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Abstract. This work introduces novel techniques to improve the trans-
lation between arithmetic and binary data types in secure multi-party
computation. We introduce a new approach to performing these conver-
sions using what we call extended doubly-authenticated bits (edaBits),
which correspond to shared integers in the arithmetic domain whose
bit decomposition is shared in the binary domain. These can be used
to considerably increase the efficiency of non-linear operations such as
truncation, secure comparison and bit-decomposition.

Our edaBits are similar to the daBits technique introduced by Rotaru
et al. (Indocrypt 2019). However, we show that edaBits can be directly
produced much more efficiently than daBits, with active security, while
enabling the same benefits in higher-level applications. Our method for
generating edaBits involves a novel cut-and-choose technique that may
be of independent interest, and improves efficiency by exploiting natural,
tamper-resilient properties of binary circuits that occur in our construc-
tion. We also show how edaBits can be applied to efficiently implement
various non-linear protocols of interest, and we thoroughly analyze their
correctness for both signed and unsigned integers.

The results of this work can be applied to any corruption threshold,
although they seem best suited to dishonest majority protocols such as
SPDZ. We implement and benchmark our constructions, and experimen-
tally verify that our technique yields a substantial increase in efficiency.
EdaBits save in communication by a factor that lies between 2 and 60
for secure comparisons with respect to a purely arithmetic approach, and
between 2 and 25 with respect to using daBits. Improvements in through-
put per second slightly lower but still as high as a factor of 47. We also apply
our novel machinery to the tasks of biometric matching and convolutional
neural networks, obtaining a noticeable improvement as well.

1 Introduction

Secure multi-party computation, or MPC, allows a set of parties to compute
some function f on private data, in such a way that the parties do not learn
anything about the actual inputs to f , beyond what could be computed given
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the result. MPC can be used in a wide range of applications, such as private
statistical analysis, machine learning, secure auctions and more.

MPC protocols can vary widely depending on the adversary model that is
considered. For example, protocols in the honest majority setting are only secure
as long as fewer than half of the parties are corrupt and colluding, whilst pro-
tocols secure against a dishonest majority allow all-but-one of the parties to be
corrupt. Another important distinction is whether the adversary is assumed to
be semi-honest, that is, they will always follow the instructions of the protocol,
or malicious, and can deviate arbitrarily.

The mathematical structure underpinning secure computation usually
requires to fix what we call a computation domain. The most common exam-
ples of such domains are computation modulo a large number (prime or power of
two) or binary circuits (computation modulo two). In terms of cost, the former is
more favorable to integer computation such as addition and multiplication while
the latter is preferable for highly non-linear functions such as comparisons.

Applications often feature both linear and non-linear functionality. For exam-
ple, convolution layers in deep learning consist of dot products followed by a non-
linear activation function. It is therefore desirable to convert between an arith-
metic computation domain and binary circuits. This has led to a line of works
exploring this possibility, starting with the ABY framework [20] (Arithmetic-
Boolean-Yao) in the two-party setting with semi-honest security. Other works
have extended this to the setting of three parties with an honest majority [2,30],
dishonest majority with malicious security [33], as well as creating compilers
that automatically decide which parts of a program should done in the binary
or arithmetic domain [9,12,28].

A particular technique that is relevant for us is so-called daBits [33] (doubly-
authenticated bits), which are random secret bits that are generated simulta-
neously in both the arithmetic and binary domains. These can be used for
binary/arithmetic conversions in MPC protocols with any corruption setting,
and have in particular been used with the SPDZ protocol [19], which provides
malicious security in the dishonest majority setting. Later works have given more
efficient ways of generating daBits [1,3,32], both with SPDZ and in the honest
majority setting.

Another recent work uses function secret sharing [6] for binary/arithmetic
conversions and other operations such as comparison [7]. This approach leads
to a fast online phase with just one round of interaction and optimal communi-
cation complexity. However, it requires either a trusted setup, or an expensive
preprocessing phase which has not been shown to be practical for malicious
adversaries.

Limitations of daBits. Using daBits, it is relatively straightforward to convert
between two computation domains. However, we found that in application-
oriented settings the benefit of daBits alone is relatively limited. More con-
cretely, if daBits are used to compute a comparison between two numbers that
are secret-shared in ZM , for large arithmetic modulus M , the improvement is
a factor of three at best. The reason for this is that the cost of creating the
required daBits comes quite close to computing the comparison entirely in ZM .
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This limitation seems to be inherent with any approach based on daBits, since
a daBit requires generating a random shared bit in ZM . The only known way of
doing this with malicious security require first performing a multiplication (or
squaring) in ZM on a secret value [16,17]. However, secret multiplication is an
expensive operation in MPC, and doing this for every daBit gets costly.

1.1 Our Contributions

In this paper, we present a new approach to converting between binary and
arithmetic representations in MPC. Our method is general, and can be applied
to a wide range of corruption settings, but seems particularly well-suited to the
case of dishonest majority with malicious security such as SPDZ [18,19], over
the arithmetic domain Zp for large prime p, or the ring Z2k [13]. Unlike previous
works, we do not generate daBits, but instead create what we call extended daBits
(edaBits), which avoid the limitations above. These allow conversions between
arithmetic and binary domains, but can also be used directly for certain non-
linear functions such as truncations and comparisons. We found that, for two-
and three-party computation, edaBits allow to reduce the communication cost
by up to two orders of magnitude and the wall clock time by up to a factor of
50 while both the inputs as well as the output are secret-shared in an arithmetic
domain.

Below we highlight some more details of our contribution.

Extended daBits. An edaBit consists of a set of m random bits (rm−1, . . . , r0),
secret-shared in the binary domain, together with the value r =

∑m−1
i=0 ri2i

shared in the arithmetic domain. We denote these sharings by [rm−1]2, . . . , [r0]2
and [r]M , for arithmetic modulus M . Note that a daBit is simply an edaBit of
length m = 1, and m daBits can be easily converted into an edaBit with a linear
combination of the arithmetic shares. We show that this is wasteful, however,
and edaBits can in general be produced much more efficiently than m daBits,
for values of m used in practice.
Efficient malicious generation of edaBits. Let us first consider a simple
approach with semi-honest security. If there are n parties, we have each party
locally sample a value ri ∈ ZM , then secret-shares ri in the arithmetic domain,
and the bits of ri in the binary domain. We refer to these sharings as a pri-
vate edaBit known to Pi. The parties can combine these by computing

∑
i ri in

the arithmetic domain, and executing n − 1 protocols for addition in the binary
domain, with a cost O(nm) AND gates. Compared with using daBits, which
costs O(m) secret multiplications in ZM , this is much cheaper if n is not too
large, by the simple fact that AND is a cheaper operation than multiplication
in MPC.

To extend this naive approach to the malicious setting, we need a way to
somehow verify that a set of edaBits was generated correctly. Firstly, we extend
the underlying secret-sharing scheme to one that enforces correct computations
on the underlying shares. This can be done, for instance, using authenticated
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secret-sharing with information-theoretic MACs as in SPDZ [19]. Secondly, we
use a cut-and-choose procedure to check that a large batch of edaBits are correct.
This method is inspired by previous techniques for checking multiplication triples
in MPC [8,22,23]. However, the case of edaBits is much more challenging to do
efficiently, due to the highly non-linear relation between sharings in different
domains, compared with the simple multiplicative property of triples (shares of
(a, b, c) where c = ab).

Cut-and-choose approach. Our cut-and-choose procedure begins as in the semi-
honest case, with each party Pi sampling and inputting a large batch of private
edaBits of the form (ri

m−1, . . . , r
i
0), r

i. We then run a verification step on Pi’s
private edaBits, which begins by randomly picking a small subset of the edaBits to
be opened and checked for correctness. Then, the remaining edaBits are shuffled
and put into buckets of fixed size B. The first edaBit in each bucket is paired
off with every other edaBit in the bucket, and we run a checking procedure on
each of these pairs. To check a pair of edaBits r, s, the parties can compute r + s
in both the arithmetic and binary domains, and check these open to the same
value. If all checks pass, then the parties take the first private edaBit from every
bucket, and add this to all the other parties’ private edaBits, created in the
same way, to obtain secret-shared edaBits. Note that to pass a single check, the
adversary must have corrupted both r and s so that they cancel each other out;
therefore, the only way to successfully cheat is if every bucket with a corrupted
edaBit contains only corrupted edaBits. By carefully choosing parameters, we can
ensure that it is very unlikely the adversary manages to do this. For example,
with 40-bit statistical security, from the analysis of [23], we could use bucket size
B = 3 when generating more than a million sets of edaBits.

While the above method works, it incurs considerable overhead compared
with similar cut-and-choose techniques used for multiplication triples. This is
because in every pairwise check within a bucket, the parties have to perform
an addition of binary-shared values, which requires a circuit with O(m) AND
gates. Each of these AND gates consumes an authenticated multiplication triple
over Z2, and generating these triples themselves requires additional layers of
cut-and-choose and verification machinery, when using efficient protocols based
on oblivious transfer [22,31,34].

To reduce this cost, our first optimization is as follows. Recall that the check
procedure within each bucket is done on a pair of private values known to one
party, and not secret-shares. This means that when evaluating the addition cir-
cuit, it suffices to use private multiplication triples, which are authenticated
triples where the secret values are known to party Pi. These are much cheaper
to generate than fully-fledged secret-shared triples, although still require a veri-
fication procedure based on cut-and-choose. To further reduce costs, we propose
a second, more significant optimization.

Cut-and-choose with faulty check circuits. Instead of using private triples that
have been checked separately, we propose to use faulty private triples, that is,
authenticated triples that are not guaranteed to be correct. This immediately
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raises the question, how can the checking procedure be useful, if the verification
mechanism itself is faulty? The hope is that if we randomly shuffle the set of
triples, it may still be hard for an adversary who corrupts them to ensure that
any incorrect edaBits are canceled out in the right way by the faulty check
circuit, whilst any correct edaBits still pass unscathed. Proving this, however, is
challenging. In fact, it seems to inherently rely on the structure of the binary
circuit that computes the check function. For instance, if a faulty circuit can
cause a check between a good and a bad edaBit to pass, and the same circuit
also causes a check between two good edaBits to pass, for some carefully chosen
inputs, then this type of cheating can help the adversary.

To rule this out, we consider circuits with a property we call weak additive
tamper-resilience, meaning that for any tampering that flips some subset of AND
gate outputs, the tampered circuit is either incorrect for every possible input,
or it is correct for all inputs. This notion essentially rules out input-dependent
failures from faulty multiplication triples, which avoids the above attack and
allows us to simplify the analysis.

Weak additive tamper-resilience is implied by previous notions of circuits
secure against additive attacks [24], however, these constructions are not prac-
tical over F2. Fortunately, we show that the standard ripple-carry adder circuit
satisfies our notion, and suffices for creating edaBits in Z2k . However, the circuit
for binary addition modulo a prime, which requires an extra conditional sub-
traction, does not satisfy this. Instead, we adapt the circuit over the integers to
use in our protocol modulo p, which allows us to generate length-m edaBits for
any m < log p; this turns out to be sufficient for most applications.

With this property, we can show that introducing faulty triples does not
help an adversary to pass the check, so we can choose the same cut-and-choose
parameters as previous works on triple generation, while saving significantly in
the cost of generating our triples used in verification. The bulk of our technical
contribution is in analysing this cut-and-choose technique.

Silent OT-friendly. Another benefit of our approach is that we can take
advantage of recent advances in oblivious transfer (OT) extension techniques,
which allow to create a large number of random, or correlated, OTs, with very
little interaction [5]. In practice, the communication cost when using this “silent
OT” method can be more than 100x less than OT extension based on previous
techniques [27], with a modest increase in computation [4]. In settings where
bandwidth is expensive, this suits our protocol well, since we mainly use MPC
operations in F2 to create edaBits, and these are best done with OT-based tech-
niques. This reduces the communication of our edaBits protocol by an O(λ)
factor, in practice cutting communication by 50–100x, although we have not yet
implemented this optimization.

Note that it does not seem possible to exploit silent OT with previous daBit
generation methods such as by Aly et al. [1]. This is due to the limitation men-
tioned previously that these require a large number of random bits shared in Zp,
which we do not know how to create efficiently using OT.
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Applications: improved conversions and primitives. edaBits can be used
in a natural way to convert between binary and arithmetic domains, where each
conversion of an m-bit value uses one edaBit of length m, and a single m-bit
addition circuit. (In the mod-p case, we also need one “classic” daBit per con-
version, to handle a carry computation.) However, for many primitives such as
secure comparison, equality test and truncation, a better approach is to exploit
the edaBits to perform the operation without doing an explicit conversion. In the
Z2k case, a similar approach was used previously when combining the SPDZ2k
protocol with daBit-style conversions [16]. We adapt these techniques to work
with edaBits, in both Z2k and Zp. As an additional contribution, more at the
engineering level, we take great care in all our constructions to ensure they work
for both signed and unsigned data types. This was not done by previous trunca-
tion protocols in Z2k based on SPDZ [15,16], which only perform a logical shift,
as opposed to the arithmetic shift that is needed to ensure correctness on signed
inputs.

Handling garbled circuits. Our conversion method can also be extended to con-
vert binary shares to garbled circuits, putting the ‘Y’ into ‘ABY’ and allowing
constant round binary computations. In this paper, we do not focus on this, since
the technique is exactly the same as described in [1]; when using binary shares
based on TinyOT MACs, conversions between binary and garbled circuit repre-
sentation comes for free, based on the observation from Hazay et al. [26] that
TinyOT sharings can be locally converted into shares of a multi-party garbled
circuit.

Performance evaluation. We have implemented our protocol in all relevant
security models and computation domains as provided by MP-SPDZ [29], and
we found it reduces communication both in microbenchmarks and application
benchmarks when comparing to a purely arithmetic or a daBit-based implemen-
tation. More concretely, the reduction in communication lies between a factor of
2 and 60 for comparisons from purely arithmetic to edaBits and between 2 and
25 from daBits to edaBits. Improvements in throughput per second are slightly
lower but still as high as a factor of 47. Generally, the improvements are higher
for dishonest-majority computation and semi-honest security.

We have also compared our implementation with the most established soft-
ware for mixed circuits [9] and found that it still improves up to a factor of two
for a basic benchmark in semi-honest two-party computation. However, they
maintain an advantage if the parties are far apart (100 ms RTT) due to the
usage of garbled circuits.

Finally, a comparison with a purely arithmetic implementation of deep-
learning inference shows an improvement of up to a factor eight in terms of
both communication and wall clock time.
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1.2 Paper Outline

We begin in Sect. 2 with some preliminaries. In Sect. 3, we introduce edaBits
and show how to instantiate them, given a source of private edaBits. We then
present our protocol for creating private edaBits in Sect. 4, based on the new
cut-and-choose procedure. Then, in Sect. 4.2–4.4 we describe abstract cut-and-
choose games that model the protocol, and carry out a formal analysis. Then
in Sect. 5 we show how to use edaBits for higher-level primitives like comparison
and truncation. Finally, in Sect. 6, we analyze the efficiency of our constructions
and present performance numbers from our implementation.

2 Preliminaries

In this work we consider three main algebraic structures: ZM for M = p where
p is a large prime, M = 2k where k is a large integer, and Z2.

2.1 Arithmetic Black-Box

We model MPC via the arithmetic black box model (ABB), which is an ideal
functionality in the universal composability framework [10]. This functionality
allows a set of n parties P1, . . . , Pn to input values, operate on them, and receive
outputs after the operations have been performed. Typically (see for example
Rotaru and Wood [33]), this functionality is parameterized by a positive integer
M , and the values that can be processed by the functionality are in ZM , with
the native operations being addition and multiplication modulo M .

In this work, we build on the basic ABB to construct edaBits, which are used
in our higher-level applications. We therefore consider an extended version of the
arithmetic black box model that handles values in both binary and arithmetic
domains. First, within one single instance of the functionality we can have both
binary and arithmetic computations, where the latter can be either modulo p or
modulo 2k. Furthermore, the functionality allows the parties to convert a single
binary share into an arithmetic share of the same bit (but not the other way
round). We will use this limited conversion capability to bootstrap to our fully-
fledged edaBits, which can convert larger ring elements in both directions, and
with much greater efficiency. The details of the functionality are presented in
the full version [21].

Notation. As shorthand, we write [x]2 to refer to a secret bit x that has been
stored by the functionality FABB, and similarly [x]M for a value x ∈ ZM with
M ∈ {p, 2k}. We overload the operators + and ·, writing for instance, [y]M =
[x]M · [y]M + c to denote that the secret values x and y are first multiplied using
the Mult command, and then the public constant c is added using LinComb.
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Functionality FedaBits

The functionality is parametrized by M ∈ {2k, p} and m ≤ logM . It has the
same features as FABB, together with the following command:

Create edaBits: On input (edabit, idM , id2) from all parties, sample
(r0, . . . , rm−1) ∈ Z

m
2 uniformly at random and store (binary, id2, rj) for

j = 0, . . . ,m − 1, together with (arithmetic, idM , r), where r =
∑m−1

j=0 rj2j .

Fig. 1. Ideal functionality for extended daBits.

3 Extended daBits

The main primitive of our work is the concept of extended daBits, or edaBits.
Unlike a daBit, which is a random bit b shared as ([b]M , [b]2), an edaBit is a
collection of bits (rm−1, . . . , r0) such that (1) each bit is secret-shared as [ri]2
and (2) the integer r =

∑m
i=0 ri2i is secret-shared as [r]M .

One edaBit of length m can be generated from m daBits, and in fact, this
is typically the first step when applying daBits to several non-linear primitives
like truncation. Instead of following this approach, we choose to generate the
edaBits—which is what is needed for most applications where daBits are used—
directly, which leads to a much more efficient method and ultimately leads to
more efficient primitives for MPC protocols.

At a high level, our protocol for generating edaBits proceeds as follows. Let us
think initially of the passively secure setting. Each party Pi samples m random
bits ri

i,0, . . . , r
i
i,m−1, and secret-shares these bits towards the parties over Z2, as

well as the integer ri =
∑m−1

j=0 ri,j2j over ZM . Since each edaBit is known by one
party, these edaBits must be combined to get edaBits where no party knows the
underlying values. We refer to the former as private edaBits, and to the latter as
global edaBits. The parties combine the private edaBits by adding them together:
the arithmetic shares can be simply added locally as [r]M =

∑n
i=1[ri]M , and the

binary shares can be added via an n-input binary adder. Some complications
arise, coming from the fact that the ri values may overflow mod p. Dealing with
this is highly non-trivial, and we will discuss this in detail in the description
of our protocol in Sect. 3.2. However, before we dive into our construction, we
will first present the functionality we aim at instantiating. This functionality is
presented in Fig. 1.

3.1 Functionality for Private Extended daBits

We also use a functionality FedaBitsPriv, which models a private set of edaBits that
is known to one party. This functionality is defined exactly as FedaBits, except
that the bits r0, . . . , rm−1 are given as output to one party; additionally, if that
party is corrupt, the adversary may instead choose these bits.
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The heaviest part of our contribution lies on the instantiation of this func-
tionality, which we postpone to Sect. 4.

3.2 From Private to Global Extended daBits

As we discussed already at the beginning of this section, one can instantiate
FedaBits using FedaBitsPriv, by combining the different private edaBits to ensure
no individual party knows the underlying values. Small variations are required
depending on whether M = 2k or M = p, for reasons that will become clear in
a moment.

Now, to provide an intuition on our protocol, assume that the ABB is
storing ([ri]M , [ri,0]2, . . . , [ri,m−1]2) for i = 1, . . . , n, where party Pi knows
(ri,0, . . . , ri,m−1) and ri =

∑m−1
j=1 ri,j2j . The parties can add their arithmetic

shares to get shares of r′ =
∑n

i=1 ri mod M , and they can also add their binary
shares using a binary n-input adder, which results in shares of the bits of r′,
only without modular reduction.

Since we want to output a random m-bit integer, the parties need to remove
the bits of r′ beyond the m-th bit from the arithmetic shares. We have binary
shares of these carry bits as part of the output from the binary adder, so using
log(n) calls to ConvertB2A of FABB, each of which costs a (regular) daBit, we can
convert these to the arithmetic world and perform the correction. Notice that
for the case of M = 2k, m = k, we can omit this conversion since the arithmetic
shares are already reduced.

Even without the correction above, the least significant m bits of r′ still
correspond to r0, . . . , rm−1. This turns out to be enough for some applications
because it is easy to “delete” the most significant bit in Z2k by multiplying with
two. We call such an edaBit loose as apposed to a strict one as defined in Fig. 1.

One must be careful with potential overflows modulo M . If M = 2k, then
any overflow bits beyond the k-th position can simply be discarded. On the
other hand, if M = p, as long as m < log p then we can still subtract the
log n converted carries from the arithmetic shares to correct for any overflow
modulo p. The protocol is given in Fig. 2, and the security stated in Theorem1
below, whose proof follows in a straightforward manner from the correctness
of the additions in the protocol. In the protocol, nBitADD denotes an n-input
binary adder on m-bit inputs. This can be implemented naively in a circuit with
<(m + log n) · (n − 1) AND gates.

Theorem 1. Protocol ΠedaBits UC-realizes functionality FedaBits in the
(FedaBitsPriv,FB2A)-hybrid model.

4 Instantiating Private Extended daBits

Our protocol for producing private edaBits is fairly intuitive. The protocol begins
with each party inputting a set of edaBits to the ABB functionality. However,
since a corrupt party may input inconsistent edaBits (that is, the binary part
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Fig. 2. Protocol for generating global edaBits from private edaBits.

may not correspond to the bit representation of the arithmetic part), some extra
checks must be set in place to ensure correctness. To this end, the parties engage
in a consistency check, where each party must prove that their private edaBits
were created correctly. We do this with a cut-and-choose procedure, where first a
random subset of a certain size of edaBits is opened, their correctness is checked,
and then the remaining edaBits are randomly placed into buckets. Within each
bucket, all edaBits but the first one are checked against the first edaBit by adding
the two in both the binary and arithmetic domains, and opening the result. With
high probability, the first edaBit will be correct if all the checks pass.

This method is based on a standard cut-and-choose technique for verifying
multiplication triples, used in several other works [22,23]. However, the main
difference in our case is that the checking procedure for verifying two edaBits
within a bucket is much more expensive: checking two multiplication triples
consists of a simple linear combination and opening, whereas to check edaBits,
we need to run a binary addition circuit on secret-shared values. This binary
addition itself requires O(m) multiplication triples to verify, and the protocol
for producing these triples typically requires further cut-and-choose steps to
ensure correctness and security.

In this work, we take a different approach to reduce this overhead. First, we
allow some of the triples used to perform the check within each bucket to be
incorrect, which saves in resources as a triple verification step can be omitted.
Furthermore, we observe that these multiplication triples are intended to be
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used on inputs that are known to the party proposing the edaBits, and thus it
is acceptable if this party knows the bits of the underlying triples as well. As
a result, we can simplify the triple generation by letting this party sample the
triples together with the edaBits, which is much cheaper than letting the parties
jointly sample (even incorrect) triples. Note that even though the triples may
be incorrect, they must still be authenticated (in practice, with MACs) by the
party who proposes them so that the errors cannot be changed after generating
the triples.

To model this, we extend the arithmetic black box model with the following
commands, for generating a private triple, and for faulty multiplication, which
uses a previously stored triple to do a multiplication.

Input Triple. On input (Triple, id, a, b, c) from Pi, where id is a fresh binary
identifier and a, b, c ∈ {0, 1}, store (Triple, i, id, a, b, c).

Faulty Multiplication. On input (FaultyMult, id, id1, id2, idT , i) from all parties
(where id1, id2 are present in memory), retrieve (binary, id1, x), (binary, id2, y),
(Triple, i, idT , a, b, c), compute z = x · y ⊕ (c ⊕ a · b), and store (id, z).

The triple command can be directly instantiated using Input from FABB, while
FaultyMult uses Beaver’s multiplication technique with one of these triples. Note
that in Beaver-based binary multiplication, it is easy to see that any additive
error in a triple leads to exactly the same error in the product.

Now we are ready to present our protocol to preprocess private edaBits,
described in Fig. 3. The party Pi locally samples a batch of edaBits and multipli-
cation triples, then inputs these into FABB. The parties then run the CutNChoose
subprotocol, given in Fig. 4, to check that the edaBits provided by Pi are con-
sistent. The protocol outputs a batch of N edaBits, and is parametrized by a
bucket size B, and values C,C ′ which determine how many edaBits and triples
are opened, respectively. BitADDCarry denotes a two-input binary addition cir-
cuit with a carry bit, which must satisfy the weakly additively tamper resilient
property given in the next section. As we will see later, this can be computed
with m AND gates and depth m − 1.1

The cut-and-choose protocol starts by using a standard coin-tossing func-
tionality, FRand, to sample public random permutations used to shuffle the sets
of edaBits and triples. The coin-tossing can be implemented, for example, with
hash-based commitments in the random oracle model. Then the first C edaBits
and C ′m triples are opened and tested for correctness; this is to ensure that
not too large a fraction of the remaining edaBits and triples are incorrect. Then
the edaBits are divided into buckets of size B, together with B − 1 sets of m
triples in each bucket. Then, the top edaBit from each bucket is checked with
every other edaBit in the bucket by evaluating a binary addition circuit using the

1 This circuit is rather naive, and in fact there are logarithmic depth circuits with
a greater number of AND gates. However, as we will see later in the section, it is
important for our security proof to use specifically these naive circuits to obtain
the tamper-resilient property. Furthermore, they are only used in the preprocessing
phase, so the overhead in round complexity is insignificant in practice.
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Fig. 3. Protocol for producing private extended daBits.

triples, and comparing the result with the same addition done in the arithmetic
domain. Each individual check in the CutNChoose procedure takes two edaBits
of m bits each, and consumes m triples as well as a single regular daBit, needed
to convert the carry bit from the addition into the arithmetic domain. Note that
when working with modulus M = 2k, if m = k then this conversion step is not
needed.

4.1 Weakly Tamper-Resilient Binary Addition Circuit

To implement the BitADDCarry circuit we use a ripple-carry adder, which com-
putes the carry bit at every position with the following equation:

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)),∀i ∈ {0,m − 1} (1)

where c0 = 0, and xi, yi are the i-th bits of the two binary inputs. It then outputs
zi = xi ⊕ yi ⊕ ci, for i = 0, . . . ,m − 1, and the last carry bit cm. Note that this
requires m AND gates and has linear depth.

Below we define the tamper-resilient property of the circuit that we require.
We consider an adversary who can additively tamper with a binary circuit by
inducing bit-flips in the output wires of any AND gate.

Definition 1. A binary circuit C : F2m
2 → F

m+1
2 is weakly additively tamper

resilient, if given any tampered circuit C∗, obtained by additively tampering C,
one of the following holds:

1. ∀(x, y) ∈ F
m
2 : C(x, y) = C∗(x, y).

2. ∀(x, y) ∈ F
m
2 : C(x, y) �= C∗(x, y).

Intuitively, this says that the tampered circuit is either incorrect on every
possible input, or functionally equivalent to the original circuit. In our protocol,
this property restricts the adversary from being able to pass the check with a
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Fig. 4. Cut-and-choose procedure to check correctness of input edaBits.

tampered circuit with bad edaBits as well as the same circuit with good edaBits.
It ensures that if any multiplication triple is incorrect, then the check at that
position would only pass with either a good edaBit, or a bad edaBit (but not
both).

In the full version, we show that this property is satisfied by the ripple-carry
adder circuit above, which we use.

Lemma 1. The ripple carry adder circuit above is weakly additively tamper-
resilient (Definition 1).

In the case of generating edaBits over Zp, we still use the ripple-carry adder
circuit, and our protocol works as long as the length of the edaBits satisfies
m < log(p). If we wanted edaBits with m = �log p	, for instance to be able to
represent arbitrary elements of the field, it seems we would need to use an addi-
tion circuit modulo p. Unfortunately, the natural circuit consisting of a binary
addition followed by a conditional subtraction is not weakly additively tamper
resilient. One possible workaround is to use Algebraic Manipulation Detection
(AMD) [24,25] circuits, which satisfy much stronger requirements than being
weakly additively tamper resilient, however this gives a very large overhead in
practice.
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Table 1. Number of edaBits produced by CutNChoose for statistical security 2−s and
bucket size B, with C = C′ = B.

s B # of edaBits

40 3 ≥1048576

40 4 ≥10322

40 5 ≥1024

80 5 ≥1048576

4.2 Overview of Cut-and-Choose Analysis

The remainder of this section is devoted to proving that the cut-and-choose
method used in our protocol is sound, as stated in the following theorem.

Theorem 2. Let N ≥ 2s/(B−1) and C = C ′ = B, for some bucket size
B ∈ {3, 4, 5}. Then the probability that the CutNChoose procedure in protocol
ΠedaBitsPriv outputs at least one incorrect edaBit is no more than 2−s.

Assuming the theorem above, we can prove that our protocol instantiates the
desired functionality, as stated in the following theorem. The only interesting
aspect to note about security is that we need m ≤ log M to ensure that the
value c′ computed in step 4d of CutNChoose does not overflow modulo p when
M = p is prime. This guarantees that the check values are computed the same
way in the binary and arithmetic domains.

Theorem 3. Protocol ΠedaBitsPriv securely instantiates the functionality
FedaBitsPriv in the FABB-hybrid model.

To give some idea of parameters, in Table 1 we give the required bucket
sizes and number N of edaBits that must be produced to ensure 2−s failure
probability according to Theorem2. Note that these are exactly the same bounds
as the standard cut-and-choose procedure without any faulty verification steps
from [23]. Our current proof relies on case-by-case analyses for each bucket size,
which is why Theorem 2 is not fully general. We leave it as an open problem to
obtain a general result for any bucket size.

Overview of Analysis. We analyse the protocol by looking at two abstract
games, which model the cut-and-choose procedure. The first game, RealGame,
models the protocol fairly closely, but is difficult to directly analyze. We then
make some simplifying assumptions about the game to get SimpleGame, and
show that any adversary who wins in the real protocol can be translated into an
adversary in the SimpleGame. This is the final game we actually analyze.

4.3 Abstracting the Cut-and-Choose Game

We first look more closely at the cut-and-choose procedure by defining an
abstract game, RealGame, shown in Fig. 5, that models this process. Note that
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Fig. 5. Abstract game modelling the actual cut-and-choose procedure

in this game, the only difference compared with the original protocol is that the
adversary directly chooses additively tampered binary circuits, instead of mul-
tiplication triples. The check procedure is carried out exactly as before, so it is
clear that this faithfully models the original protocol.

Complexities of Analyzing the Game. In this game, the adversary can pass the
check with a bad edaBit in two different ways. The first is to corrupt edaBits in
multiples of the bucket size B, and hope that they all end up in the same bucket
so that the errors cancel each other out. The second way is to corrupt a set of
edaBits and guess the permutation in which they are most likely to end up. Once
a permutation is guessed, the adversary will know how many triples it needs to
corrupt in order to cancel out the errors, and must also hope that the triples
end up in the right place.

To compute the exact probability of all these events, we will also have to
consider the number of ways in which the bad edaBits can be corrupted. For
edaBits which are m bits, there are up to 2m − 1 different ways in which they
may be corrupted. On top of that, we have to consider the number of different
ways in which these bad edaBits may be paired in the check. In order to avoid
enumerating the cases and the complex calculation involved, we simplify the
game in a few ways which can only give the adversary a better chance of winning.
However, we show that these simplifications are sufficient for our purpose.

4.4 The SimpleGame

In this section we analyze a simplified game and bound the success probability
of any adversary in that game by 2−s. Before explaining the simple game, we
will leave the complicated world of edaBits and triples. We define a TRIP to be
a set of triples that is used to check two edaBits. In our simple world edaBits
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Fig. 6. Simplified CutNChoose game

transform into balls, GOOD edaBits into white balls ( ) and BAD edaBits into
gray balls ( ). An edaBit is BAD when at least one of the underlying bits are
not correct. TRIPs transform themselves into triangles, GOOD TRIPs into white
triangles ( ) and BAD TRIPs into gray triangles ( ). We define a TRIP to be
BAD when it helps the adversary to win the game, in other words if it can alter
the result of addition of two edaBits. Figure 6 illustrates the simple game.

In the SimpleGame A wins if there is no Abort (means A passes all the checks)
and there is at least one bad ball in the final output. The simple BucketCheck
checks all the buckets. Precisely, in each bucket two balls are being checked using
one triangle. For example, let us consider the size of the buckets B = 3. Now
one bucket contains three balls [B1, B2, B3] and two triangles [T1, T2]. Then
BucketCheck checks if the configurations [B1, B2|T1] and [B1, B3|T2] matches
any one of these configurations {[ , | ], [ , | ], [ , | ]}. If that is the case then
BucketCheck Aborts. When there are two bad balls and one triangle the abort
condition depends on the type of bad balls. That means we are considering all
bad balls to be distinct, say with different color shades. As a result, in some cases
challenger aborts if the checking configuration matches [ , | ] and in other cases
it aborts due to [ , | ] configuration.

In the simple world everyone has access to a public function f , which takes
two bad balls and a triangle as input and outputs 0 or 1. If the output is zero, that
means it is a bad configuration, otherwise it is good. This function is isomorphic
to the check from step 4 of RealGame, which takes 2 edaBits and a circuit as inputs
and outputs the result of the check. The BucketCheck procedure uses f to check
all the buckets. Figure 7 illustrates the check in detail. A passes BucketCheck if



Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits 839

Fig. 7. A simple bucket check procedure

all the check configurations are favorable to the adversary. These favorable check
configurations are illustrated in Table 2.

After throwing triangles, in each bucket, if the check configuration of balls
and triangles are from the first three entries of Table 2, then BucketCheck will
not Abort. For the last entry BucketCheck will not Abort if the output of f is 1.
Notice that if BucketCheck passes only due to the first configuration of Table 2
in all buckets, then the output from each bucket is going to be a good ball and A
loses. So ideally we should take that into account while computing the winning
probability of the adversary. However, for most of the cases it is sufficient to
show that for large enough N the Pr[A passes BucketCheck] is negligible in the
statistical security parameter s, as that will bound the winning probability of A
in the simple game.

Before analyzing the SimpleGame, we show that security of RealGame follows
directly from security of SimpleGame. Intuitively, that is indeed the case, as in the
SimpleGame an adversary chooses number of bad triangles adaptively; Whereas
in the RealGame it has to fix the tampered circuits before seeing the permuted
edaBits. Thus, if an adversary cannot win the SimpleGame then it must be more
difficult for it to succeed in the RealGame.

Lemma 2. Security against all adversaries in SimpleGame implies security
against all adversaries in RealGame.

Table 2. Favorable combination of balls and triangles for the adversary.

Balls Triangles

/
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Throughout the analysis, we use b to denote the number of bad balls and t
to denote the number of bad triangles. Now in order to win the SimpleGame the
adversary has to pass all the three checks, so let us try to bound the success
probability of A for each of them. Throughout the analysis we consider N ≥
2

s
B−1 , that is for B ≥ 3, N(B − 1) ≥ 2

s
B−1+1 and we are opening B(≥ 3) balls

and B triangles in the first two checks.

Opening C balls: In the first check the challenger opens C balls and check
whether they are good. So,

Pr[C balls are good] =

(
NB+C−b

C

)

(
NB+C

C

) ≈ (1 − b/(NB + C))C .

Now for b = (NB + C)α, where 1/(NB + C) ≤ α ≤ 1, the probability can be
written as (1 − α)C . In order to bound the success probability of the adversary
with the statistical security parameter s, let us consider the case when α ≥
2s/B−1
2s/B

and C = B. Thus,

Pr[C balls are good] ≈ (1 − α)C = (2−s/B)B = 2−s.

So if the challenger opens B balls to check then in order to pass the first check
A must corrupt less than α fraction of the balls, where α = 2s/B−1

2s/B
. Lemma 3

follows from the above analysis.

Lemma 3. The probability of A passing the first check in SimpleGame is less
than 2−s, if the adversary corrupts more than α fraction of balls for α = 2s/B−1

2s/B

and the challenger opens B balls.

OpeningC ′ triangles: In this case we’ll consider the probability of A passing the
second check. This is similar to the previous check, the only difference is that here
the challenger opens C ′ triangles and checks whether they are good. Consequently,

Pr[C ′ triangles are good] =

(
N(B−1)+C′−t

C′
)

(
N(B−1)+C′

C′
) ≈ (1 − t/(N(B − 1) + C ′))C′

.

As in the previous case, if t is more than β fraction of the total number of
triangles for β = 2s/B−1

2s/B
, we can upper bound the success probability of A by

(2−s/B)C′
. Thus for C ′ = B the success probability of A in the second check can

be bounded by 2−s. Lemma 4 follows from the above analysis.

Lemma 4. The probability of A passing the second check in SimpleGame is less
than 2−s, if the adversary corrupts more than β fraction of triangles for β =
2s/B−1
2s/B

and the challenger opens B triangles.

Lemmas 3–4 show that it suffices to only look at the first two checks to prove
security when the fraction of bad balls or bad triangles is sufficiently large.
However, when one of these is small, we also need to analyze the checks within
each bucket in the game.
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BucketCheck procedure: In this case we consider that the adversary passes
first two checks and reaches the last level of the game. However, in order to
win the game the adversary has to pass the BucketCheck. Note that now we are
dealing with NB balls and the challenger already fixes the arrangement of NB
balls in N buckets. Once the ball permutation is fixed that imposes a restriction
on the number of favorable (for A) triangle permutations. For example, let us
consider that the challenger throws 12 balls into 4 buckets of size 3 and fixes
this permutation:

{[ , , ][ , , ][ , , ][ , , ]}
Then there are only two possible favorable permutations of triangles:

{[ , ][ , ][ , ][ , ]}
{[ , ][ , ][ , ][ , ]}

Two favorable permutations come from the fact that the third bucket contains
two bad balls. From Table 2 we can see that whenever there are two bad balls
in a bucket the adversary can pass the check in that bucket either with a good
triangle or with a bad triangle. That means both configurations [ , | ] and
[ , | ] might be favorable to the adversary. Now A can use the public function
f to determine the value of f( , , ) and f( , , ). In this example, let us
consider the value of f( , , ) to be 1; Then the first permutation of triangles is
favorable to the adversary. As a result the probability of passing the BucketCheck
essentially depends on the probability of hitting that specific permutation of
triangles among all possible arrangements of triangles. Then the probability of
the adversary passing the last check given a specific arrangement of balls Li is
given by:

Pr[A passes BucketCheck|Li] = 1/
(

N(B − 1)
t

)

where t = N(B − 1)β. Thus,

Pr[A passes BucketCheck|Li] =
(N(B − 1)β)!(N(B − 1)(1 − β))!

N(B − 1)!

In order to upper bound Pr[A passes BucketCheck] we will upper bound the
probability for different ranges of α and β. Note that the total probability is
given by:

Pr[A passes BucketCheck] =
∑

i

Pr[A passes BucketCheck|Li] · Pr[Li]

If we can argue that for all possible (2s/B −1)/2s/B ≥ α ≥ 1/NB, the maximum
probability for Pr[A passes BucketCheck|Li], for some configuration Li, can be
bounded by 2−s, then:

Pr[A passes BucketCheck] ≤
∑

i

2−s · Pr[Li]
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Note that the maximum possible value of α is 1, however as the challenger
opens C balls and C ′ triangles, the adversary cannot set α to be 1. To pass the
first check A must set α to be less than (2s/B − 1)/2s/B if the challenger opens
B balls and B triangles.

Now let us try to bound Pr[A passes BucketCheck|Li]. The value of
(
N(B−1)

t

)

maximizes at t ≈ N(B − 1)/2. Starting from the case when there is no bad
triangle, the probability monotonically decreases from 1 to its minimum at β ≈
1/2, and then it monotonically increases to 1 when all triangles are bad. We
analyze the success probability of A in three cases. These will be discussed in
the full version. We summarize the analysis as follows.

Lemma 5. The probability of A passing the BucketCheck in SimpleGame is less
than 2−s, if N ≥ 2s/(B−1) and the challenger opens C = B balls and C ′ = B
triangles during first two checks of SimpleGame for B ∈ {3, 4, 5} given s

B−1 > B.

Combining Lemma 2 and Lemma 5, this completes the proof of Theorem 2.

Remark 1. As we already mentioned the bound we obtain is not general. How-
ever, from Lemma 5 it is evident that one can produce more than 1024 edaBits
efficiently with 40-bit statistical security using different bucket sizes with our
CutNChoose technique, which is sufficient for the applications we are considering
in this work. It also shows that if we want to achieve 80-bit statistical security for
N ≥ 220, then increasing the bucket size from 3 to 5 would be sufficient. Table 1
shows the number of edaBits we can produce with different size of buckets.

5 Primitives

This section describes the high-level protocols we build using our edaBits, both
over Z2k and Zp. We focus on secure truncation (Sect. 5.1) and secure integer
comparison (Sect. 5.2), although our techniques apply to a much wider set of
non-linear primitives that require binary circuits for intermediate computations.
For example, our techniques also allow us to compute binary-to-arithmetic and
arithmetic-to-binary conversions of shared integers, by plugging in our edaBits
into the conversion protocols from [11] and [16] for the field and ring cases,
respectively.

Throughout this section our datatypes are signed integers in the interval
[−2�−1, 2�−1). On the other hand, our MPC protocols operate over a modulus
M ≥ 2� which is either 2k or a prime p. Given an integer α ∈ [−2�−1, 2�−1), we
can associate to it the corresponding ring element in ZM by computing α mod
M ∈ ZM (modular reduction returns integers in [0,M)). We denote this map
by RepM (α), and we may drop the sub-index M when it is clear from context.
Finally, in the protocols below LT denotes a binary less-than circuit.

5.1 Truncation

Recall that our datatypes are signed integers in the interval [−2�−1, 2�−1), rep-
resented by integers in ZM where M ≥ 2� via RepM (α) = α mod M . The goal
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of a truncation protocol is to obtain [y] from [a], where y = Rep
(⌊

α
2m

⌋)
and

where a = Rep(α). This is a crucial operation when dealing with fixed-point
arithmetic, and therefore an efficient solution for it has a substantial impact in
the efficiency of MPC protocols for a wide range of applications. An important
observation is that, as integers,

⌊
α
2m

⌋
= α−(α mod 2m)

2m . If M is an odd prime
p, this corresponds in Zp to y = (Rep(α) − Rep(α mod 2m)) · Rep(2m)−1. Fur-
thermore, Rep(α mod 2m) = α mod 2m = a mod 2m and Rep(2m) = 2m, so
y = a−(a mod 2m)

(2m)−1 .
We focus below in truncation over Z2k as it is the less studied case. For the

case of truncation over Fp we refer the reader to the full version [21].
Truncation over Z2k . Truncation protocols over fields typically exploit the fact
that one can divide by powers of 2 modulo p. This is not possible when working
modulo 2k. Instead, we take a different approach. Let [a]2k be the initial shares,
where a = Rep(α) with α ∈ [−2�−1, 2�−1) (notice that it may be the case that
� < k). First, we provide a method, LogShift, for computing the logical right
shift of a by m positions, assuming that a ∈ [0, 2�). That is, if a is

(0, . . . , 0
︸ ︷︷ ︸

k−�

, a�−1, . . . , a0
︸ ︷︷ ︸

�

),

this procedure will yield shares of

(0, . . . , 0
︸ ︷︷ ︸
k−�+m

, a�−1, . . . , am
︸ ︷︷ ︸

�−m

).

Then, to compute the arithmetic shift, we use the fact that2

⌊ α

2m

⌋
≡ LogShiftm(a + 2�−1) − 2�−m−1 mod 2k.

Now, to compute the logical shift, our protocol begins just like in the field case
by computing shares of a mod 2m and subtracting them from a, which produces
shares of (ak−1, . . . , am, 0, . . . , 0). The parties then open a masked version of
a − (a mod 2m) which does not reveal the upper k − � bits, and then shift to
the right by m positions in the clear, and undo the truncated mask. One has to
account for the overflow that may occur during this masking, but this can be
calculated using a binary LT circuit.

The details of our logical shift protocol are provided in Fig. 8, and we analyze
its correctness next. First, it is easy to see that c = 2k−m((a + r) mod 2m), so
c/2k−m = (a mod 2m) + r − 2mv, where v is set if and only if c/2k−m < r. From
this we can see that the first part of the protocol [a mod 2m]2k is correctly com-
puted. Privacy of this first part follows from the fact that r mod 2m completely
masks a mod 2m when c is opened.

2 Notice that we can use the LogShift method on a + 2�−1 since, α + 2�−1 ∈ [0, 2�),
which implies that (a + 2�−1) mod 2k = α + 2�−1 and therefore (a + 2�−1) mod 2k is
�-bits long, as required.
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Fig. 8. Protocol for performing logical right-shift

For the second part, let us write b = 2ma′, then d = 2k−�+m((a′ + r′) mod
2�−m), so d/2k−�+m = a′+r′−2�−mu, where u is set if and only if d/2k−�+m < r′,
as calculated by the protocol. We get then that a′ = d/2k−�+m − r′ + 2�−mu,
and since a′ is precisely LogShiftm(a), we conclude the correctness analysis.

Probabilistic Truncation. Recall that in the field case one can obtain probabilis-
tic truncation avoiding a binary circuit, which results in a constant number of
rounds. Over rings this is a much more challenging task. For example, proba-
bilistic truncation with a constant number of rounds is achieved in ABY3 [30],
but requires, like in the field case, a 2s gap between the secret values and the
actual modulus, which in turn implies that only small non-negative values can
be truncated.

In Fig. 9, we take a different approach. Intuitively, we follow the same app-
roach as in ABY3, which consists of masking the value to be truncated with a
shared random value for which its corresponding truncation is also known, open-
ing this value, truncating it and removing the truncated mask. In ABY3 a large
gap is required to ensure that the overflow that may happen by the masking
process does not occur with high probability. Instead, we allow this overflow bit
to be non-zero and remove it from the final expression. Doing this naively would
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Fig. 9. Probabilistic truncation in domain modulo power of two using edaBits

require us to compute a LT circuit, but we avoid doing this by using the fact
that, because the input is positive, the overflow bit can be obtained from the
opened value by making the mask value also positive. This leaks the overflow
bit, which is not secure, and to avoid this we mask this single bit with another
random bit. This protocol can be seen as an extension of the probabilistic trun-
cation protocol by Dalskov et al. [15]. Below, we provide an analysis for our
extension that also applies to said protocol.

Now we analyze the protocol. First we notice that c = 2k−�−1c′ where c′ =
(2mr+r′)+a+2�b−2�+1vb, where v is set if and only if (2mr+r′)+a overflows
modulo 2�. It is easy to see that this implies that c′

� = v ⊕ b, so we see that
v = c′

� ⊕ b, as calculated in the protocol.
On the other hand, we have that (c′ mod 2�) = (2mr + r′) + a − 2�v, so

a mod 2m = (c′ mod 2m) − r′ + 2mu, where u is set if (c′ mod 2m) < r′. From
this it can be obtained that

⌊
(c′ mod 2�)/2m

⌋ − r + 2�−m = �a/2m� + u.

Remark 2. The protocol we discussed above only works if a ∈ [0, 2�), that is, if
the value α represented α ∈ [0, 2�−1). We can extend it to α ∈ [−2�−1, 2�−1) by
using the same trick as in the deterministic truncation: The truncation is called
with a + 2�−1 as input, and 2�−m−1 is subtracted from the output.

5.2 Integer Comparison

Another important primitive that appears in many applications is integer com-
parison. In this case, two secret integers [a]M and [b]M are provided as input,

and the goal is to compute shares of α
?
< β, where a = Rep(α) and b = Rep(β).

As noticed by previous works (e.g. [11,16]), this computation reduces to
extracting the MSB from a shared integer as follows: If α, β ∈ [−2k−2, 2k−2),
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Table 3. Amortized costs for generating 1 Private, and 1 Global edaBit. Costs for
Global edaBits do not include the cost of the n additional sets of Private edaBits that
are needed.

Private edaBits Global edaBits

Z2k Fp Z2k Fp

Faulty edaBits B B 0 0 (l − m + s, m)

Faulty Triples (B − 1)m (B − 1)m 0 0

Secure Triples 0 0 (log n)(n − 1) (log n)(n − 1)

daBits 0 (B − 1) 0 log n

Openings (Z2) (3m + 1)(B − 1) (3m + 1)(B − 1) (2m + 2 log n)(n − 1) (2m + 3 log n)(n − 1)

Openings (ZM ) (B − 1) (B − 1) 0 0

then α − β = [−2k−1, 2k−1), so a − b = Rep(α − β) corresponds to the sign of
α − β, which is minus (i.e. the bit is 1) if and only if α is smaller than β.

To extract the MSB, we simply notice that MSB(α) = − ⌊
α

2k−1

⌋
mod 2k, so

this can be extracted with the protocols we have seen in the previous sections.

6 Applications and Benchmarks

6.1 Theoretical Cost

We present the theoretical costs of the different protocols in the paper, starting
with the cost for producing Private and Global edaBits in terms of the different
parameters.

Table 3 shows the main amortized costs for generating a Private and Global
edaBit of length m. For Global edaBits, we assume have the required correct Pri-
vate edaBits to start with, which is why number of Faulty edaBits needed is 0. B is
the bucket size for the cut-and-choose procedure and n is the number of parties.

Table 4 shows the cost for two of our primitives from Sect. 5, namely com-
parison of m-bit numbers and truncation of an �-bit number by m binary digits.
For computation modulo a prime, there is also a statistical security parameter s.

Comparison in Z2k is our only application where it suffices to use loose
edaBits (where the relation between the sets of shares only holds modulo 2m, c.f.
Sect. 3.2). This is because the arithmetic part of an edaBit is only used in the
first step (the masking) but not at the end. Recall that the truncation proto-
cols always use the arithmetic part of an edaBit twice, once before opening and
once to compute an intermediate or the final result. Using a loose edaBit would
clearly distort the result. With comparison on the other hand, an edaBit is only
used to facilitate the conversion to binary computation, after which the result is
converted back to arithmetic computation using a classic daBit.

6.2 Implementation Results

We have implemented our approach in a range of domains and security mod-
els, and we have run the generation of a million edaBits of length 64 on AWS



Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits 847

Table 4. Cost of our primitives. Numbers in brackets indicate edaBit length.

Comparison Truncation

Z2k Fp Z2k Fp

Strict edaBits 0 2 (m + 1, s + 1) 2 (l − m, m) 2(l − m + s, m)

Loose edaBits 1 (m + 1) 0 0 0

Classic daBits 1 1 2 1

Online ANDs ∼ 2m ∼ 2m ∼ 2m ∼ 2k

Table 5. Number of edaBits generated (in 1000 s) per second in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj. Malicious 2k (OT) 4.6 7.3

p (OT) 3.6 4.2

p (HE) 2.7 3.4

Semi-hon. 2k (OT) 456.7 922.5

p (OT) 228.0 892.6

p (HE) 470.5 905.6

Honest maj. Malicious 2k 191.5 205.8

p 156.6 162.1

Semi-hon. 2k 2032.1 7180.0

p 1367.7 4934.3

c5.9xlarge with the minimal number of parties required by the security model
(two for dishonest majority and three for honest majority). Table 5 shows the
throughput for various security models and computation domains, and Table 6
does so for communication. For computation modulo a prime with dishonest
majority, we present figures for arithmetic computation both using oblivious
transfer (OT) and LWE-based semi-homomorphic encryption (HE). Note that
the binary computation is always based on oblivious transfer for dishonest major-
ity and that all our results include all consumable preprocessing such as multi-
plication triples but not one-off costs such as key generation. The source code of
our implementation has been added to MP-SPDZ [14].

We have also implemented 63-bit3 comparison using edaBits, only daBits,
and neither, and we have run one million comparisons in parallel again on AWS
c5.9xlarge. Table 7 shows the throughput for our various security models and
computation domains, and Table 8 does so for communication. Note that the
arithmetic baseline uses either the protocol of Catrina and de Hoogh [11] (Fp)
or the variant by Dalskov et al. [15] (Z2k).

3 Comparison in secure computation is generally implemented by extracting the most
significant bit of difference. This means that 63-bit is the highest accuracy achievable
in computation modulo 264, which the natural modulus on current 64-bit platforms.



848 D. Escudero et al.

Table 6. Communication per edaBit (in kbit) in various settings

Domain Strict edaBits Loose edaBits

Dishonest maj. Malicious 2k (OT) 1335.5 480.2

p (OT) 1936.9 1473.2

p (HE) 940.8 779.7

Semi-hon. 2k (OT) 22.5 9.6

p (OT) 43.9 9.6

p (HE) 11.8 9.6

Honest maj. Malicious 2k 5.6 3.7

p 7.6 6.4

Semi-hon. 2k 0.3 0.2

p 0.5 0.2

Table 7. Number of comparisons (in 1000 s) per second in various settings

Domain Arithm. daBits edaBits

Dishonest maj. Malicious 2k (OT) 0.5 1.2 4.4

p (OT) 0.3 0.3 1.6

p (HE) 0.6 0.7 2.0

Semi-hon. 2k (OT) 5.2 14.4 275.6

p (OT) 1.6 3.3 79.7

p (HE) 5.9 12.8 170.6

Honest maj. Malicious 2k 76.4 119.2 170.4

p 66.9 78.3 80.1

Semi-hon. 2k 500.6 1007.7 1607.6

p 157.8 277.1 457.6

Our results highlight the advantage of our approach over using only daBits.
The biggest improvement comes in the dishonest majority with semi-honest secu-
rity model. For the dishonest majority aspect, this is most likely because there
is a great gap in the cost between multiplications and inputs (the latter is used
extensively to generate edaBits). For the semi-honest security aspect, note that
our approach for malicious security involves a cascade of sacrificing because the
edaBit sacrifice involves binary computation, which in turn involves further sac-
rifice of AND triples. Finally, the improvement in communication is generally
larger than the improvement in wall clock time. We estimate that this is due
to the fact that switching to binary computation clearly reduces communication
but increases the computational complexity.
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Table 8. Communication per comparison (in kbit) in various settings

Domain Arithm. daBits edaBits

Dishonest maj. Malicious 2k (OT) 21737.7 9058.6 1310.5

p (OT) 40108.5 34019.1 4783.3

p (HE) 3020.5 3210.9 1584.8

Semi-hon. 2k (OT) 2283.0 830.2 39.0

p (OT) 7353.1 3503.0 134.9

p (HE) 411.6 219.1 38.7

Honest maj. Malicious 2k 63.4 27.8 5.4

p 94.3 85.0 19.9

Semi-hon. 2k 14.5 7.1 0.4

p 37.4 23.1 1.4

Table 9. Overall time and communication for biometric matching

LAN (s) WAN (s) Comm. (MB)

n = 1000 ABY/HyCC (A+Y) 0.22 2.5 9.5

ABY/HyCC (A+B) 0.22 6.1 10.6

Ours 0.12 8.3 7.4

n = 4096 ABY/HyCC (A+Y) 0.63 6.6 40.4

ABY/HyCC (A+B) 0.72 13.6 43.6

Ours 0.48 12.6 29.1

n = 13684 ABY/HyCC (A+Y) 3.66 17.5 138.0

ABY/HyCC (A+B) 5.4 26.2 190.8

Ours 2.00 22.9 111.8

6.3 Comparison to Previous Works

Dishonest majority. The authors of HyCC [9] report figures for biometric match-
ing with semi-honest two-party computation in ABY [20] and HyCC. The
algorithm essentially computes the minimum over a list of small-dimensional
Euclidean distances. The aforementioned authors report figures in LAN (1 Gbps)
and artificial WAN settings of two machines with four-core i7 processors. For a
fair comparison, we have run our implementation using one thread limiting the
bandwidth and latency accordingly. Table 9 shows that our results improves on
the time in the LAN setting and on communication generally as well as on the
in the WAN setting for larger instances compared to their A+B setting (without
garbled circuits). The WAN setting is less favorable to our solution because it
is purely based on secret sharing and we have not particularly optimized the
number of rounds.
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Honest majority. Our approach is not directly comparable to the one by Mohas-
sel and Rindal [30] because they use the specifics of replicated secret sharing for
the conversion. We do note however that their approach of restricting binary cir-
cuits to the binary domain is comparable to our solution, and that they use the
same secret sharing schemes as us in the 2k domain. The full version [21] shows
a comparison of their results with our approach applied to logistic regression.

daBits. Aly et al. [1] report figures for daBit generation with dishonest majority
and malicious security in eight threads over a 10 Gbps network. For two-party
computation using homomorphic-encryption, they achieve 2150 daBits per sec-
ond at a communication cost of 94 kbit per daBit. In a comparable setting, we
found that our protocol produces 12292 daBits per second requiring a communi-
cation cost of 32 kbit. Note however that Aly et al. use somewhat homomorphic
encryption while our implementation is based on cheaper semi-homomorphic
encryption.

Convolutional Neural Networks. We also apply our techniques to the convolu-
tional neural networks considered be Dalskov et al. [15]. See the full version for
details.
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