+o(1)) ≈ k

0.66
k . Overall, for a similar cost bound, we have

decreased the achieved root Hermite factor.

3.2 The FastEnum Algorithm

We iterate the process above to obtain the FastEnum algorithm, described in
Algorithm 2. For this reason, we define k0 = x0 · k with x0 = e

4 (1 + o(1)) and,
for all i ≥ 1:

ki = �xi · k� with xi = xi−1 +
√

xi−1

i
. (1)

We first study the sequence of xi’s.

Lemma 1. We have i + 1 − √
i < xi < i + 1 for all i ≥ 1.

Proof. The upper bound can be readily proved using an induction based on (1).
It may be numerically checked that the lower bound holds for i ∈ {1, 2, 3}. We
show by induction to prove that 1 − xi

i < 1√
i
− 2

i for i ≥ 4, which is a stronger
statement. It may be numerically checked that the latter holds for i = 4. Now,
assume it holds for some i − 1 ≥ 4 and that we aim at proving it for i. We have

1 − xi

i
=

1
i

(
(i − 1)

(
1 − xi−1

i − 1

)
+

(
1 −

√
xi−1

i

))

=
1
i

(

(i − 1)
(
1 − xi−1

i − 1

)
+

√
i − 1

i

(
1 −

√
xi−1

i − 1

)
+ 1 −

√
i − 1

i

)

.

Now, note that
√

xi−1
i−1 > 0.2 (using our induction hypothesis). Using the bound

1 − √
t < 1

2 (1 − t) + 1
4 (1 − t)2 which holds for all t > 0.2, we can bound 1 − xi

i
from above by:

1

i

(
(i − 1)

(
1 − xi−1

i − 1

)
+ 1 +

√
i − 1

i

(
− 1 +

1

2

(
1 − xi−1

i − 1

)
+

1

4

(
1 − xi−1

i − 1

)2))
.

It now suffices to observe that the right hand side is smaller than 1√
i
− 2

i , when
1− xi−1

i−1 is replaced by 1√
i−1

− 2
i−1 . This may be checked with a computer algebra

software. ��

202 M. R. Albrecht et al.

The FastEnum algorithm (Algorithm 2) consists in calling the process de-
scribed in Theorem 4 several times, to improve the root Hermite factor while
staying within a k

k
8 cost bound.

Algorithm 2: The FastEnum algorithm.
Data: A cost parameter k and a level i ≥ 0.
Data: A basis matrix B ∈ Qki×ki , with ki defined as in (1).
Result: A short non-zero vector of L(B).

1 if i = 0 then
2 b ← output of Kannan’s enumeration algorithm on B;
3 else
4 C ← output of SDBKZO on B with O being FastEnum for i − 1;

5 b ← Enum
(
C [0:ki−ki−1)

)
with ki−1 defined as in (1);

6 end
7 return b;

Theorem 5 (Under Heuristic 1). Let k ≥ 4 tending to infinity, and i ≤
2o(k).5 The FastEnum algorithm with parameters k and i solves γi-HSVP
in dimension ki, with γi ≤ k

i+1
2 (1+o(1)). For i ≥ 1, the corresponding root

Hermite factor is below k
i+1

2(i+1−√
i)k

(1+o(1)). Further, FastEnum runs in time
k

k
8 (1+o(1))+i·O(1) · poly(size(B)).

For constant values of i (as a function of k), the root Hermite factor is
not quite k

1
2k (1+o(1)), but it is so for any choice of i = ω(1). For i satisfying

both i = ω(1) and i = o(k), FastEnum reaches a root Hermite factor k
1
2k (1+o(1))

in time k
k
8 (1+o(1)) · poly(size(B)).

Proof. For γ0 = Θ(
√

k) and, by Theorem 4, we have γi ≤ √
ki − ki−1 · γ

ki−1
ki−1−1

i−1

for all i ≥ 1. Using the definition of the ki’s and the bounds of Lemma 1, we
obtain, for i ≥ 1:

γi ≤
(
1 +

xi−1

i
k2

)1/4

· γ
k(i−√

i−1)+1
k(i−√

i−1)−1
i−1 ≤

√
2k · γ

1+ 2
ki/2−1

i−1 .

Using k ≥ 4, we see that the latter is ≤ √
2kγ

1+ 8
ki

i−1 . By unfolding the recursion,
we get, for i ≥ 1:

γi ≤
√

2k
1+

∑i−1
j=0

∏i−1
�=j(1+

8
k(�+1)) · γ

∏i−1
�=0(1+

8
k(�+1))

0 .

Now, note that we have (using the bound
∑i−1

�=0
1

�+1 ≤ ln(i)+1, and the inequal-
ities 1 + x ≤ exp(x) ≤ 1 + 2x for x ∈ [0, 1])

i−1∏
�=j

(1 +
8

k(� + 1)
) ≤ exp

⎛
⎝i−1∑

�=j

8

k(� + 1)

⎞
⎠ ≤ exp

(
8

k
(ln(i) + 1)

)
≤ 1 +

16

k
(ln(i) + 1).

5 We stress that in this theorem, all asymptotic notations are with respect to k only.

Faster Enumeration-Based Lattice Reduction 203

As i ≤ 2o(k), the latter is ≤ 1 + o(1). Overall, this gives γi ≤ k
i+1
2 (1+o(1)). The

claim on the root Hermite factor follows from the lower bound of Lemma 1.
We now consider the run-time of the algorithm, and in particular the term

γ

(ki−ki−1)2

4(ki−1−1)

i−1 ·2O(ki−ki−1) from Theorem 4. Recall that by definition of the ki’s, we

have ki − ki−1 ≤ 1 +
√

ki−1k
i . Using the upper bound of Lemma 1, we obtain

that ki − ki−1 ≤ O(k), and hence that 2O(ki−ki−1) ≤ 2O(k). We also have

γ

(ki−ki−1)2

4(ki−1−1)

i−1 ≤ k
i
2 (1+o(1))

ki−1k

4i(ki−1−1) ≤ k
k
8 (1+o(1)).

Further, the number of recursive calls is bounded as poly(
∏

j≤i kj). By Lemma 1,
this is ≤ ki·O(1). To complete the proof, it may be shown using standard tech-
niques that all bases occurring during the algorithm have bit-sizes bounded as
poly(size(B)) (where the bound is independent from i). ��

3.3 Simulation of Asymptotic Behaviour

In this subsection, we instantiate the FastEnum algorithm as described in Algo-
rithm 2 and confirm its asymptotic behaviour via simulations. Note that the
FastEnum algorithm requires SDBKZ subroutines. To simulate this subroutine,
we use the costed simulation of Algorithm 1 with flags: SDBKZ and full enumer-
ation cost. We also omit the cost of LLL in the simulation as the enumeration
cost dominates in the parameter range considered in this subsection.

To compare the simulation with the theorems, we consider two scenarios. In
the first one, called “Theoretical” we numerically compute the ki’s, γi’s and the
slope of the Gram–Schmidt log-norms of the enumeration block (i.e. the first
ki − ki−1 vectors) according to Theorem 5. Here the index i denotes the recursion
level. Similarly, ki and γi are defined in the same way as in (1) and Theorem 5,
respectively. In the second one, called “Simulated” we still set the ki’s according
to (1). However, at the i-th level, we first run an SDBKZ simulation on a lat-
tice of dimension ki, using the γi−1-HSVP (simulated) oracle from the previous
level. Here, the Hermite factor γi−1 is computed from the simulated basis at the
(i − 1)-th level. The initial γ0 is computed from a simulated HKZ-reduced basis
of dimension k0. During the SDBKZ simulation, for each HSVP call, we assume
that the same Hermite factor γi−1 is achieved. We let the simulated SDBKZ run
until no change occurs to the basis or if it has already achieved the theoretical
root Hermite factor at the same level, as guided by the proof of Theorem 5. After
the simulated SDBKZ preprocessing, we simulate an enumeration in the first
block of dimension ki − ki−1. The enumeration cost is estimated using the full
enumeration cost model (see Sect. 2.4), since here we are only interested in the
asymptotic behaviour (we defer to Sect. 4 for the concrete behaviour). For a fixed
cost parameter k, we consider �ln k� recursion levels i = 0, . . . , (�ln k�−1). For the
implementation used for these experiments, we refer to simu_asym.py attached to
the electronic version of the full version of this work. This simulation algorithm is
an instantiation of Algorithm 1.

204 M. R. Albrecht et al.

Using the simulator described above, we computed the achieved simulated
root Hermite factors for various cost parameters k from 100 to 2, 999. The results
are plotted in Fig. 6. We also computed the theoretical root Hermite factors
as established by Theorem 5. More precisely, we used the proof of Theorem 5
to update the root Hermite factors recursively, replacing the term

√
n′ − n of

Theorem 4 by v
−1/(n′−n)
n′−n (which corresponds to using the Gaussian Heuristic).

It can be observed that the theoretical and simulated root Hermite factors agree
closely.

Fig. 6. Simulated and theoretical root Hermite factors for k = 100 to 2, 999 after ln k
levels of recursion.

Fig. 7. Number of nodes in full enumeration visited during simulation, and a fit.

Figure 7 shows the number of nodes visited during the simulation from k =
100 to 2, 999, as well as a curve fit. As an example of the output, Fig. 8 plots the
Gram–Schmidt log-norms of the (simulated) reduced basis for k = 1, 000 right
after 7 levels of recursion. Note that last Gram–Schmidt norms of the basis have
the shape of those of an HKZ-reduced basis, since we use Kannan’s algorithm
at level 0. Also, the successive segments correspond to levels of recursion, their
lengths decrease and their respective (negative) slopes decrease with the indices
of the Gram–Schmidt norms.

Finally, we plot the Gram–Schmidt log-norms slope for k = 1, 000 during the
first 20 recursion levels. At level i, we compute the slope for the enumeration

Faster Enumeration-Based Lattice Reduction 205

Fig. 8. Gram–Schmidt log-norms of simulated experiments with k = 1, 000 after 7 ≈
ln k recursion levels.

region (i.e. the first block of size ki−ki−1). It can be observed that the simulated
slope is indeed increasing (Fig. 9).

Fig. 9. Simulated and theoretical Gram–Schmidt log-norms slope of enumeration
region, for k = 1, 000 and during the first 20 iterations.

4 A Practical Variant

It can be observed that, in our analysis of Algorithm 2, the dimension of the lattice
is relatively large. It is thus interesting to investigate algorithms that require
smaller dimensions. In this subsection, we describe a practical strategy that works
with dimensions d = O(k) where the hidden constants are small. As mentioned in
the introduction, practical implementations of lattice reduction algorithms often
deviate from the asymptotically efficient variants, e.g. by applying much weaker
preprocessing than required asymptotically. In this section, we use numerically
optimised preprocessing and enumeration strategies to parameterise Algorithm 3,
which we view as a practical variant of Algorithm 2, working with dimensions d =
�(1 + c) · k� for some small constant c ≥ 0. It differs from Algorithm 2 in two
respects. First, it applies BKZ preprocessing instead of SDBKZ preprocessing.
This is merely an artefact of the latter seemingly not providing an advantage in

206 M. R. Albrecht et al.

Algorithm 3: Solving Approx-HSVP with preprocessing dimension larger
than enumeration dimension.
Data: A basis matrix B ∈ Rd×d.
Data: Cost parameter k ≥ 2 and an overshooting parameter c > 0.
Result: A short vector b.

1 k� ← tail(k, c, d);
2 k′ ← pre(k�);
3 if k′ > 2 then
4 run Algorithm 4 on B with parameter k′;
5 else
6 run LLL on B;
7 end
8 b ← Enum

(
B [0:k�)

)
;

9 return b;

the parameter ranges we considered. Second, the algorithm adapts the enumera-
tion dimension based on the “space available” for preprocessing. This is to enforce
that it stays within d dimensions, instead of requiring ≈ ik dimensions where i is
the number of recursion levels.

We use the following functions in Algorithm 3:

– The function pre(k) returns a preprocessing cost parameter for a given k.
– The function tail(k, c, d) returns a new cost parameter k� such that enumera-

tion in dimension k� after preprocessing with pre(k�) in dimension d costs at
most as much as enumeration in dimension k after preprocessing in dimension
�(1 + c) · k�. In particular, if d ≥ �(1 + c) · k� then k� = k.

– Preprocessing (Step 4) calls Algorithm 4, perhaps restricted to a small number
of while loops. Algorithm 4 is simply the BKZ algorithm where the SVP
oracle is replaced by Algorithm 3.

We plot the output of our simulations for Algorithm 3 in Fig. 10. These
simulations are instantiations of Algorithm 1 with d > k, c > 0 and tail(x, y, z)
matching those used inAlgorithm3.Thesewere produced using blck.py, attached
to the electronic version of the full version of this work. Our strategy finding
strategy follows the same blueprint as described in Sect. 2.4. Through such
simulation experiments we manually established that c = 0.25, four sweeps of
preprocessing and using BKZ over SDBKZ seems to provide the best performance,
which is why we report data on these choices.6 We also fitted the coefficients
a0, a1, a2 of a0 · k log k + a1 · k + a2 to points from 100 to 249. Furthermore, we
plot the data from Fig. 2 to provide a reference point for the performance
of the new algorithm and also provide some data on the hypothetical performance
of Algorithm 3 assuming the cost of all preprocessing costs is only as much as

6 The choice c = 0.25 may be interpreted a posteriori as consistent with Fig. 1 where
the minimum for BKZ is attained at c ≈ 0.30. We note, however, that Fig. 1 consid-
ers BKZ-reduced bases for block size k, whereas here the algorithm encounters BKZ-
reduced bases for block sizes k′ < k.

Faster Enumeration-Based Lattice Reduction 207

Algorithm 4: BKZ with Algorithm 3 as Approx-HSVP oracle.

Data: A basis matrix B ∈ Rd×d.
Data: Cost parameter k ≥ 2 and an overshooting parameter c ≥ 0.
Result: A reduced basis of L(B).

1 B ← LLL(B);
2 while change was made in previous iteration do
3 for 0 ≤ κ < d − 1 do
4 e ← min(d, κ + �(1 + c) · k);
5 v ← output of Algorithm 3 on

(
π(B [κ:e)), k, c

)
;

6 if ‖v‖ < ‖b∗
κ‖ then

7 insert v at index κ;
8 call LLL to remove linear dependencies;
9 record that a change was made;

10 end

11 end

12 end
13 return B;

LLL regardless of the choice of k′. This can be considered the best case scenario
for Algorithm 3 and thus a rough lower bound on its running time.7

In Fig. 11 we give the preprocessing cost parameters and probabilities
of success of a single enumeration selected by our optimisation. In particular,
these figures suggest that the success probability per enumeration does not drop
exponentially fast in Fig. 11b. This is consistent with the second order term in
the time complexity which is closer to 1/2 (corresponding to standard prun-
ing) than 1 (corresponding to extreme pruning). Similarly, in contrast to Fig. 3a
the preprocessing cost parameter (or “block size”) k′ in Fig. 11a does not seem
to follow an affine function of k, i.e. it seems to grow faster for larger dimensions.

We also give experimental data comparing our implementation of Algorithm 3,
impl.py, attached to the electronic version of the full version of document, with
our simulations in Fig. 12. We note that our implementation of Algorithm 3 is
faster than FPyLLL’s SVP solver from dimension 82 onward. As in Sect. 2.5, we
do not use the strategies produced by our simulation to run the implementation
but rely on a variant of FPLLL’s strategizer [dt17] to optimise these strategies.

Comparing Figs. 2 and 10 is meaningless without taking the obtained root
Hermite factors into account. First, Algorithm 3 is not an SVP solver but an
Approx-HSVP solver. Second, if d < �(1 + c) · k� then Algorithm 3 will reduce
the enumeration dimension, further decreasing the quality of the output.

Since we are interested in running Algorithm 3 as a subroutine of Algorithm 4,
we compare the latter against plain BKZ. For this comparison we consider the

7 We note that this data only extends until k = 323. Computing pruning parameters
requires increasing precision in increasing dimension and become more “brittle” the
cheaper the preprocessing is compared to the enumeration cost. In other words, our
simulation code simply crashed with a floating-point error in dimension 324. Since the
trend is clear in the data already, we did not push it further using higher precision.

208 M. R. Albrecht et al.

Fig. 10. Cost of one call to Algorithm 3 with enumeration dimension k, c = 1/4,
d = �(1 + c) · k	 and four preprocessing sweeps.

Fig. 11. Reduction strategies used for Fig. 10.

Faster Enumeration-Based Lattice Reduction 209

case d = 2·k, which corresponds to a typical setting encountered in cryptographic
applications.

In Fig. 13, we plot the slope of the Gram–Schmidt log-norms as predicted
by our simulations for BKZ on the one hand, and a self-dual variant of Algo-
rithm 4. This variant first runs Algorithm 4 on the dual basis, followed by running
Algorithm 4 on the original basis. Each run is capped at half the number of
sweeps as used for BKZ. The rationale for this strategy is that it handles the
quality degradation as the BKZ index i surpasses d − �(1 + c) · k� where k� < k.
As Fig. 13 illustrates, the obtained quality of the two algorithms is very close.
Indeed our SD variant slightly outperforms BKZ, but we note that the ratio of
the two is increasing, i.e. the quality advantage will invert as d increases.

Fig. 12. Number of nodes visited during one Approx-HSVP call with enumeration
dimension k, c = 1/4, d = �(1 + c) · k	 and four sweeps of preprocessing.

d

Four sweeps of Algorithm 4

4

on the dual, followed by four sweeps of Algorithm 4 on the
primal lattice in dimension d = 2 k, using c = 0.25 and four preprocessing sweeps.

Fig. 13. Basis quality (BKZ vs SD-Algorithm 4)

210 M. R. Albrecht et al.

Acknowledgments. The authors thank Léo Ducas, Elena Kirshanova and Michael
Walter for helpful discussions. Shi Bai would like to acknowledge the use of the services
provided by Research Computing at the Florida Atlantic University.

References

[ABD+16] Albrecht, M.R., et al.: Inaccurate security claims in NTRUprime,
May 2016. https://groups.google.com/forum/#!topic/cryptanalytic-
algorithms/BoSRL0uHIjM

[ACD+18] Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 19

[ADH+19] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 25

[AGPS19] Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Esti-
mating quantum speedups for lattice sieves. Cryptology ePrint Archive,
Report 2019/1161 (2019). https://eprint.iacr.org/2019/1161

[AGVW17] Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the
expected cost of solving uSVP and applications to LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 11

[ALNS19] Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide
reduction, revisited - filling the gaps in SVP approximation. CoRR,
abs/1908.03724 (2019)

[ANS18] Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and
tweaking discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 405–434. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 14

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

[AWHT16] Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 30

[AWHT18] Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Progressive BKZ library
(2018). http://www2.nict.go.jp/security/pbkzcode/index.html

[Bab86] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986)

[BDGL16] Becker, A., Ducas, L., Gama, N. and Laarhoven, T.: New directions
in nearest neighbor searching with applications to lattice sieving. In:
Krauthgamer, R., (ed.) 27th SODA, pp. 10–24. ACM-SIAM, January 2016

[BSW18] Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 13

https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/BoSRL0uHIjM
https://groups.google.com/forum/#!topic/cryptanalytic-algorithms/BoSRL0uHIjM
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://eprint.iacr.org/2019/1161
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
http://www2.nict.go.jp/security/pbkzcode/index.html
https://doi.org/10.1007/978-3-030-03326-2_13

Faster Enumeration-Based Lattice Reduction 211

[Che13] Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. Ph.D. thesis, Paris 7 (2013)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

[dt17] The FPLLL development team. BKZ reduction strategy (preprocessing,
pruning, etc.) (2017). https://github.com/fplll/strategizer

[dt19a] The FPLLL development team. FPLLL, a lattice reduction library (2019).
https://github.com/fplll/fplll

[dt19b] The FPLLL development team. FPyLLL, a Python interface to fplll
(2019). https://github.com/fplll/fpylll

[Duc18] Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 5

[FP83] Fincke, U., Pohst, M.: A procedure for determining algebraic integers of
given norm. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162,
pp. 194–202. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-
12868-9 103

[GN08a] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–
216. ACM Press, May 2008

[GN08b] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 3

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13190-5 13

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 25

[HS07] Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vec-
tor algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
170–186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 10

[HS08] Hanrot, G., Stehlé, D.: Worst-case Hermite-Korkine-Zolotarev reduced lat-
tice bases. ArXiv, abs/0801.3331 (2008)

[HS10] Hanrot, G., Stehlé, D.: A complete worst-case analysis of Kannan’s shortest
lattice vector algorithm Full version of [HS07, HS08] (2010). http://perso.
ens-lyon.fr/damien.stehle/downloads/KANNAN EXTENDED.pdf

[Kan83] Kannan, R.: Improved algorithms for integer programming and related
lattice problems. In: 15th ACM STOC, pp. 193–206. ACM Press, April
1983

[Laa15] Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven
University of Technology (2015)

[LLJL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(12), 515–534 (1982)

https://doi.org/10.1007/978-3-642-25385-0_1
https://github.com/fplll/strategizer
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/3-540-12868-9_103
https://doi.org/10.1007/3-540-12868-9_103
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-540-74143-5_10
https://doi.org/10.1007/978-3-540-74143-5_10
http://perso.ens-lyon.fr/damien.stehle/downloads/KANNAN_EXTENDED.pdf
http://perso.ens-lyon.fr/damien.stehle/downloads/KANNAN_EXTENDED.pdf

212 M. R. Albrecht et al.

[LM18] Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T.,
Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3 14

[MW15] Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal
overhead. In: Indyk, P. (ed.) 26th SODA, pp. 276–294. ACM-SIAM, Jan-
uary 2015

[MW16] Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 31

[Ngu10] Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen, P.,
Vallée, B. (eds.) The LLL Algorithm. Information Security and Cryp-
tography. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
02295-1 2

[Sch03] Schnorr, C.P.: Lattice reduction by random sampling and birthday meth-
ods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–
156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 14

[SE94] Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66, 181–
199 (1994). https://doi.org/10.1007/BF01581144

[SG10] Schneider, M., Gama, N.: Darmstadt SVP challenges (2010). https://www.
latticechallenge.org/svp-challenge/index.php

[Sho18] Shoup, V.: Number theory library 11.3.1 (NTL) for C++ (2018). http://
www.shoup.net/ntl/

[VGO+20] Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific com-
puting in Python. Nat. Methods 17(3), 261–272 (2020)

[YD17] Yang, Y., Léo, D.: Second order statistical behavior of LLL and BKZ. In:
Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 3–22.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-72565-9 1

https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/BF01581144
https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-319-72565-9_1

	*5ptFasterEnumeration-BasedLatticeReduction: RootHermiteFactork1/(2k)Timekk/8+o(k)
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Enumeration and Kannan's Algorithm
	2.3 Lattice Reduction
	2.4 Simulating Lattice Reduction
	2.5 State-of-the-Art Enumeration-Based SVP Solving in Practice

	3 Reaching Root Hermite Factor k12k(1+o(1)) in Time kk8
	3.1 A Boosting Theorem
	3.2 The `3́9`42`"̇613A``45`47`"603AFastEnum Algorithm
	3.3 Simulation of Asymptotic Behaviour

	4 A Practical Variant
	References

