
AClassification ofComputationalAssumptions
in the Algebraic Group Model

Balthazar Bauer1, Georg Fuchsbauer2(B), and Julian Loss3(B)

1 Inria, ENS, CNRS, PSL, Paris, France
balthazar.bauer@ens.fr

2 TU Wien, Vienna, Austria
georg.fuchsbauer@tuwien.ac.at

3 University of Maryland, College Park, USA
jloss@umiacs.umd.edu

Abstract. We give a taxonomy of computational assumptions in the
algebraic group model (AGM). We first analyze Boyen’s Uber assumption
family for bilinear groups and then extend it in several ways to cover
assumptions as diverse as Gap Diffie-Hellman and LRSW. We show that
in the AGM every member of these families is implied by the q-discrete
logarithm (DL) assumption, for some q that depends on the degrees of
the polynomials defining the Uber assumption.

Using the meta-reduction technique, we then separate (q+1)-DL from
q-DL, which yields a classification of all members of the extended Uber-
assumption families. We finally show that there are strong assumptions,
such as one-more DL, that provably fall outside our classification, by
proving that they cannot be reduced from q-DL even in the AGM.

Keywords: Algebraic group model · Uber assumption · Pairing-based
cryptography

1 Introduction

A central paradigm for assessing the security of a cryptographic scheme or
hardness assumption is to analyze it within an idealized model of computation.
A line of work initiated by the seminal work of Nechaev [Nec94] introduced
the generic group model (GGM) [Sho97,Mau05], in which all algorithms and
adversaries are treated as generic algorithms, i.e., algorithms that do not exploit
any particular structure of a group and hence can be run in any group. Because
for many groups used in cryptography (in particular, groups defined over some
elliptic curves), the best known algorithms are in fact generic, the GGM has
for many years served as the canonical tool to establish confidence in new cryp-
tographic hardness assumptions. Moreover, when cryptographic schemes have
been too difficult to analyze in the standard model, they have also directly been
proven secure in the GGM (for example LRSW signatures [LRSW99,CL04]).

Following the approach first used in [ABM15], a more recent work by Fuchs-
bauer, Kiltz, and Loss [FKL18] introduces the algebraic group model, in which all
algorithms are assumed to be algebraic [PV05]. An algebraic algorithm general-
izes the notion of a generic algorithm in that all of its output group elements must
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12171, pp. 121–151, 2020.
https://doi.org/10.1007/978-3-030-56880-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56880-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-56880-1_5

122 B. Bauer et al.

still be computed by generic operations; however, the algorithm can freely access
the structure of the group and obtain more information than what would be pos-
sible by purely generic means. This places the AGM between the GGM and the
standard model. In contrast to the GGM, one cannot give information-theoretic
lower bounds in the AGM; instead, one analyzes the security of a scheme by
giving security reductions from computational hardness assumptions.

Because of its generality and because it provides a powerful framework that
simplifies the security analyses of complex systems, the AGM has readily been
adopted, in particular in the context of SNARK systems [FKL18,MBKM19,
Lip19,GWC19]. It has also recently been used to analyze blind (Schnorr) signa-
tures [FPS20], which are notoriously difficult to prove secure in the standard or
random oracle model. Another recent work by Agrikola, Hofheinz and Kastner
[AHK20] furthermore shows that the AGM constitutes a plausible model, which
is instantiable under falsifiable assumptions in the standard model.

Since its inception, many proofs in the AGM have followed a similar structure,
which often consists of a series of tedious case distinctions. A natural question is
whether it is possible to unify a large body of relevant hardness assumptions under
a general ‘Uber’ assumption. This would avoid having to prove a reduction to a
more well-studied hardness assumption for each of them in the AGM separately.
In this work, we present a very rich framework of such Uber assumptions, which
contain, as special cases, reductions between hardness assumptions in the AGM
from prior work [FKL18,Los19]. We also show that there exists a natural hierar-
chy among Uber assumptions of different strengths. Together, our results give an
almost complete classification in the AGM of common hardness assumptions over
(bilinear) groups of prime order.

1.1 Boyen’s Uber Assumption Framework

The starting point of our generalizations is the Uber assumption framework by
Boyen [Boy08], which serves as an umbrella assumption in the bilinear GGM. Con-
sider a bilinear group G = (G1,G2,GT , e, p), where Gi is a group of prime order p
and e : G1 ×G2 → GT is a (non-degenerate) bilinear map, and let g1, g2 and gT be
generators of G1, G2 and GT , respectively. Boyen’s framework captures assump-
tions that are parametrized by polynomials R1, . . . , Rr, S1, . . . , Ss, T1, . . . , Tt and
F in a set of formal variables X1, . . . , Xm as follows. The challenger picks a vector
of randomly chosen points �x = (x1, . . . , xm) ∈ Z

m
p and gives the adversary a list

of group elements
(
g

R1(�x)
1 , . . . , g

Rr(�x)
1 , g

S1(�x)
2 , . . . , g

Ss(�x)
2 , g

T1(�x)
T , . . . , g

Tt(�x)
T

)
.

The adversary is considered successful it is able to compute g
F (�x)
T . Note that for

this not to be trivially computable, F must be independent from �R, �S and �T . That
is, it must not be a linear combination of elements from �T and (pairwise products
of) elements of �R and �S; otherwise, gF (x)

T could be computed from the given group
elements via group operations and the bilinear map.

A Classification of Computational Assumptions in the AGM 123

Boyen gives lower bounds for this family of assumptions following the com-
mon proof paradigm within the GGM. He also extends the idea of this first Uber
assumption [BBG05] with a fixed target polynomial F to an adaptive version
called flexible Uber Assumption, in which the adversary can choose the target
polynomial F itself (as long as it satisfies the same notion of independence from
�R, �S and �T that makes computing g

F (�x)
T non-trivial). Finally, Boyen proposes

an extension of his bounds to assumptions in which the elements of (�R, �S, �T)
and F may be rational fractions, that is, fractions of polynomials. We start
with considering a straightforward generalization of Boyen’s framework where
the solution the adversary must find can also be in one of the source groups,
that is, of the form g

F1(�x)
1 or g

F2(�x)
2 , as long as they satisfy some non-triviality

conditions (Definition 5). We next discuss the details of our adaptation of (our
generalization of) Boyen’s framework to the AGM.

1.2 An Uber-Assumption Framework for the AGM

The main challenge in analyzing Boyen’s framework in the AGM setting is that
we can no longer prove lower bounds as in the GGM. The next best thing would
be to reduce the Uber assumption to a well-established assumption such as the
discrete logarithm (DLog) assumption. Due to the general nature of the Uber
assumption, this turns out to be impossible; in particular, our negative result
(see below) establishes that algebraic reductions in the AGM can only reduce
DLog to Uber assumptions that are defined by linear polynomials.

Indeed, as for Boyen’s [Boy08] proofs in the GGM, the degrees of the involved
polynomials are expected to appear in our reductions. In our first theorem
in Sect. 3 we show that in the AGM any Uber assumption is implied by a
parametrized variant of the discrete logarithm problem: in the q-DLog prob-
lem the adversary, on top of the instance gz, is also given gz2

, . . . , gzq

and must
compute z. We prove that if the maximum total degree of the challenge polyno-
mials in (�R, �S, �T) of an Uber assumption is at most q, then it is implied by the
hardness of the q-DLog problem. This establishes that under q-DLog, anything
that is not trivially computable from a given instance (represented by (�R, �S, �T))
is infeasible to compute. We prove this by generalizing a technique first used by
Fuchsbauer et al. [FKL18] to prove soundness of Groth’s SNARK [Gro16] under
the q-DLog assumption in the AGM.

Proof idea. To convey our main idea, consider a simple instance of the Uber
assumption parametrized by polynomials R1, . . . , Rr, F1 and let �S = �T = ∅.
That is, the adversary is given group elements U1 = g

R1(�x)
1 , . . . ,Ur = g

Rr(�x)
1 for

a random �x and must compute U′ = g
F1(�x)
1 . For this problem to be non-trivial,

F1 must be linearly independent of R1, . . . , Rr, that is, for all �a ∈ Z
r
p we have

R′(�X) �= ∑
i aiRi(�X).

Since the adversary is assumed to be algebraic (see Definition 2), it computes
its output U′ from its inputs U1, . . . ,Ur by generic group operations, that is,
for some vector �μ we have U′ =

∏
i U

μi

i . In the AGM, the adversary is assumed

124 B. Bauer et al.

to output this vector �μ. Taking the logarithm of the previous equation yields

R′(�x) =
∑r

i=1 μiRi(�x). (1)

Since R′ is independent from �R, the polynomial P (�X) := R′(�X) − ∑
i μiRi(�X)

is non-zero. On the other hand, (1) yields P (�x) = 0 for a successful adversary.
The adversary has thus (implicitly) found a non-zero polynomial P , which has

the secret �x among its roots. Now, in order to use this to solve a q-DLog instance
(g1, gz

1 , . . . , g
zq

1), we embed a randomized version of z into every coordinate of �x.
In particular, for random vectors �y and �v, we implicitly let xi := yiz+ vi mod p.
By leveraging linearity, the reduction can compute the group elements Ui =
g

Ri(�x)
1 , etc, from its DLog instance.

If P (�X) is non-zero then Q(Z) := P (y1Z + v1, . . . , ymZ + vm) is non-zero
with overwhelming probability: the values vi guarantee that the values yi are
perfectly hidden from the adversary and, as we show (Lemma 1), the leading
coefficient of Q is a non-zero polynomial evaluated at y1, . . . , ym, values that
are independent of the adversary’s behavior. Schwartz-Zippel thus bounds the
probability that the leading coefficient of Q is zero, and thus, that Q ≡ 0. Since
Q(z) = P (�x) = 0, we can factor the univariate polynomial Q and find the DLog
solution z, which is among its roots.

Extensions. We next extend our approach to a flexible (i.e., adaptive) version
of the static Uber assumption, where the adversary can adaptively choose the
polynomials (Sect. 4) as well as a generalization from polynomials to rational
fractions (Sect. 5). We combine the flexible framework with the rational fraction
framework in Sect. 6. After these generalizations, our framework covers assump-
tions such as strong Diffie-Hellman [BB08], where the adversary must compute
a rational fraction of its own choice in the exponent.

In a next step (Sect. 7), we extend our framework to also cover gap-type
assumptions such as Gap Diffie-Hellman (GDH) [OP01], which was recently
proven equivalent to the DLog assumption in the AGM by Loss [Los19]. GDH
states that the CDH assumption remains true even when the DDH assumption no
longer holds. Informally, the idea of the proof given in [Los19] (first presented in
[FKL18] for a restricted version of GDH) is to argue that the DDH oracle given
to an algebraic adversary is useless, unless the adversary succeeds in breaking
CDH during an oracle query. The reduction simulates the DDH oracle by always
returning false. We generalize this to a broader class of assumptions, using a
different simulation strategy, which avoids a security loss.

We also present (Sect. 8) an extension of our (adaptive) framework that
allows to capture assumptions as strong as the LRSW assumption [LRSW99],
which forms the basis of the Camenisch-Lysyanskaya signature scheme [CL04].
The LRSW assumption falls outside (even the adaptive version of) Boyen’s Uber
framework, since the adversary need not output the polynomial it is computing
in the exponent.

The LRSW and GDH assumptions were previously studied in the AGM in
the works of [FKL18,Los19], who gave very technical proofs spanning multiple
pages of case distinctions. By comparison, our Uber Framework offers a more

A Classification of Computational Assumptions in the AGM 125

general and much simpler proof for both of these assumptions. Finally, we are
able to prove all these results using tight reductions. This, in particular, improves
upon the non-tight reduction of DLog to LRSW in [FKL18].

1.3 Classifying Assumptions in Our Framework

Finally, we prove two separation results that show the following:

Separating (q + 1)-DLog from q-DLog. This shows that with respect to
currently known (i.e., algebraic) reduction techniques, the Uber assumption, for
increasing degrees of the polynomials, defines a natural hierarchy of assumptions
in the AGM. More concretely, the q-lowest class within the established hierarchy
consists of all assumptions that are covered by a specific instantiation of the Uber
assumption which can be reduced from the q-DLog problem. Our separation result
(Theorem 7) shows that there is no algebraic reduction from the q-DLog problem
to the (q + 1)-DLog problem in the AGM. This implies that assumptions within
different classes are separated with respect to algebraic reductions. Interestingly,
we are even able to show our separation for reductions that can rewind and choose
the random coins of the solver for the (q + 1)-DLog problem freely.

Separating OMDL from q-DLog. Our second result (Theorem 8) shows
a separation result between the one-more-DLog problem (OMDL) (where the
adversary has to solve q DLog instances and is given an oracle that computes
discrete logarithms, which it can access q−1 times) and the q-DLog problem (for
any q) in the AGM. Our result strengthens a previous result by Bresson, Mon-
nerat, and Vergnaud [BMV08], who showed a separation between the discrete
logarithm problem (i.e, where q = 1) and the 2-one-more-DLog problem with
respect to black-box reductions. By comparison, our result holds even in the
AGM, where reductions are inherently non-black-box, as the AGM implicitly
assumes an efficient extractor algorithm that extracts algebraic coefficients from
the algebraic adversary. As the extractor is non-black-box (since it depends on
the algebraic adversary), neither is any reduction that non-trivially leverages the
AGM.

Our result clearly establishes the limits of our framework, as it excludes the
OMDL family of assumptions. Unlike our first separation, this one comes with
the caveat that it only applies to reductions that are “black-box in the AGM”,
meaning that they simply obtain the algebraic coefficients via the extractor, but
cannot rewind the adversary or choose its random coins.

1.4 Related Work

A long line of research has considered frameworks to capture general classes
of assumptions. We give an overview of the most closely related works. The
first Uber assumptions were introduced by Boyen et al. [BBG05,Boy08]. Others
later gave alternative concepts to classify assumptions within cyclic groups. The
works of Chase et al. [CM14,CMM16] study assumptions in bilinear groups of
composite order, which are not considered in the original Uber framework. They
show that several q-type assumptions are implied by (static) “subgroup-hiding”

126 B. Bauer et al.

assumptions. This gives evidence that this type of assumption, which is specific
to composite-order groups, is particularly strong.

More recently, Ghadafi and Groth [GG17] studied a broader class of assump-
tions in which the adversary must compute a group element from GT . Like our
work, their framework applies to prime-order groups and extends to the case
where the exponents can be described by rational fractions, and they also sep-
arate classes of assumptions from each other. However, their framework only
deals with non-interactive assumptions, which do not cover the adaptive type
of assumptions we study in our flexible variants (in fact, the authors mention
extending their work to interactive assumptions as an open problem [GG17]).
Their work does not cover assumptions such as GDH or LRSW, which we view
as particularly interesting (and challenging) to classify. Indeed, our framework
appears to be the first in this line of work that offers a classification comprising
this type of assumptions.

A key difference is that Ghadafi and Groth’s results are in the standard model
whereas we work in the AGM. While this yields stronger results for reductions,
their separations are weaker (in addition to separating less broad types of Uber
assumptions), as they are with respect to generic reductions, whereas ours hold
against algebraic reductions that can assume that the adversary is algebraic.
Furthermore, their work considers black-box reductions that treat the underlying
solver as an (imperfect) oracle, while we show the non-existence of reductions in
the AGM, which are, by definition, non-black-box (see above). A final difference
to the work of [GG17] lies in the tightness of all our reductions, whereas non of
theirs are tight.

At CT-RSA’19 Mizuide, Takayasu, and Takagi [MTT19] studied static (i.e.,
non-flexible) variants and generalizations of the Diffie-Hellman problem in prime-
order groups (also with extensions to the bilinear setting) by extending proofs
from [FKL18] in the obvious manner. Most of their results are special cases
of our Uber assumption framework. Concretely, when restricting the degrees of
all input polynomials to 1 in our static Uber Assumption, our non-triviality
condition implies all corresponding theorems in their paper (except the ones
relating to Matrix assumptions, which are outside the scope of this work). By
our separation of q-DLog for different q, our results for higher degrees do not
follow from theirs by currently known techniques. Finally, they do not cover the
flexible (adaptive) variants nor oracle-enhanced- and hidden-polynomial-type
assumptions (such as GDH and LRSW).

A further distinction that sets our work apart from these prior works is our
formulation of the aforementioned ‘hidden-type’ assumptions, where we allow the
adversary to solve the problem with respect to a group generator of its own choice
instead of the one provided by the game. A recent work [BMZ19] shows that
even in the GGM, allowing randomly chosen generators results in unexpected
complications when proving lower bounds. Similarly, giving the adversary this
additional freedom makes proving (and formalizing) our results more challenging.
We also give this freedom to the reductions that we study (and prove impossible)
in our separation results.

A Classification of Computational Assumptions in the AGM 127

2 Algebraic Algorithms and Preliminaries

Algorithms. We denote by s $← S the uniform sampling of the variable s from
the (finite) set S. All our algorithms are probabilistic (unless stated otherwise)
and written in uppercase letters A,B. To indicate that algorithm A runs on
some inputs (x1, . . . , xn) and returns y, we write y $← A (x1, . . . , xn). If A has
access to an algorithm B (via oracle access) during its execution, we write y $←
AB (x1, . . . , xn).

Polynomials and rational fractions. We denote polynomials by uppercase
letters P,Q and specify them by a list of their coefficients. If m is an integer,
we denote by Zp[X1, . . . , Xm] the set of m-variate polynomials with coefficients
in Zp and by Zp (X1, . . . , Xm) the set of rational fractions in m variables with
coefficients in Zp. We define the total degree of a polynomial P (X1, . . . , Xn) =∑

�i∈Nm

λi1,...,im

∏m
j=1 X

ij

j ∈ Zp[X1, . . . , Xm] as max
�i∈Nm :λi1,...,im �≡p0

{ ∑m
j=1 ij

}
.

For the degree of rational fractions we will use the “French” definition [AW98]:
for (P,Q) ∈ Zp[X1, . . . , Xm] × (Zp[X1, . . . , Xm] \ {0}) we define

deg P
Q

:= degP − degQ.

This definition has the following properties: The degree does not depend on
the choice of the representative; it generalizes the definition for polynomials;
and the following holds: deg(F1 · F2) = degF1 + degF2, and deg(F1 + F2) ≤
max{degF1,degF2}.

We state the following technical lemma, which we will use in our reductions
and prove in the full version.

Lemma 1. Let P be a non-zero multivariate polynomial in Zp[X1, . . . , Xm]
of total degree d. Define Q(Z) ∈ (Zp[Y1, . . . , Ym, V1, . . . , Vm])[Z] as Q(Z) :=
P (Y1Z + V1, . . . , YmZ + Vm). Then the coefficient of maximal degree of Q is a
polynomial in Zp[Y1, . . . , Ym] of degree d.

We will use the following version of the Schwartz-Zippel lemma [DL77]:

Lemma 2. Let P ∈ Zp[X1, . . . , Xm] be a non-zero polynomial of total degree d.
Let r1, . . . , rm be selected at random independently and uniformly from Z

∗
p. Then

Pr
[
P (r1, . . . , rm) ≡p 0

] ≤ d
p−1 .

Bilinear Groups. We next state the definition of a bilinear group.

Definition 1 (Bilinear group). A bilinear group (description) is a tuple G =
(G1,G2,GT , e, φ, ψ, p) such that

– Gi is a cyclic group of prime order p, for i ∈ {1, 2, T};
– e is a non-degenerate bilinear map e : G1 × G2 → GT , that is, for all a, b ∈

Zp and all generators g1 of G1 and g2 of G2 we have that gT := e(g1, g2)
generates GT and e(ga

1 , gb
2) = e(g1, g2)ab = gab

T ;
– φ is an isomorphism φ : G1 → G2, and ψ is an isomorphism ψ : G2 → G1.

128 B. Bauer et al.

All group operations and the bilinear map e must be efficiently computable. G is
of Type 1 if the maps φ and ψ are efficiently computable; G is of Type 2 if there
is no efficiently computable map φ; and G is of Type 3 if there are no efficiently
computable maps φ and ψ. We require that there exist an efficient algorithm
GenSamp that returns generators g1 of G1 and g2 of G2, so that g2 is uniformly
random, and (for Types 1 and 2) g1 = ψ(g2) or (Type 3) g1 is also uniformly
random. By GenSampi we denote a restricted version that only returns gi.

In the following, we fix a bilinear group G = (G1,G2,GT , e, φ, ψ, p).

(Algebraic) Security games. We use a variant of (code-based) security
games [BR04]. In game GG (defined relative to G), an adversary A interacts with
a challenger that answers oracle queries issued by A. The game has a main pro-
cedure and (possibly zero) oracle procedures which describe how oracle queries
are answered. We denote the output of a game GG between a challenger and an
adversary A by GA

G . A is said to win if GA
G = 1. We define the advantage of A in

GG as AdvG
G,A := Pr

[
GA

G = 1
]

and the running time of GA
G as TimeGG,A. In this

work, we are primarily concerned with algebraic security games GG , in which we
syntactically distinguish between elements of groups G1,G2 and GT (written in
bold, uppercase letters, e.g., Z) and all other elements, which must not depend
on any group elements.

We next define algebraic algorithms. Intuitively, the only way for an algebraic
algorithm to output a new group element Z is to derive it via group operations
from known group elements.

Definition 2 (Algebraic algorithm for bilinear groups). An algorithm Aalg

executed in an algebraic game GG is called algebraic if for all group elements
Z ∈ G (where G ∈ {G1,G2,GT }) that Aalg outputs, it additionally provides a
representation in terms of received group elements in G and those from groups
from which there is an efficient mapping to G; in particular: if U0, . . . ,U� ∈ G1,
V0, . . . ,Vm ∈ G2 and W0, . . . ,Wt ∈ GT are the group elements received so far
then Aalg provides vectors �μ, �ν, �ζ, �η, �δ and matrices A = (αi,j), B = (βi,j), Γ =
(γi,j) such that

– Z ∈ G1 (Type 1 and 2): Z =
∏

i U
μi

i · ∏
i ψ(Vi)νi

(Type 3): Z =
∏

i U
μi

i

– Z ∈ G2 (Type 1): Z =
∏

i φ(Ui)ζi · ∏
i V

ηi

i

(Type 2 and 3): Z =
∏

i V
ηi

i

– Z ∈ GT : Z =
∏

i

∏
j e

(
Ui,Vj

)αi,j · ∏
i

∏
j e

(
Ui, φ(Uj)

)βi,j

·∏i

∏
j e

(
ψ(Vi),Vj

)γi,j · ∏
i W

δi
i ,

where βi,j = 0 for Type 2 and βi,j = γi,j = 0 for Type 3.

We remark that oracle access to an algorithm B in the AGM includes any
(usually non-black-box) access to B that is needed to extract the algebraic coef-
ficients. Thus, our notion of black-box access in the AGM mainly rules out
techniques such as rewinding B or running it on non-uniform random coins.

A Classification of Computational Assumptions in the AGM 129

2.1 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of a group.
Informally, an algorithm is generic if it works regardless of what group it is run in.
This is usually modeled by giving an algorithm indirect access to group elements
via abstract handles. It is straight-forward to translate all of our algebraic games
into games that are syntactically compatible with generic algorithms accessing
group elements only via abstract handles. We measure the running times of
generic algorithms as queries to an oracle that implements the abstract group
operation, i.e., every query accounts for one step of the algorithm. We highlight
this difference by denoting the running time of a generic algorithm with the
letter o rather than t. We say that winning algebraic game GG is (ε, o)-hard in
the generic group model if for every generic algorithm Agen it holds that

TimeGG,Agen
≤ o =⇒ AdvG

G,Agen
≤ ε.

As all of our reductions run the adversary only once and without rewinding,
the overhead in the running time of our reductions is additive only. We make
the reasonable assumption that, compared to the running time of the adversary,
this is typically small, and therefore ignore the losses in the running times for
this work in order to keep notational overhead low.

We assume that a generic algorithm Agen provides the representation of Z
relative to all previously received group elements, for all group elements Z that
it outputs. This assumption is w.l.o.g. since a generic algorithm can only obtain
new group elements by querying two known group elements to the generic group
oracle; hence a reduction can always extract a valid representation of a group
element output by a generic algorithm. This way, every generic algorithm is also
an algebraic algorithm.

Furthermore, if Bgen is a generic oracle algorithm and Aalg is an algebraic
algorithm, then Balg := B

Aalg
gen is also an algebraic algorithm. We refer to [Mau05]

for more on generic algorithms.

Security Reductions. All our security reductions are (bilinear) generic algo-
rithms, which allows us to compose all of our reductions with hardness bounds in
the (bilinear) generic group model (see next paragraph). Let GG ,HG be security
games. We say that algorithm Rgen is a generic (Δ(·)

ε ,Δ
(+)
ε ,Δ

(·)
o ,Δ

(+)
o)-reduction

from HG to GG if Rgen is generic and if for every algebraic algorithm Aalg, algo-
rithm Balg defined as Balg := R

Aalg
gen satisfies

AdvH
G,Balg

≥ 1

Δ
(·)
ε

·
(
AdvG

G,Aalg
− Δ(+)

ε

)
,

TimeHG,Balg
≤ Δ(·)

o ·
(
TimeGG,Aalg

+ Δ(+)
o

)
.

Furthermore, for simplicity of notation, we will make the convention of referring
to

(
1,Δε, 1,Δo

)
-reductions as (Δε,Δo)-reductions.

130 B. Bauer et al.

Fig. 1. q-discrete logarithm game q-dlog Gi
(left) and (q1, q2)-discrete logarithm game

(q1, q2)-dlog G (right) relative to group Gi, i ∈ {1, 2} and G, resp., and adversary A.

Composing information-theoretic lower bounds with reductions in

the AGM. The following lemma from [Los19] explains how statements in the
AGM compose with bounds from the GGM.

Lemma 3. Let GG and HG be algebraic security games and let Rgen be a generic
(
Δ

(·)
ε ,Δ

(+)
ε ,Δ

(·)
o ,Δ

(+)
o

)
-reduction from HG to GG. If HG is (ε, o)-secure in the

GGM, then GG is (ε′, o′)-secure in the GGM where

ε′ = ε · Δ(·)
ε + Δ(+)

ε , o′ = o/Δ(·)
o − Δ(+)

o .

The q-discrete logarithm assumption and variants. For this work, we
consider two generalizations of the DLog assumption, which are parametrized
(i.e., “q-type”) variants of the DLog assumption. We describe them via the alge-
braic security games q-dlog Gi

and (q1, q2)-dlog G in Fig. 1.
The following Lemma, which follows similarly to the generic security of q-

SDH in [BB08], is proved (asymptotically) in [Lip12]. For completeness, we give
a concrete proof in the full version.

Lemma 4. Let o, q1, q2 ∈ N, let q := max{q1, q2}. Then q-DLog and (q1, q2)-
DLog are

((o+q+1)2q
p−1 , o

)
-secure in the bilinear generic group model.

We remark that all though our composition results are stated in the bilinear
GGM, it is straight forward to translate them to the standard GGM if the
associated hardness assumption is stated over a pairing-free group. This is true,
because in those cases, our reductions will also be pairing-free and hence are
standard generic algorithms themselves.

3 The Uber-Assumption Family

Boyen [Boy08] extended the Uber-assumption framework he initially introduced
with Boneh and Goh [BBG05]. We start with defining notions of independence
for polynomials and rational fractions (of which polynomials are a special case):

Definition 3. Let �R ∈ Zp(X1, . . . , Xm)r and W ∈ Zp(X1, . . . , Xm). We say
that W is linearly dependent on �R if there exist coefficients (ai)ri=1 ∈ Z

r
p such

that W =
∑r

i=1 aiRi. We say that W is (linearly) independent from �R if it is
not linearly dependent on �R.

A Classification of Computational Assumptions in the AGM 131

Fig. 2. Algebraic game for the Uber assumption relative to bilinear group G and adver-
sary Aalg, parametrized by (vectors of) or polynomials �R, �S, �F , R′, S′ and F ′

Definition 4 ([Boy08]). Let �R, �S, �F and W be vectors of rational fractions from
Zp(X1, . . . , Xm) of length r, s, f and 1, respectively. We say that W is (“bilin-
early”) dependent on (�R, �S, �F) if there exist coefficients {ai,j}, {bi,j}, {ci,j} and
{dk} in Zp such that

W =
r∑

i=1

s∑

j=1

ai,jRiSj +
r∑

i=1

r∑

j=1

bi,jRiRj +
s∑

i=1

s∑

j=1

ci,jSiSj +
f∑

k=1

dkFk.

We call the dependency of Type 2 if bi,j = 0 for all i, j and of Type 3 if
bi,j = ci,j = 0 for all i, j. Else, it is of Type 1. We say that W is (Type-τ)
independent from (�R, �S, �F) if it is not (Type-τ) dependent on (�R, �S, �F). (Thus,
W can be Type-3 independent but Type-2 dependent.)

Consider the Uber-assumption game in Fig. 2, which is parametrized by
vectors of polynomials �R, �S and �F and polynomials R′, S′ and F ′. For a random
vector �x, the adversary receives the evaluation of the (vectors of) polynomials in
the exponents of the generators g1, g2 and gT ; its goal is to find the evaluation
of the polynomials R′, S′ and F ′ at �x in the exponents. Note that we do not
explicitly give the generators to the adversary. This is without loss of generality
because we can always set R1 = S1 = F1 ≡ 1.

It is easily seen that the game can be efficiently solved if one of the following
conditions hold (where we distinguish the different types of bilinear groups and
interpret all polynomials over Zp):

(Type 1) If R′ is dependent on �R and �S, and S′ is dependent on �R and �S, and
F ′ is Type-1 dependent (Definition 4) on (�R, �S, �F).

(Type 2) If R′ is dependent on �R and �S, S′ is dependent on �S, and F ′ is Type-2
dependent (Definition 4) on (�R, �S, �F).

(Type 3) If R′ is dependent on �R, S′ is dependent on �S, and F ′ is Type-3
dependent (Definition 4) on (�R, �S, �F).

For example, in Type-2 groups, if R′ =
∑

i a′
iRi +

∑
i b′

iSi and S′ = 1, and
F ′ =

∑
i

∑
j ai,jRiSi +

∑
i

∑
j ci,jSiSj , then from a challenge (�U, �V, �W), one

132 B. Bauer et al.

can easily compute a solution U′ :=
∏

i U
a′

i
i · ψ(

∏
i V

b′
i

i), V′ := g2, W′ :=∏
i

∏
j e(Ui,Vj)ai,j · ∏

i

∏
j e(ψ(Vi),Vj)bi,j .

In our main theorem, we show that whenever the game in Fig. 2 cannot
be trivially won, then for groups of Type τ ∈ {1, 2}, it can be reduced from
q-dlog G2

, and for Type-3 groups, it can be reduced from (q1, q2)-dlog G (for
appropriate values of q, q1, q2). To state the theorem for all types of groups, we
first define the following non-triviality condition (which again we state for the
more general case of rational fractions):

Definition 5 (Non-triviality). Let �R ∈ Zp(X1, . . . , Xm)r, �S ∈ Zp(X1, . . . ,

Xm)s, �F ∈ Zp(X1, . . . , Xm)f , R′, S′, F ′ ∈ Zp(X1, . . . , Xm). We say that the tuple
(�R, �S, �F ,R′, S′, F ′) is non-trivial for groups of type τ , for τ ∈ {1, 2, 3}, if:

– R′ is linearly independent from �R and �S in case τ ∈ {1, 2},
R′ is linearly independent from �R in case τ = 3; (τ .1)

– or S′ is linearly independent from �R and �S in case τ = 1,
S′ is linearly independent from �S in case τ ∈ {2, 3}; (τ .2)

– or F ′ is Type-τ “bilinearly” independent (Definition 4) from (�R, �S, �F). (τ .T)

We have argued above that if the tuple (�R, �S, �F ,R′, S′, F ′) is trivial then
the (�R, �S, �F ,R′, S′, F ′)-über problem is trivial to solve, even with a generic
algorithm. In Theorem 1 we now show that if the tuple is non-trivial then the
corresponding Uber assumption holds for algebraic algorithms, as long as a type
of q-DLog assumption holds (whose type depends on the type of bilinear group).

The (additive) security loss of the reduction depends on the degrees of the
polynomials involved (as well as the group type and its order). E.g., in Type-3
groups, if R′ is independent of �R then the probability that the reduction fails is
the maximum degree of R′ and the components of �R, divided by the order of G.
In Type-1 and Type-2 groups, due to the homomorphism ψ, the loss depends on
the maximum degree of R′, �R and �S. Similar bounds hold when S′ is independent
of �S (and �R for Type 1); and slightly more involved ones for the independence
of F ′. If several of R′, S′ and F ′ are independent then the reduction chooses the
strategy that minimizes the security loss.

Definition 6 (Degree of non-trivial tuple of polynomials). Let (�R, �S, �F ,
R′, S′, F ′) be a non-trivial tuple of polynomials in Zp[X1, . . . , Xm]. Define d�R

:=
max{degRi}1≤i≤r, d�S

:= max{degSi}1≤i≤s, d�F
:= max{degFi}1≤i≤f . We

define the type-τ degree dτ of (�R, �S, �F ,R′, S′, F ′) as follows:

– If (τ .1) holds, let dτ.1 := max{degR′, d�R, d�S} in case τ ∈ {1, 2} and
dτ.1 := max{degR′, d�R} in case τ = 3.

– If (τ .2) holds, let dτ.2 := max{degS′, d�R, d�S} in case τ = 1 and
dτ.2 := max{degS′, d�S} in case τ ∈ {2, 3}.

– If (τ .T) holds, let dτ.T := max{degF ′, 2 d�R, 2 d�S , d�F } when τ = 1,
dτ.T := max{degF ′, d�R + d�S , 2 d�S , d�F } in case τ = 2 and
dτ.T := max{degF ′, d�R + d�S , d�F } in case τ = 3.

A Classification of Computational Assumptions in the AGM 133

If (τ, i) does not hold, we set dτ,i := ∞ and define dτ := min{dτ.1, dτ.2, dτ.T }.
(By non-triviality, dτ < ∞.)

Theorem 1 (DLog implies Uber in the AGM). LetG be of type τ ∈ {1, 2, 3}
and (�R, �S, �F ,R′, S′, F ′) ∈ (Zp[X1, . . . , Xm])r+s+f+3 be a tuple of polynomials
that is non-trivial for type τ and define d�R

:= max{degRi}, d�S
:= max{degSi},

d�F
:= max{degFi}. Let q, q1, q2 be such that q ≥ max{d�R, d�S , d�F /2} as well as

q1 ≥ d�R, q2 ≥ d�S and q1 + q2 ≥ d�F . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (�R, �S, �F ,R′, S′, F ′)-überG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε + dτ

p−1 and t′ ≤ t + o1,

where dτ is the maximal degree of (�R, �S, �F ,R′, S′, F ′), as defined in Definition 6,
o1 := o0+2+(2�log2(p)
)((d�R+1)r+(d�S+1)s+(d�F +1)f+dτ)+rd�R+sd�S+fd�F
with o0 := d�R + d�F + 2 for Types 1 and 2, and o0 := d�F + 1 for in Type 3.

Proof. We give a detailed proof for Type-2 bilinear groups and then explain how
to adapt it to Types 1 and 3. For u ∈ Zp and i ∈ {1, 2, T} we let [u]i denote gu

i .
Let Aalg be an algebraic algorithm against überG that wins with advantage ε

in time t. We construct a generic reduction with oracle access to Aalg, which yields
an algebraic adversary Balg against q-dlog G2

. There are three (non-exclusive)
reasons for (�R, �S, �F ,R′, S′, F ′) being non-trivial, which correspond to conditions
(2.1), (2.2) and (2.T) in Definition 5. Each condition enables a different type of
reduction, of which Balg runs the one that minimizes d2 from Definition 6.

We start with Case (2.1), that is, R′ is linearly independent from �R and �S.

Adversary Balg(g2,Z1, . . . ,Zq): On input a problem instance of game q-dlog G2

with Zi = [zi]2, Balg simulates überG for Aalg. It defines g1 ← ψ(g2) and
gT ← e(g1, g2). Then, it picks random values �y $← (Z∗

p)
m and �v $← Z

m
p ,

implicitly sets xi := yiz + vi mod p and computes �U := [�R (x1, . . . , xm)]1,
�V := [�S (x1, . . . , xm)]2, �W := [�F (x1, . . . , xm)]T from its q-DLog instance,
the isomorphism ψ : G2 → G1 and the pairing e : G1 × G2 → GT . It can do
so efficiently since the total degrees of the polynomials in �R, �S and �F are
bounded by q, q and 2q respectively.1

Next, Balg runs (U′,V′,W′) $← Aalg(�U, �V, �W). Since Aalg is algebraic, it also
returns vectors and matrices �μ, �ν, �ζ, �δ,A = (αi,j)i,j , Γ = (γi,j)i,j such that

U′ =
∏

i U
μi

i · ∏
i ψ(Vi)νi (2a)

1 E.g., Balg can compute [xq
1]1 = [(y1z + v1)

q]1 as
∏

i ψ(Zi)(
q
i)y

i
1v

q−i
1 and [x2q

1]T as

e
(∏

i ψ(Zi)(
q
i)y

i
1v

q−i
1 ,

∏
i Z

(q
i)y

i
1v

q−i
1

i

)
and similarly for terms in more variables.

134 B. Bauer et al.

V′ =
∏

i V
ηi

i (2b)

W′ =
∏

i

∏
j e

(
Ui,Vj

)αi,j · ∏
i

∏
j e

(
ψ(Vi),Vj

)γi,j · ∏
i W

δi
i . (2c)

Balg then computes the following multivariate polynomial, which corresponds
to the exponents of (2a):

P1(�X) = R′(�X) − ∑r
i=1 μiRi(�X) − ∑s

i=1 νiSi(�X), (3)

which is non-zero because in Case (2.1) R′ is independent from �R and �S.
From P1, it defines the univariate polynomial

Q1(Z) := P1(y1Z + v1, . . . , ymZ + vm). (4)

If Q1 is the zero polynomial then Balg aborts. (∗)
Else, it factors Q1 to obtain its roots z1, . . . (of which there are at most
max{degR′, d�R, d�S}; we analyse the degree of Q1 below). If for one of them
we have gzi

2 = Z, then Balg returns zi.

We analyze Balg’s success probability. First note that Balg perfectly simulates
game überG , as the values xi are uniformly distributed in Zp and �U, �V and �W
are correctly computed.

Moreover, if Balg does not abort in (∗) and Aalg wins game überG , then
U′ = [R′(�x)]1. On the other hand,

U′ =
∏

i U
μi

i · ψ(
∏

i V
νi
i) =

[∑
i μiRi(�x) +

∑
i νiSi(�x)

]
1
.

Together, this means that P1(�x) ≡p 0 and since xi ≡p yiz+vi, moreover Q1(z) ≡p

0. By factoring Q1, reduction Balg finds thus the solution z.
It remains to bound the probability that Balg aborts in (∗), that is, the event

that 0 ≡ Q1(Z) = P1 (y1Z + v1, . . . , ymZ + vm). Interpreting Q1 as an element
from (Zp[Y1, . . . , Ym, V1, . . . , Vm])[Z], Lemma 1 yields that its maximal coefficient
is a polynomial Qmax

1 in Y1, . . . , Ym whose degree is the same as the maximal
(total) degree d of P1. From P1 �≡ 0 and P1(�x) = 0, we have d > 0.

We note that the values y1z, . . . , ymz are completely hidden from Aalg because
they are “one-time-padded” with v1, . . . , vm, respectively. This means that the
values (�μ, �ν) returned by Aalg are independent from �y. Since �y is moreover inde-
pendent from R′, �R and �S, it is also independent from P1, Q1 and Qmax

1 . The
probability that Q1 ≡ 0 is thus upper-bounded by the probability that its max-
imal coefficient Qmax

1 (�y) ≡p 0 when evaluated at the random point �y. By the
Schwartz-Zippel lemma, the probability that Q1(Z) ≡ 0 is thus upper-bounded
by d

p−1 . The degree d of Q1 (and thus of Qmax
1) is upper-bounded by the total

degrees of P1, which is max{d′
R, d�R, d�S} = d2.1 in Definition 6. Balg thus aborts

in line (*) with probability at most d2,1
p−1 .

Case (2.2), that is, S′ is linearly independent from �S, follows completely
analogously, but with d = d2.2 = max{dS′ , d�S}.

A Classification of Computational Assumptions in the AGM 135

Case (2.T), when F ′ is type-2-independent of �R, �S and �F , is also analogous;
we highlight the necessary changes: From Aalg’s representation (A = (αi,j), Γ =
(γi,j), �δ) ∈ Z

r×s
p × Z

s×s
p × Z

f
p for W′ (see (2c)), that is,

W′ =
∏

i

∏
j e

(
Ui,Vj

)αi,j · ∏
i

∏
j e

(
ψ(Vi),Vj

)γi,j · ∏
i W

δi
i

=
[∑

i

∑
j αi,jRi(�x)Sj(�x) +

∑
i

∑
j γi,jSi(�x)Sj(�x) +

∑
i δiFi(�x)

]
T
. (5)

Analogously to (3) we define

PT (�X) := F ′(�X) − ∑r
i=1

∑s
j=1 αi,jRi(�X)Sj(�X)

− ∑s
i=1

∑s
j=1 γi,jSi(�X)Sj(�X) − ∑f

i=1 δiFi(�X), (6)

which is of degree at most d2.T := max{degF ′, d�R + d�S , 2 · d�S , d�F }. Polynomial
PT is non-zero by Type-2-independence of F ′ (Definition 4). The reduction also
computes QT (Z) := PT (y1Z + v1, . . . , ymZ + vm).

If Aalg wins then W′ = [F ′(�x)]T , which together with (5) implies that
PT (�x) ≡p 0 and thus QT (z) ≡p 0. Reduction Balg can find z by factoring QT ;
unless QT (Z) ≡ 0, which by an analysis analogous to the one for case (2.1) hap-
pens with probability d2.T

p−1 . (We detail the reduction for the case where W′ is
independent in the proof of Theorem 3, which proves a more general statement.)

Theorem 1 for Type-2 groups now follows because Advq-dlog
G2,Balg

≥ Advüber
G,Aalg

−
Pr[Balg aborts] and Balg follows the type of reduction that minimizes its abort
probability to min

{
d2.1
p−1 , d2.2

p−1 , d2.T

p−1

}
= d2

p−1 .

Groups of Type 1 and 3. The reduction for bilinear groups of Type 1 to
q-dlog G2

is almost the same proof. The only change is that for Case (1.T) the
polynomial PT in (6) has an extra term −∑r

i=1

∑r
j=1 βi,jRi(�X)Rj(�X), because

of the representation of W′ in Type-1 groups (see Definition 2); the degree of PT is
then bounded by max{degF ′, 2 d�R, 2 d�S , d�F }. Analogously for Case (1.2), S′ can
now depend on �S as well as �R. The reduction for Type-1 groups to q-dlog G1

is
completely symmetric by swapping the roles of G1 and G2 and replacing ψ by φ.

The reduction for Type-3 groups relies on the (q1, q2)-dlog G assumption, as
it requires {[zi]1}q1

i=1 and {[zi]2}q2
i=1 to simulate {[Ri(�x)]1}r

i=1 and {[Si(�x)]2}s
i=1.

without using any homomorphism φ or ψ. Apart from this, the proof is again anal-
ogous. (We treat the Type-3 case in detail in the proof of Theorem 3.) In the full
version we detail the analysis of the running times of these reductions. ��

Using Lemmas 3 and 4 we obtain the following corollary to Theorem 1:

Corollary 1. Let G be of type τ and (�R, �S, �F ,R′, S′, F ′) be non-trivial for τ of
maximal degree dτ . Then (�R, �S, �F ,R′, S′, F ′)-überG is

((o+o1+1+q)2q
p−1 + dτ

p−1 , o
)
-

secure in the generic bilinear group model.

Comparison to previous GGM results. Boneh, Boyen and Goh [BBG05,
Theorem A.2] claim that the decisional Uber assumption for the particular case

136 B. Bauer et al.

Fig. 3. Algebraic game for the flexible Uber assumption

r = s and f = 0 is
((o+2r+2)2q

2p , o
)
-secure in the generic group model, and with

the same reasoning, one can obtain the more general bound
((o+r+s+f+2)2q

2p , o
)
.

Note that the loss in their bound is only linear in the maximum degree while
ours cubic. Our looser bound is a result of our reduction, whereas Boneh, Boyen
and Goh prove their bound directly in the GGM.2

4 The Flexible Uber Assumption

Boyen [Boy08] generalizes the Uber assumption framework to flexible assump-
tions, where the adversary can define the target polynomials (R′, S′ and F ′ in
Fig. 2) itself, conditioned on the solution not being trivially computable from the
instance, for non-triviality as in Definition 5. In Sect. 6 we consider this kind of
flexible Uber assumption in our generalization to rational fractions and thereby
cover assumptions like q-strong Diffie-Hellman [BB08].

For polynomials, we generalize this further by allowing the adversary to also
(adaptively) choose the polynomials that constitute the challenge. The adversary
is provided with an oracle that takes input a value i ∈ {1, 2, T} and a polyno-
mial P (�X) of the adversary’s choice, and returns g

P (�x)
i , where �x is the secret

value chosen during the game. The adversary then wins if it returns polynomials
(R∗, S∗, F ∗), which are independent from its queries, and

(
g

R∗(�x)
1 , g

S∗(�x)
2 , g

F ∗(�x)
T

)
.

The game for this flexible Uber assumption is specified in Fig. 3.

Theorem 2. Let m ≥ 1, let G be a bilinear-group of type τ ∈ {1, 2, 3} and
consider an adversary Aalg in game m-f-überG. Let d′

1, d
′
2, d

′
T , d∗

1, d
∗
2, d

∗
T be such

that Aalg’s queries (i, P (�X)) satisfy degP ≤ d′
i and its output values R∗, S∗, F ∗

satisfy degR∗ ≤ d∗
1, degS∗ ≤ d∗

2, degF ∗ ≤ d∗
T . Let q, q1, q2 be such that q ≥

max{d′
1, d

′
2, d

′
T /2} as well as q1 ≥ d′

1, q2 ≥ d′
2 and q1 + q2 ≥ d′

T . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

2 We did not consider the bound claimed in [Boy08, Theorem 1], because it is an
incorrect copy of the one in [BBG05].

A Classification of Computational Assumptions in the AGM 137

Fig. 4. Algebraic game for the Uber assumption relative to bilinear group G and adver-
sary Aalg, parametrized by (vectors of) rational fractions �R, �S, �F , R′, S′ and F ′

then m-f-überG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε + dτ

p−1 and t′ ≈ t,

where dτ is as in Definition 6 after the following replacements: d�R ← d′
1, d�S ←

d′
2, d�F ← d′

F , degR′ ← d∗
1, degS′ ← d∗

2 and degF ′ ← d∗
T .

Proof (sketch). Inspecting the proof of Theorem 1, note that the values [Ri(�x)]1,
[Si(�x)]2 and [Fi(�x)]T need not be known in advance and can be computed by
the reduction at any point, as long as the degrees of Ri and Si are bounded by
q and those of Fi by 2q. The adversary could thus specify the polynomials via
oracle calls and the reduction can compute Ui, Vi and Fi on the fly.

Likewise, the polynomials P1, P2 and PT (and their univariate counterparts
which the reduction factors) are only defined after Aalg stops; therefore, R′, S′

and F ′, from which they are defined, need only be known then. The proof of
Theorem 1 is thus adapted to prove Theorem 2 in a very straightforward way. ��

5 The Uber Assumption for Rational Fractions

Reconsider the Uber assumption in Fig. 2, but now let �R, �S, �F ,R′, S′ and F ′

be rational fractions over Zp rather than polynomials. We will show that even
this generalization of the Uber assumption is implied by q-DLog assumptions.
We start with introducing some notation. We view a rational fraction as defined
by two polynomials, its numerator and its denominator, and assume that the
fraction is reduced. For a rational fraction R ∈ Zp(X1, . . . , Xm), we denote its
numerator by R̂ and its denominator by Ř. That is R̂, Ř ∈ Zp[X1, . . . , Xm]
are such that R = R̂/Ř. As rational fractions are not defined everywhere, we
modify the game from Fig. 2 so the adversary wins should the experiment choose
an input �x for which one of the rational fractions is not defined. The rational-
fraction uber game is given in Fig. 4.

For a vector of rational fractions �R ∈ Zp(X1, . . . , Xm)r, we define its common
denominator Den(�R) as a least common multiple of the denominators of the

138 B. Bauer et al.

components of �R. In particular, fix an algorithm LCM that given a set of poly-
nomials returns a least common multiple of them. Then we define:

Den(�R) = Den(R̂1/Ř1, . . . , R̂r/Řr) := LCM{Ř1, . . . , Řr}.

We let ď�R denote the degree of Den(�R) and d�R denote the maximal degree of
the elements of �R, that is d�R

:= max{deg(R1), . . . ,deg(Rr)}. Note that this
integer could be negative and is lower bounded by −ď�R. The security loss in
Theorem 3 depends on the type of the bilinear group, the reason for the tuple
(�R, �S, �F ,R′, S′, F ′) being non-trivial, as well as the degrees of the numerators
and denominators of the involved rational fractions. We summarize this in the
following technical definition.

Definition 7 (Degree of non-trivial tuple of rational fractions). Let
(�R, �S, �F ,R′, S′, F ′) be a non-trivial tuple whose elements are rational fractions
in Zp(X1, . . . , Xm). Let dden := ď�R‖�S‖�F‖R′‖S′‖F ′ . We define the type-τ degree

dτ of (�R, �S, �F ,R′, S′, F ′) as follows, distinguishing the kinds of non-triviality
defined in Definition 5.

(Type 1) – If (1.1) holds, let d1.1 := dden + ďR′ + ď�R‖�S +max{dR′ , d�R, d�S}
– if (1.2) holds, let d1.2 := dden + ďS′ + ď�R‖�S +max{dS′ , d�R, d�S}
– if (1.T) holds, d1.T := dden+ďF ′+ď�R‖�S‖�F +ď�R‖�S+max{dF ′ , 2d�S , 2d�R, d�F }

(Type 2) – If (2.1) holds, let d2.1 := dden + ďR′ + ď�R‖�S +max{dR′ , d�R, d�S}
– if (2.2) holds, let d2.2 := dden + ďS′ + ď�S +max{dS′ , d�S}
– if (2.T) holds, d2.T := dden + ďF ′ + ď�R‖�S‖�F + ď�S + max{dF ′ , 2d�S , d�R +

d�S , d�F }
(Type 3) – If (3.1) holds, let d3.1 := dden + ďR′ + ď�R +max{dR′ , d�R}

– if (3.2) holds, let d3.2 := dden + ďS′ + ď�S +max{dS′ , d�S}
– if (3.T) holds, d3.T := dden + ďF ′ + ď�R‖�F + ď�S +max{dF ′ , d�R + d�S , d�F }

If (τ, i) does not hold, set dτ,i := ∞. Define dτ := min{dτ.1, dτ.2, dτ.T }.
Theorem 3 (DLog implies Uber for rational fractions in the AGM).
Let G be a bilinear group of type τ ∈ {1, 2, 3} and let (�R, �S, �F ,R′, S′, F ′) ∈ (Zp

(X1, . . . , Xm))r+s+f+3 be a tuple that is non-trivial for type τ (Definition 5). Let
q, q1 and q2 be such that q ≥ ď�R‖�S‖�F +max{d�R, d�S , d�F /2} and q1 ≥ ď�R‖�F + d�R

and q2 ≥ ď�S + d�S and q1 + q2 ≥ ď�R‖�F + ď�S + d�F . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (�R, �S, �F ,R′, S′, F ′)-rüberG, as defined in Fig. 4, is (ε′, t′)-secure in the
AGM with

ε′ ≤ ε + dτ

p−1 and t′ ≈ t,

where dτ is the maximal degree of (�R, �S, �F ,R′, S′, F ′), as defined in Definition 7.

A Classification of Computational Assumptions in the AGM 139

Fig. 5. Algebraic game for the flexible-targets Uber assumption

The proof extends the ideas used to prove Theorem 1 by employing a tech-
nique from [BB08]. Consider a group of Type 1 or 2. The reduction computes D :=
Den(�R‖�S‖�F), a least common multiple of the denominators of the instance. Given
a q-DLog instance g2, g

z
2 , g

z2

2 , . . ., it first implicitly sets xi := yiz + vi mod p, then
it checks whether any denominator evaluates to zero at �x (this entails the additive
loss dden). Then it computes a new random generator h2 := g

D(y1z+v1,...,ymz+vm)
2

and h1 := ψ(h2). For rational fractions Si = Ŝi/Ši, it then uses h1, h2 to com-
pute the Uber challenge elements h

Si(�x)
2 as g

S(�x)
2 for the polynomial S(�X) :=

(Ŝi · D/Ši)(�X), and likewise for Ri and Fi. This explains the lower bound on q

in the theorem statement. When the adversary returns a group element h
R′(�x)
i so

that R′ is non-trivial, then from the algebraic representations of this element we
can define a polynomial (which with overwhelming probability is non-zero) that
vanishes at z. The difference here is that we expand by the denominator of R′ in
order to obtain a polynomial. The degree of this polynomial is bounded by the
values in Definition 7, which also bound the failure probability of the reduction.
In Type-3 groups, the reduction can set h1 := g

Den(�R‖�F)(�x)
1 and h1 := g

Den(�S)(�x)
2 ,

which leads to better bounds. We detail this case in our proof of Theorem 3, which
can be found in the full version due to space constraints.

6 The Uber Assumption for Rational Fractions
and Flexible Targets

For rational fractions, we can also define a flexible generalization, where the adver-
sary can choose the target polynomials R′, S′ and F ′ in Fig. 2 itself, conditioned
on the tuple (�R, �S, �F ,R′, S′, F ′) being non-trivial. The game is specified in Fig. 5.
This extension covers assumptions such as the q-strong DH assumption by Boneh
and Boyen [BB08], which they proved secure in the generic group model. A q-SDH
adversary is given (gi, g

z
i , gz2

i , . . . , gzq

i) for i = 1, 2 and must compute (g(z+c)−1

1 , c)
for any c ∈ Zp \{−z} of its choice. This is an instance of the flexible game in Fig. 5
when setting m = 1, r = s = q + 1, f = 0 and Ri(X) = Si(X) = Xi−1, and the
adversary returns R∗(X) = 1/(X + c), S∗(X) = F ∗(X) = 0.

140 B. Bauer et al.

Theorem 4 (DLog implies flexible-target Uber for rational fractions in
the AGM). Let G be a bilinear group of type τ ∈ {1, 2, 3} and let (�R, �S, �F) ∈
(Zp(X1, . . . , Xm))r+s+f be a tuple of rational fractions.

Consider an adversary Aalg in game (�R, �S, �F)-f-rüber (Fig. 5) and let d∗
1, d

∗
2,

d∗
T , ď∗

1, ď
∗
2, ď

∗
T be such that Aalg’s outputs R∗, S∗, F ∗ satisfy degR∗ ≤ d∗

1, degS∗ ≤
d∗
2, degF ∗ ≤ d∗

T , deg Ř∗ ≤ ď∗
1, deg Š∗ ≤ ď∗

2 and deg F̌ ∗ ≤ ď∗
T .

Let q, q1 and q2 be such that q ≥ ď�R‖�S‖�F + max{d�R, d�S , d�F /2} and let q1 ≥
ď�R‖�F + d�R and q2 ≥ ď�S + d�S and q1 + q2 ≥ ď�R‖�F + ď�S + d�F , where ď�R =
ď(R̂1/Ř1,...,R̂r/Řr)

= deg LCM{Ř1, . . . , Řr}. If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then (�R, �S, �F)-f-rüberG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε + dτ

p−1 and t′ ≈ t,

where dτ is defined as in Definition 7, except for defining dden := ď�R‖�S‖�F and
replacing (ďR′ , ďS′ , ďF ′ , dR′ , dS′ , dF ′) by (ď∗

1, ď
∗
2, ď

∗
T , d∗

1, d
∗
2, d

∗
T).

Proof (sketch). Much in the way the proof of Theorem 1 is adapted to Theorem 2,
Theorem 4 is proved similarly to Theorem 3. Since P1, P2 and PT are only defined
once the adversary returns its rational fractions R∗, S∗, F ∗, they need not be
known in advance. (Note that, unlike for polynomials (Theorem 2), the instance
(�R, �S, �F) does have to be fixed, as the reduction uses it to set up the generators
h1 and h2.) A difference to Theorem 4 is the value dden in the security loss,
which is now smaller since the experiment need not check the denominators of
the target fractions. ��

7 Uber Assumptions with Decisional Oracles

In this section we show that we can provide the adversary, essentially for free, with
an oracle that checks whether the logarithms of given group elements satisfy any
polynomial relation. In more detail, the adversary is given access to an oracle that
takes as input a polynomial P ∈ Zp[X1, . . . , Xn] and group elements Y1, . . . ,Yn

(from any group G1,G2 or GT) and checks whether P (logY1, . . . , logYn) ≡p 0.
Decisional oracles can be added to any type of Uber assumption; for concreteness,
we extend the most general variant from the previous section. The game f-drüber
(“d” for decisional oracles) is defined in Fig. 6. This extension covers assumptions
such as Gap Diffie-Hellman (DH) [OP01], where the adversary must solve a DH
instance while being given an oracle that checks whether a triple (Y1,Y2,Y3) is a
DH tuple, i.e., YlogY2

1 = Y3. This oracle is a special case of the one in Fig. 6, when
called with P (X1,X2,X3) := X1X2 − X3.

A Classification of Computational Assumptions in the AGM 141

Fig. 6. Algebraic game for the flexible-targets Uber assumption with decisional oracles

Theorem 5 (DLog implies flexible-target Uber for rational fractions
with decisional oracles in the AGM). The statement of Theorem 4 holds
when f-rüber is replaced by f-drüber.

Proof (sketch). The reduction Balg from (�R, �S, �F)-f-drüber to q-DLog (or
(q1, q2)-DLog) works as for Theorem 4 (as detailed in the proof of Theorem 3),
except that Balg must also answer Aalg’s oracle queries, which we describe in the
following for Type-3 groups.

As for Theorem 4, Balg, on input (�Y, �Z) with Yi = [zi]1 and Zi = [zi]2,
for 0 ≤ i ≤ q, computes LCMs of denominators D := Den(�R‖�S‖�F), D1 :=
Den(�R‖�F) and D2 := Den(�S). It picks �y $← (Z∗

p)
m and �v $← Z

m
p , implicitly

sets xi := yiz + vi mod p and checks if D(�x) ≡p 0. If so, the reduction derives
the corresponding univariate polynomial and finds z. Otherwise it computes
h1 := [D1(�x)]1, h2 := [D2(�x)]2 (note that D1(�x) and D2(�x) are non-zero), Ui =
[(D1 · Ri)(�x)]1, Vi = [(D2 · Si(�x)]2 and Wi = [(D1 · D2 · Fi)(�x)]T .

Consider a query O(P, (Y1, . . . ,Yn)) for some n and P ∈ Zp[X1, . . . , Xn],
and Yi ∈ Gιi

for ιi ∈ {1, 2, T}. Since Aalg is algebraic, it provides representations
of the group elements Yi with respect to its input (�U, �V, �W); in particular, for
each Yi, depending on the group, it provides �μi or �ηi or (Ai, �δi) such that:

(Yi ∈ G1) Yi =
∏r

j=1 U
μi,j

j =
[∑r

j=1 μi,j(D1 · Rj)(�x)
]
1
=:

[
Qi(z)

]
1

(Yi ∈ G2) Yi =
∏s

j=1 V
ηi,j

j =
[∑s

j=1 ηi,j(D2 · Sj)(�x)
]
2
=:

[
Qi(z)

]
2

(Yi ∈ GT) Yi =
∏r

j=1

∏s
k=1 e(Uj ,Vk)αi,j,k · ∏f

j=1 W
δi,j

j

=
[∑r

j=1

∑s
k=1 αi,j,k(D1 ·Rj)(�x) (D2 ·Sj)(�x)+

∑f
j=1 δi,j(D1 ·D2 ·Fj)(�x)

]
T

=:
[
Qi(z)

]
T
,

where D1 ·Rj , D2 ·Sj and D1 ·D2 ·Fj are multivariate polynomials (not rational
fractions) and Qi is the polynomial defined by replacing Xi by yiZ + vi. Let
D′

i(Z) be defined from Di(�X) analogously. Then we have loggιi
Yi = Qi(z) and

furthermore loghιi
Yi = Qi(z)/Dιi

(z), where DT := D1 · D2.

142 B. Bauer et al.

To answer the oracle query,Balg must therefore determine whether the function
P (Q1/Di1 , . . . , Qn/Din

) vanishes at z. Since D1(z),D2(z) �≡p 0, this is the case
precisely when P := Dd

1 ·Dd
2 ·P (Q1/Di1 , . . . , Qn/Din

) vanishes at z, where d is the
maximal degree of P . Note that P is a polynomial. The reduction distinguishes 3
cases:

1. P ≡ 0: in this case, the oracle replies 1.
2. P �≡ 0: in this case, Balg factorizes P to find its roots z1, . . ., checks whether

Z1 = gzi for some i. If this is the case, it stops and returns the solution zi to
its (q1, q2)-DLog instance.

3. Else, the oracle replies 0.

Correctness of the simulation is immediate, since the correct oracle reply is 1 if
and only if P (z) ≡p 0. ��

8 The Flexible Gegenuber Assumption

In this section, we show how to extend the Uber framework even further, by
letting the adversary generate its own generators (for the outputs), yielding the
GeGenUber assumption. Consider the LRSW assumption [LRSW99] in Type-1
bilinear groups: given (X = gx, Y = gy) (which can be viewed as a signature
verification key [CL04]) and an oracle, which on input (a message) m ∈ Zp

returns (a signature) (ga, gay, ga(x+mxy)) for a random a $← Zp, it is infeasible to
return (a signature on a fresh message) ((ga∗

, ga∗y, ga∗(x+m∗xy),m∗)) for any a∗

and m∗ different from the queried values. Since the adversary need not return the
value a∗, this cannot be cast into the Uber framework. Associating the a-values
chosen by the signing oracle to formal variables, in the Uber framework �X would
correspond to (X,Y,A1, . . . , A�) and signing queries to the polynomials Ai, AiY
and AiX +miAiXY . Now the adversary can choose a fresh generator g∗ := ga∗

and must return ((g∗)R
∗
i (

�X))3i=1 for R∗
1 ≡ 1, R∗

2 = Y and R∗
3 = X + m∗XY for

some m∗ ∈ Z
∗
pr of its choice.

Our last generalization now extends the flexible Uber assumption from
Sect. 4 by letting the adversary generate its own generators U, V and W
of G1, G2 and GT , resp., and return polynomials R∗, S∗ and F ∗, as well as
(UR∗(�x),VS∗(�x),WF ∗(�x)). The game m-gegenüber is defined in Fig. 7. However,
this additional freedom for the adversary induces a necessary change in the defini-
tion of non-triviality, as illustrated by the following simple (univariate) example:
after the challenger chooses x $← Zp, the adversary makes queries R1 := X and
R2 := X3 and receives U1 and U2. For all Uber assumptions so far, the polyno-
mial R∗ := X2 would be considered non-trivial. However, in game gegenüber
the adversary could return U := U1 = gx and U∗ := U2 = gx3

= UR∗(x).
Whereas until now the target polynomial R∗ was not allowed to be a lin-

ear combination of the queried polynomials P1, . . . , P� (or of products of such
polynomials, depending on the group types), for the Gegenuber assumption we
also need to exclude fractions of such linear combinations (such as X3/X in the
example above) to thwart trivial attacks.

A Classification of Computational Assumptions in the AGM 143

For a family E of polynomials, we denote by Span(E) all linear combinations
of elements of E, which we extend to fractions as

FrSp(E) := {P̂ /P̌ | (P̂ , P̌) ∈ Span(E) × (Span(E) \ {0})}.

Moreover, by E1 ∗ E2 we denote the set {P1 · P2 | (P1, P2) ∈ E1 × E2}.

Definition 8 (Non-triviality for Gegenuber assumption). Let Q1,Q2

and QT be sets of polynomials and let R∗, S∗ and F ∗ be polynomials. We say
that (Q1,Q2,QT , R∗, S∗, F ∗) is gegenuber-non-trivial for groups of type τ , if the
following holds:

– R∗ /∈ FrSp(Q1 ∪ Q2) for τ ∈ {1, 2} and R∗ /∈ FrSp(Q1) for τ = 3, (τ.1)
– or S∗ /∈ FrSp(Q1 ∪ Q2) for τ = 1 and S∗ /∈ FrSp(Q2) for τ ∈ {2, 3}, (τ.2)
– or F ∗ /∈ FrSp(QT ∪ (Q1 ∪ Q2) ∗ (Q1 ∪ Q2)) for τ = 1 (1.T)

F ∗ /∈ FrSp(QT ∪ (Q1 ∪ Q2) ∗ Q2) for τ = 2 (2.T)
F ∗ /∈ FrSp(QT ∪ (Q1 ∗ Q2)) for τ = 3. (3.T)

Definition 9 (Degree of non-triviality for Gegenuber assumption). Let
(Q1,Q2,QT , R∗, S∗, F ∗) be a non-trivial tuple of polynomials in Zp[X1, . . . , Xm].
For i ∈ {1, 2, T} define d′

i := max{degP}P∈Qi
. We define the type-τ degree dτ

of (Q1,Q2,QT , R∗, S∗, F ∗) as follows:

– If (τ.1) holds, let dτ.1 := max{1,degR∗} ·max{d′
1, d

′
2} in case τ ∈ {1, 2} and

dτ.1 := max{1,degR∗} · d′
1 in case τ = 3.

– If (τ.2) holds, let dτ.2 := max{1,degS∗} · max{d′
1, d

′
2} in case τ = 1 and

dτ.2 := max{1,degS∗} · d′
2 in case τ ∈ {2, 3}.

– If (τ.T) holds, let dτ.T := max{1,degF ∗} ·max{2 d′
1, 2 d′

2, d
′
T } for τ = 1

dτ.T := max{1,degF ∗} · max{d′
1 + d′

2, 2 d′
2, d

′
T } for τ = 2,

dτ.T := max{1,degF ∗} · max{d′
1 + d′

2, d
′
T } for τ = 3.

If (τ, i) does not hold, set dτ,i := ∞. Define dτ := min{dτ.1, dτ.2, dτ.T }.
Note that for all Uber variants, the adversary only outputs one element per

group Gi, which is without loss of generality, as a vector of group elements would
be non-trivial if at least one component is non-trivial. We defined the Gegenuber
assumption analogously, so one might wonder how this covers LRSW, where the
adversary must output group elements corresponding to two polynomials Y and
X + m∗XY . The reason is that LRSW holds even if the adversary only has to
output the latter polynomial: In the GGM this follows from LRSW being an
instance of Gegenuber, Theorem 6 (see below for both) and Lemmas 3 and 4.

To show that LRSW is gegenuber-non-trivial, consider the set of queries an
adversary can make, namely:

Q :=
{
1,X, Y, {Ai, AiY,AiX + miAiXY }�

i=1

}
.

144 B. Bauer et al.

Fig. 7. Algebraic game for the flexible Gegenuber assumption

To prove that the stronger variant of LRSW satisfies non-triviality as defined
in Definition 8, we show that for 0 �= m∗ /∈ {m1, . . . ,m�}: R∗ := X + m∗XY /∈
FrSp(Q). For the sake of contradiction, assume that for some P̌ , P̂ ∈ Span(Q),
P̌ �≡ 0:

(X + m∗XY)P̌ = P̂ . (7)

Since P̂ ∈ Span(Q), its total degree in X and Y is at most 2, which implies that
P̌ must be of degree 0 in X and Y . We can thus write P̌ as η +

∑�
j=1 αjAj for

some η and �α. Since X is a factor of the left-hand side of (7), P̂ cannot have terms
without X and must therefore be of the form P̂ = ξX+

∑�
j=1 μjAj (X + mjXY)

for some ξ and �μ. Equation (7) becomes thus

(X + m∗XY)
(
η +

∑�
j=1 αjAj

)
= ξX +

∑�
j=1 μjAj (X + mjXY) .

By equating coefficients, we get: η = ξ (from coeff. X) and m∗η ≡p 0 (from XY)
and for all j ∈ [1, �]: αj = μj (from AjX) and αjm

∗ ≡p μjmj (from AjXY).
Since m∗ �= 0, we have η = ξ = 0. Furthermore, if αj �= 0 for some j, then
mj = m∗, meaning it was not a valid solution. If αj = 0 for all j then P̌ ≡ 0,
which shows such P̂ and P̌ do not exist and thus X + m∗XY /∈ FrSp(Q).

Theorem 6. Let m ≥ 1, let G be a bilinear group of type τ ∈ {1, 2, 3} and let Aalg

be an adversary in game m-gegenüberG. Let d′
1, d

′
2, d

′
T , d∗

1, d
∗
2, d

∗
T be such that

Aalg’s queries (i, P (�X)) satisfy degP ≤ d′
i and its output satisfies degR∗ ≤ d∗

1,
degS∗ ≤ d∗

2, degF ∗ ≤ d∗
T . Let q, q1, q2 be such that q ≥ max{d′

1, d
′
2, d

′
T /2}, as

well as q1 ≥ d′
1, q2 ≥ d′

2 and q1 + q2 ≥ d′
T . If

(Type 1) q-dlog G1
or q-dlog G2

is (ε, t)-secure in the AGM,
(Type 2) q-dlog G2

is (ε, t)-secure in the AGM,
(Type 3) (q1, q2)-dlog G is (ε, t)-secure in the AGM,

then gegenüberG is (ε′, t′)-secure in the AGM with

ε′ ≤ ε + dτ

p−1 and t′ ≈ t,

with dτ from Definition 9 after replacing degR∗, degS∗ and degF ∗ by d∗
1, d

∗
2

and d∗
T , respectively.

A Classification of Computational Assumptions in the AGM 145

The proof can be found in the full version. It is an adaptation of the one for
the flexible uberassumption, which adapts the proof of Theorem 1.

In the proof of Theorem 6, the adversary also outputs a new generator U,
whose algebraic representation yields a polynomial Q ∈ Span(Q1 ∪ Q2) so that
U = [Q(�x)]1. For a valid solution U∗, we thus have U∗ = [R∗(�x) · Q(�x)]1.
On the other hand, the representation of U∗ yields U∗ = [Q∗(�x)]1 for some
Q∗ ∈ Span(Q1 ∪ Q2). We thus have that P1(�X) := R∗(�X) · Q(�X) − Q∗(�X)
vanishes at �x. By non-triviality, R∗ /∈ FrSp(Q1 ∪ Q2), which implies P1 �≡ 0, so
the reduction can find the roots of P1(y1Z+x1, . . . , ynZ+xn) and solve q-DLog.

9 Separation of (q + 1)-DL from q-DL

Now that we have shown that every Uber assumption falls into a (minimal) class
of assumptions that are equivalent to q-DLog, we show that these classes can be
separated according to their parameter q. We prove that, assuming that q-DLog
is hard, there does not exist an algebraic reduction from q-DLog to (q + 1)-
DLog. In particular, we show that if there exists a reduction Ralg that has access
to a (q + 1)-DLog (algebraic) adversary Aalg and can solve q-DLog, then there
exists a meta-reduction that uses Ralg to break q-DLog. In the following, we use
the notation Ralg(Aalg) to denote that Ralg has complete access to Aalg’s internal
state. In particular, Ralg is allowed to rewind Aalg to any point of an execution
and run Aalg on any choice of random coins as many times as it wants.

Theorem 7. Let Gi be a group of prime order p. There exists an algorithm M such
that the following holds. Let Ralg be an algebraic algorithm s.t. for every algorithm
Aalg that (t, ε)-breaks (q + 1)-dlogGi

, B = Ralg(Aalg) is an algorithm that (t′, ε′)-
breaks q-dlogGi

. If t ≥ 2 (2q + 1)�log2 p� then MRalg (t′, ε′)-breaks q-dlogGi
.

We start with a proof overview. Consider a reduction Ralg, which on input
a q-DLog instance (g, gx, . . . , gxq

) can run an algebraic adversary Aalg multiple
times on (q+1)-DLog instances (Z,Zy, . . . ,Zyq+1

); that is, Ralg can choose a new
generator Z and a new problem solution y. Since Ralg is algebraic, it outputs a
representation of the group elements composing its (q+1)-DLog instance in terms
of the received q-DLog instance. We distinguish two cases: if (a) y is independent
from x then the representation reveals y, which means that a meta-reduction M
can simulate a successful Aalg to Ralg, and the latter must thus find x. On the
other hand, if (b) y depends on x, then this yields a non-trivial equation in x,
which the meta-reduction can solve and thereby (without needing to simulate
Aalg) solve the q-DLog instance. To simplify the probability analysis, we let M
simulate Aalg even when Ralg behaves as in the second case (as it can compute y
from x). To correctly argue about the probability distributions, we ensure that
any malformed instance provided by the algebraic reduction Ralg is detected. We
will use the following lemma in the proof of Theorem 7:

Lemma 5. Let q ≥ 1, let F ∈ Zp(X) and let 0 �≡ P ∈ Zp[X] be of degree at
most q. If F q+1 ·P is a polynomial and of degree at most q, then F is constant.

146 B. Bauer et al.

Proof. Let F̂ , F̌ ∈ Zp[X] be coprime such that F = F̂ /F̌ . Then F̂ q+1 and F̌ q+1

are coprime as well. From this and the premise that F̂ q+1 ·P/F̌ q+1 is a polynomial,
we get that F̌ q+1 divides P , and thus (q + 1) · deg F̌ ≤ degP . Since the latter is
at most q, we have deg F̌ = 0.

Furthermore, we assumed that q ≥ deg(F q+1 · P) = (q + 1) · deg F̂ + degP ,
and thus deg F̂ = 0. Together, this means F is constant. ��
Proof (of Theorem 7). Let Ralg be an algebraic algorithm s.t. for every algorithm
Aalg that (t, ε)-breaks (q + 1)-dlogGi

, B = Ralg(Aalg) is an algorithm that (t′, ε′)-
breaks q-dlogGi

. In the following, we describe a meta-reduction M s.t. MRalg

(t′, ε′)-breaks q-dlogGi
.

M(g,X1, . . . ,Xq): Run Ralg on the received q-DLog instance (g, gx, . . . , gxq

).
Whenever Ralg runs adversary Aalg on (q +1)-DLog input (Z0,Z1, . . . ,Zq+1),
do the following. Let �zi = (zi,0, . . . , zi,q) for 0 ≤ i ≤ q + 1 be the representa-
tion vectors for Z0, . . . ,Zq+1 provided by Ralg; that is, Zi =

∏q
j=0(g

xj

)zi,j .
If Z0 = 1 then return ⊥. (∗)
Else define

Pi(X) :=
∑q

j=0 zi,jX
j for 0 ≤ i ≤ q + 1 and (8)

Qi := Pi+1P0 − PiP1 for 0 ≤ i ≤ q. (9)

M now distinguishes two cases:
(a) Qi ≡ 0 for all i ∈ [0, q]: Then (as we argue below) P1/P0 ≡ c, that is, a

constant polynomial. M returns c as Aalg’s output.
(b) For some k ∈ [0, q]: Qk �≡ 0: Compute the roots x1, . . . of Qk and check if

for some j: gxj = X1. If not, then return ⊥ as Aalg’s output. (∗∗)
Else let y := P1(xj)/P0(xj) mod p. (1 �= Z0 = gP0(xj), thus P0(xj) �≡p 0.)
If for some i ∈ [1, q + 1] : Zi �= Zyi

0 , return ⊥ as Aalg’s output. (∗∗∗)
Else return y.

Correctness of simulation. We now argue that M always correctly simulates an
adversary Aalg that solves (q + 1)-DLog if it received a correct instance, and
returns ⊥ otherwise. Consider the case where Ralg provides a valid (q +1)-DLog
instance, that is Z0 �= 1 and

∃ y ∈ Z
∗
p ∀ i ∈ [1, q + 1] : Zi = Zyi

0 . (10)

By (8), we have Zi = gPi(x) for all i. Since Z0 �= 1, M does not stop in line (∗)
and P0(x) �≡p 0. Moreover, from (10) we have y ≡p P1(x)/P0(x) and

Pi+1(x) ≡p P1(x)/P0(x) · Pi(x), (11)

in other words, Qi(x) ≡p 0 for all i ∈ [0, q].
In case (a), Qi ≡ 0, and thus, letting F := P1/P0, we have (by Definition (9))

Pi+1 = F · Pi for all i, and by induction:

∀ i ∈ [0, q + 1] : Pi = F i · P0,

A Classification of Computational Assumptions in the AGM 147

and in particular Pq+1 = F q+1 ·P0. Since Pq+1 and P0 are polynomials of degree
at most q, by Lemma 5 we get F ≡ c for c ∈ Zp. The meta-reduction M thus
returns c ≡p F (x) ≡p P1(x)/P0(x) ≡p y.

In case (b), since Qk �≡ 0 but, by (11), Qk(x) ≡p 0, the meta-reduction finds x
and M does not stop in line (∗∗) and neither in line (∗∗∗), since y ≡p P1(x)/P0(x).

Now consider the case that Ralg sends a malformed instance: if Z0 is not a
generator then Aalg returns ⊥ in line (∗). Assume Z0 is a generator (and thus
P0(x) �≡p 0), but (10) is not satisfied. Using the algebraic representations of
Z0, . . . ,Zq+1, this is equivalent to

∀ y ∈ Z
∗
p ∃ k ∈ [1, q + 1] : Pk(x) �≡p ykP0(x). (12)

We first show that the meta-reduction M goes to case (b): Indeed, if Qi ≡ 0 for all
i ∈ [0, q], then Pi+1(x) ≡p P1(x)/P0(x)·Pi(x) for all i and, by induction, Pi(x) ≡p

(P1(x)/P0(x))i ·P0(x), which, setting y := P1(x)/P0(x) mod p, contradicts (12).
Let k ∈ [0, q] be such that Qk �≡ 0. If x is not among the roots of Qk, then

M returns ⊥ in line (∗∗). Otherwise, it sets y := P1(x)/P0(x) mod p. If for some
i ∈ [1, q + 1]: Pi(x) �≡p yiP0(x) then M returns ⊥ in line (∗∗∗). If not then this
contradicts (12). Therefore, the simulation will return ⊥ on invalid inputs.

For the simulation of Aalg the meta-reduction needs to compute at most 2q + 1
exponentiations, each of which require at most 2�log2 p� group operations using
square and multiply. The simulation of Aalg is thus perfect and takes at most
t steps. The meta-reduction M succeeds in winning q-dlogGi

whenever B =
Ralg(Aalg) wins q-dlogGi

. Therefore, we obtain

Pr
[
q-dlogM

Gi
= 1

]
= Pr

[
q-dlogB

Gi
= 1

] ≥ ε′.

Moreover, the running time of M is that of B, i.e., t′. This completes the proof. ��
A similar result can be shown for (q1, q2)-dlogG , that is, (q1, q2)-dlogG is not

implied by (q′
1, q

′
2)-dlogG if q′

1 > q1 or q′
2 > q2.

10 Separation of 2-One-More DL from q-DL

We conclude with showing that “one-more”-discrete logarithm (OMDL) assump-
tions fall outside of our q-DLog taxonomy. While it is known that there is no
black-box reduction from DLog to OMDL [BMV08], we show that there is no
algebraic reduction either, even one for algebraic adversaries.

To obtain the strongest possible impossibility result, we show that for no
q ∈ N, there exists an algebraic reduction from q-DLog (a stronger assumption
than DLog) to 2-OMDL (the weakest variant of OMDL assumptions), unless
q-DLog is easy. The game for 2-OMDL is depicted in Fig. 8. The proof uses the
same high-level idea as for Theorem 8. If the representation of the group elements
the reduction gives to the adversary is independent of its own q-DLog challenge,
then the meta-reduction can directly simulate the adversary. Else, they depend
on the q-DLog challenge in a way that allows the meta-reduction to derive a

148 B. Bauer et al.

Fig. 8. Game for 2-one-more discrete logarithm 2-omdl Gi
relative to bilinear group

Gi, i ∈ {1, 2} and adversary Aalg

q-DLog solution. Compared to the previous section, we now restrict the algebraic
reduction to only have black-box access (according to our notion of black-box)
to the adversary. This is because a reduction that can choose the random coins
of the adversary in a non-uniform (adaptive) way can make the simulation of
the adversary by our meta-reduction fail.

We need to define the adversary’s behavior, that is, its oracle call, beforehand;
in particular, it must not depend on the type of representations obtained from
the reduction, which makes the proof more complicated and restricts the simula-
tion to adversaries that can fail with negligible probability. The adversary, after
receiving a 2-OMDL challenge (Y0,Y1,Y2), makes a query (Yr1

1 Yr2
2) for ran-

dom r1, r2 to its DLog oracle and then returns the 2-OMDL solution (logY0
Y1,

logY0
Y2). We now show how the meta-reduction simulates this adversary.

Since the reduction is algebraic, it provides with its 2-OMDL instance rep-
resentations �zi = (zi,0, . . . , zi,q) in terms of its q-DLog challenge (g, gx, . . . , gxq

),
such that logg Yi ≡p

∑q
j=0 zi,jx

j . From the reply y to the adversary’s single
oracle query, we get the following equation: 0 = logg(Y

r1
1 Yr2

2) − logg Y
y
0 ≡p∑q

j=0

(
r1z1,j + r2z2,j − yz0,j

)
xj .

The q-DLog challenge x is thus the root of the polynomial with coefficients
aj := (r1z1,j + r2z2,j − yz0,j) mod p, and the meta-reduction can find x if one of
these coefficients is non-zero. Using x, it can then compute logg Yi for all i from
the representations and from that the OMDL solution (logY0

Y1, logY0
Y2).

If, on the other hand, aj = 0 for some j then by plugging in the definition
of y, we get another polynomial which vanishes at x. We then show that, due
to the randomizers r1 and r2, with overwhelming probability, the coefficients
of this polynomial are non-zero – unless for some c1, c2 we have �z1 = c1�z0 and
�z2 = c2�z0. But in this case (c1, c2) is the solution to the 2-OMDL instance and
the meta-reduction can therefore finish the simulation of the adversary.

The proof of the following can be found in the full version.

Theorem 8. Let Gi be a group of prime order p. There exists an algorithm M
such that the following holds: Let Ralg be an algebraic reduction s.t. for every
algorithm Aalg that (t, ε)-breaks 2-omdlGi

, B = R
Aalg

alg is an algorithm that (t′, ε′)-
breaks q-dlogGi

. If t ≥ (6+2q)�log2 p�+1 and ε ≤ 1−1/p then MRalg (t′, ε′)-breaks
q-dlogGi

.

A Classification of Computational Assumptions in the AGM 149

Acknowledgements. This work is funded in part by the MSR–Inria Joint Centre.
The second author is supported by the Vienna Science and Technology Fund (WWTF)
through project VRG18-002. Parts of this work were done while he was visiting the
Simons Institute for the Theory of Computing.

References

[ABM15] Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE
password-authenticated key exchange protocol. In: 2015 IEEE Symposium
on Security and Privacy, pp. 571–587. IEEE Press (2015)

[AHK20] Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic
group model from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 96–126. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_4

[AW98] Deschamps, C., Warusfel, A., Moulin, F.: Mathématiques 1ère année:
Cours et exercices corrigés. Editions Dunod (1998)

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008).
https://doi.org/10.1007/s00145-007-9005-7

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639_26

[BMV08] Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-
more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 71–87. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-79263-5_5

[BMZ19] Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and ran-
dom generators in group-based assumptions. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 801–830. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_27

[Boy08] Boyen, X.: The uber-assumption family (invited talk). In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_3

[BR04] Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security
of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004).
http://eprint.iacr.org/2004/331

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8_4

[CM14] Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type
assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-55220-5_34

[CMM16] Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter
and broader reductions of q-type assumptions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 655–681.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-
6_22

https://doi.org/10.1007/978-3-030-45724-2_4
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-79263-5_5
https://doi.org/10.1007/978-3-540-79263-5_5
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-540-85538-5_3
http://eprint.iacr.org/2004/331
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-662-53890-6_22
https://doi.org/10.1007/978-3-662-53890-6_22

150 B. Bauer et al.

[DL77] DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program
testing. Technical report, Georgia Inst of Tech Atlanta School of Informa-
tion and Computer Science (1977)

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96881-0_2

[FPS20] Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp.
63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-
2_3

[GG17] Ghadafi, E., Groth, J.: Towards a classification of non-interactive com-
putational assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 66–96. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9_3

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5_11

[GWC19] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.
org/2019/953

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9_10

[Lip19] Lipmaa, H.: Simulation-extractable SNARKs revisited. ePrint Cryptogoly
Archive, Report 2019/612 (2019)

[Los19] Loss, J.: New techniques for the modular analysis of digital signature
schemes. Ph.D thesis, Ruhr University Bochum, Germany (2019)

[LRSW99] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems.
In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

[Mau05] Maurer, U.: Abstract models of computation in cryptography (invited
paper). In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/
11586821_1

[MBKM19] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge
SNARKs from linear-size universal and updatable structured reference
strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019, pp. 2111–2128. ACM (2019)

[MTT19] Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for Diffie-Hellman
variants in the algebraic group model. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 169–188. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-12612-4_9

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55(2), 165–172 (1994). https://doi.org/10.1007/
BF02113297

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/978-3-030-12612-4_9
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/BF02113297

A Classification of Computational Assumptions in the AGM 151

[OP01] Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems
for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44586-2_8

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol.
3788, pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447_1

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/3-540-69053-0_18

	AClassificationofComputationalAssumptions in the Algebraic Group Model*-1pc
	1 Introduction
	1.1 Boyen's Uber Assumption Framework
	1.2 An Uber-Assumption Framework for the AGM
	1.3 Classifying Assumptions in Our Framework
	1.4 Related Work

	2 Algebraic Algorithms and Preliminaries
	2.1 Generic Security Games and Algorithms

	3 The Uber-Assumption Family
	4 The Flexible Uber Assumption
	5 The Uber Assumption for Rational Fractions
	6 The Uber Assumption for Rational Fractions and Flexible Targets
	7 Uber Assumptions with Decisional Oracles
	8 The Flexible Gegenuber Assumption
	9 Separation of (q+1)-DL from q-DL
	10 Separation of 2-One-More DL from q-DL
	References

