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Abstract. We study the discrete logarithm problem at the boundary case
between small and medium characteristic finite fields, which is precisely
the area where finite fields used in pairing-based cryptosystems live. In
order to evaluate the security of pairing-based protocols, we thoroughly
analyze the complexity of all the algorithms that coexist at this bound-
ary case: the Quasi-Polynomial algorithms, the Number Field Sieve and
its many variants, and the Function Field Sieve. We adapt the latter to the
particular case where the extension degree is composite, and show how to
lower the complexity by working in a shifted function field. All this study
finally allows us to give precise values for the characteristic asymptotically
achieving the highest security level for pairings. Surprisingly enough, there
exist special characteristics that are as secure as general ones.

1 Introduction

The discrete logarithm problem (DLP) is one of the few hard problems at the
foundation of today’s public key cryptography. Widely deployed cryptosystems
such as the Diffie-Hellman key exchange protocol or El Gamal’s signature pro-
tocol base their security on the computational hardness of DLP. In the early
2000s, pairing-based cryptography also introduced new schemes whose security
is related to the computation of discrete logarithms. Indeed, for primitives such
as identity-based encryption schemes [8], identity-based signature schemes [11]
or short signature schemes [9], the security relies on pairing-related assumptions
that become false if the DLP is broken.

In 1994, Shor introduced a polynomial-time quantum algorithm to compute
discrete logarithms. This implies that no scheme relying on the hardness of DLP
would be secure in the presence of quantum computers. However, as of today,
quantum computers capable of doing large scale computations are non-existent,
even though impressive progress has been made in the recent years (see [2] for
a recent 53-qubit machine). Still, pairing-based cryptography is at the heart of
numerous security products that will continue to be brought to market in the
upcoming years, and research on efficient primitives using them is very active,
in particular in the zero-knowledge area with the applications of zk-SNARKs
to smart contracts. Hence, evaluating the classical security of those schemes
remains fundamental regardless of their post-quantum weakness.
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Concretely, the discrete logarithm problem is defined as follows: given a finite
cyclic group G, a generator g ∈ G, and some element h ∈ G, find x such that
gx = h. In practice, the group G is chosen to be either the multiplicative group
of a finite field Fpn or the group of points on an elliptic curve E defined over
a finite field. Pairing-based cryptography illustrates the need to consider both
the discrete logarithm problems on finite fields and on elliptic curves. A crypto-
graphic pairing is a bilinear and non-degenerate map e : G1 × G2 → GT where
G1 is a subgroup of E(Fp), the group of points of an elliptic curve E defined
over the prime field Fp, G2 is another subgroup of E(Fpn) where we consider an
extension field and GT is a multiplicative subgroup of that same finite field Fpn .
To construct a secure protocol based on a pairing, one must assume that the
DLPs in the groups G1,G2,GT are hard.

Evaluating the security in G1 and G2 is straightforward, since very few at-
tacks are known for DLP on elliptic curves. The most efficient known algorithm
to solve the DLP in the elliptic curve setup is Pollard’s rho algorithm which has
an expected asymptotic running time equal to the square root of the size of the
subgroup considered.

On the contrary, the hardness of the DLP over finite fields is much more
complicated to determine. Indeed, there exist many competitive algorithms that
solve DLP over finite fields and their complexities vary depending on the relation
between the characteristic p and the extension degree n. When p is relatively
small, quasi-polynomial time algorithms can be designed, but when p grows, the
most efficient algorithms have complexity in Lpn (1/3, c) , where the Lpn -notation
is defined as

Lpn(α, c) = exp((c + o(1))(log(pn))α(log log pn)1−α),

for 0 � α � 1 and some constant c > 0. We will avoid writing the constant c
and simply write Lpn(α) when the latter is not relevant.

To construct a secure protocol based on a pairing, one must first consider a
group GT in which quasi-polynomial time algorithms are not applicable. This
implies, to the best of our knowledge, that the algorithms used to solve DLP
on the finite field side have an Lpn(1/3) complexity. Moreover, we want the
complexities of the algorithms that solve DLP on both sides to be comparable.
Indeed, if the latter were completely unbalanced, an attacker could solve DLP
on the easier side. A natural idea is then to equalize the complexity of DLP on
both sides. This requires having

√
p = Lpn (1/3). Hence, the characteristic p is

chosen of the form p = Lpn (1/3, cp) for some constant cp > 0.
Yet, when the characteristic p is of this form, many algorithms coexist ren-

dering the estimation of the hardness of DLP all the more difficult. A recent
approach, followed in [20] is to derive concrete parameters for a given secu-
rity level, based on what the Number Field Sieve algorithm (NFS) would cost
on these instances. Our approach complements this: we analyze the security of
pairings in the asymptotic setup, thus giving insight for what would become the
best compromise for higher and higher security levels.

More generally, finite fields split into three main categories. When p =
Lpn(α), we talk of large characteristic if α > 2/3, medium characteristic if
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α ∈ (1/3, 2/3), and small characteristic if α < 1/3. The area we are interested
in is thus the boundary case between small and medium characteristics.

For finite fields of medium characteristics, NFS and its variants remain as of
today the most competitive algorithms to solve DLP. Originally introduced for
factoring, the NFS algorithm was first adapted by Gordon in 1993 to the dis-
crete logarithm context for prime fields [17]. A few years later, Schirokauer [40]
extended it to finite fields with extension degrees n > 1. In [25], Joux, Lercier,
Smart and Vercauteren finally showed that the NFS algorithm can be used for all
finite fields. Since then, many variants of NFS have appeared, gradually improv-
ing on the complexity of NFS. The extension to the Multiple Number Field Sieve
(MNFS) was originally invented for factorization [13] and was then adapted to
the discrete logarithm setup [6,33]. The Tower Number Field Sieve (TNFS) [5]
was introduced in 2015. When n is composite, this variant has been extended to
exTNFS in [30,31]. The use of primes of a special form gives rise to another vari-
ant called the Special Number Field Sieve (SNFS) [27]. Most of these variants
can be combined with each other, giving rise to MexTNFS and S(ex)TNFS.

In the case of small characteristic, Coppersmith [12] gave a first L(1/3) algo-
rithm in 1984. Introduced in 1994 by Adleman, the Function Field Sieve (FFS) [1]
also tackles the DLP in finite fields with small characteristic. The algorithm fol-
lows a structure very similar to NFS, working with function fields rather than
number fields. In 2006, Joux and Lercier [24] proposed a description of FFS which
does not require the theory of function fields, and Joux further introduced in [21]
a method, known as pinpointing, which lowers the complexity of the algorithm.

In 2013, after a first breakthrough complexity of Lpn(1/4 + o(1)) by Joux [22],
a heuristic quasi-polynomial time algorithm was designed [4] by Barbulescu,
Gaudry, Joux and Thomé. Variants were explored in the following years [18,19,
26,28] with two different goals: making the algorithm more practical, and mak-
ing it more amenable to a proven complexity. We mention two key ingredients.
First, the so-called zig-zag descent allows to reduce the problem to proving that
it is possible to rewrite the discrete logarithm of any degree-2 element in terms
of the discrete logarithms of linear factors, at least if a nice representation of the
finite field can be found. The second key idea is to replace a classical polynomial
representation of the target finite field by a representation coming from torsion
points of elliptic curves. This led to a proven complexity in 2019 by Kleinjung
and Wesolowski [32]. To sum it up, the quasi-polynomial (QP) algorithms out-
perform all previous algorithms both theoretically and in practice in the small
characteristic case.

The study of the complexities of all these algorithms at the boundary case
requires a significant amount of work in order to evaluate which algorithm
is applicable and which one performs best. Figure 1 gives the general picture,
without any of the particular cases that can be encountered.

Contributions:

– Thorough analysis of the complexity of FFS, NFS and its variants.
We first give a precise methodology for the computation of the complexity of
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small characteristic medium characteristic

QP MNFS

Lpn(1/3, cp)

FFS MNFS

Fig. 1. Best algorithms for DLP in small, medium characteristics and at the boundary
case p = Lpn (1/3, cp).

NFS and its variants at the boundary case, which differs from the computa-
tions done in medium and large characteristics. We revisit some commonly
accepted hypotheses and show that they should be considered with care. In
addition, our analysis allowed us to notice some surprising facts. First of
all, not all the variants of NFS maintain their Lpn(1/3) complexity at the
boundary case. The variant STNFS, for example, has a much higher com-
plexity in this area, and thus should not be used for a potential attack on
pairings. For all composite extensions, the multiple variant of exTNFS is not
better than exTNFS itself, and for some special characteristics, SNFS is also
not faster than MNFS, as one could expect. We also distinguish and correct
errors in past papers, both in previous methodologies or computations.

FFS still remains a competitor for small values of cp. Our work then takes a
closer look at its complexity, also fixing a mistake in the literature. Further-
more, in the case where the extension degree n is composite, we show how
to lower the complexity of FFS by working in a shifted function field.

– Crossover points between all the algorithms. This complete analysis
allows us to identify the best algorithm at the boundary case as a func-
tion of cp and give precise crossover points for these complexities. When
cp is small enough, the FFS algorithm remains the most efficient algorithm
outperforming NFS and all of its variants. When the extension degree n is
prime, and the characteristic has no special form, the algorithm MNFS out-
performs FFS when cp ≥ 1.23. When n is composite or p taken of a special
form, variants such as exTNFS and SNFS give crossover points with lower
values for cp, given in this work.

Moreover, we compare the complexity of FFS and the complexity of the
quasi-polynomial algorithms. Since the crossover point occurs when p grows
slightly slower than LQ(1/3), we introduce a new definition in order to de-
termine the exact crossover point between the two algorithms.

– Security of pairings. All the work mentioned above allows us to answer the
following question: asymptotically what finite field Fpn should be considered
in order to achieve the highest level of security when constructing a pairing?
To do so, we justify why equating the costs of the algorithms on both the
elliptic curve side and the finite field side is correct and argue that in order for
this assumption to make sense, the complete analysis given in this work was
necessary. Finally, we give the optimal values of cp for the various forms of p
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and extension degree n, also taking into account the so-called ρ-value of the
pairing construction. Surprising fact, we were also able to distinguish some
special characteristics that are asymptotically as secure as characteristics of
the same size but without any special form.
Asymptotic complexities versus practical estimates. The fact that STNFS is
asymptotically no longer the best algorithm for optimally chosen pairing-
friendly curves is not what could be expected from the study of [20], where
fixed security levels up to 192 bits are considered. This could be interpreted
as a hint that cryptanalysts have not yet reached some steady state when
working at a 192-bit security level. To sum it up, evaluating the right pa-
rameters for relevant cryptographic sizes (e.g. pairings at 256-bit of security
level) is still hard: estimates for lower sizes and asymptotic analysis do not
match, and there is no large scale experiment using TNFS or variants to
provide more insight.

Organization. In Sect. 2, we give a general description of FFS, NFS and its
variants. In Sect. 3, we summarize the analysis of the complexity of FFS, and
we recall the pinpointing technique. Moreover, we present our improvement for
the complexity of FFS using a shifted function field. In Sect. 4, we explain our
general methodology to compute the complexity of NFS and its variants at the
boundary case studied in this paper. In Sect. 5, we recall the various polyno-
mial selections that exist and are used in the various algorithms. In Sect. 6, we
illustrate our methodology by detailing the complexity analyses of three variants
and give results for all of them. In Sect. 7, we compute the exact crossover points
between the complexities of all algorithms considered in this paper. Finally in
Sect. 8, we consider the security of pairing-based protocols.

2 The General Setting of FFS, NFS and Its Variants

2.1 Overview of the Algorithms

We introduce a general description, which covers all the variants of NFS and
FFS. Consider a ring R that is either Z in the most basic NFS, a number ring
Z[ι]/(h(ι)) in the case of Tower NFS, or Fp[ι] in the case of FFS. This leads to
the construction given in Fig. 2, where one selects V distinct irreducible poly-
nomials fi(X) in R[X] in such a way that there exist maps from R[X]/(fi(X))
to the target finite field Fpn that make the diagram commutative. For instance,
in the simple case where R = Z, this means that all the fi’s share a common
irreducible factor of degree n modulo p.

Based on this construction, the discrete logarithm computation follows the
same steps as any index calculus algorithm:

– Sieving: we collect relations built from polynomials φ ∈ R[X] of degree t − 1,
and with bounded coefficients. If R is a ring of integers, we bound their
norms, and if it is a ring of polynomials, we bound their degrees. A rela-
tion is obtained when two norms Ni and Nj of φ mapped to R[X]/(fi(X))
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R [X]

R[X]/(f1(X)) R[X]/(f2(X)) . . . R[X]/(fi(X)) . . . R[X]/(fV −1(X)) R[X]/(fV (X))

Fpn

Fig. 2. General diagram for FFS, NFS and variants.

and R[X]/(fj(X)) are B-smooth, for a smoothness bound B fixed during
the complexity analysis. We recall that an integer (resp. a polynomial) is B-
smooth if all its factors are lower than B (resp. of degree lower than B). Each
relation is therefore given by a polynomial φ for which the diagram gives
a linear equation between the (virtual) logarithms of ideals of small norms
coming from two distinct number or function fields. We omit details about
the notion of virtual logarithms and Schirokauer maps and refer readers
to [39]. For FFS, similar technicalities can be dealt with.

– Linear algebra: The relations obtained in the previous step form a system of
linear equations where the unknowns are logarithms of ideals. This system
is sparse with at most O(log pn) non-zero entries per row, and can be solved
in quasi-quadratic time using the block Wiedemann algorithm [14].

– Individual logarithms: The previous step outputs the logarithms of ideals
with norms smaller than the smoothness bound B used during sieving. The
goal of the algorithm is to compute the discrete logarithm of an arbitrary ele-
ment in the target field. The commonly used approach for this step proceeds
in two sub-steps. First, the target is subject to a smoothing procedure. The
latter is randomized until after being lifted in one of the fields it becomes
smooth (for a smoothness bound much larger than the bound B). Second, a
special-q descent method is applied to each factor obtained after smoothing
which is larger than the bound B. This allows to recursively rewrite their
logarithms in terms of logarithms of smaller ideals. This is done until all the
factors are below B, so that their logarithms are known. This forms what is
called a descent tree where the root is an ideal coming from the smoothing
step, and the nodes are ideals that get smaller and smaller as they go deeper.
The leaves are the ideals just above B. We refer to [16,25] for details.

2.2 Description of the Variants

Let us now describe the variants of NFS which we study in this paper, and see
how they can be instantiated in our general setting.

Number Field Sieve. In this paper, we call NFS, the simplest variant, where
the ring R is Z, there are only V = 2 number fields, and the polynomials f1
and f2 are constructed without using any specific form for p or the possible
compositeness of n.
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Multiple Number Field Sieve. The variant MNFS uses V number fields, where
V grows to infinity with the size of the finite field. From two polynomials f1
and f2 constructed as in NFS, the V − 2 other polynomials are built as linear
combinations of f1 and f2: we set fi = αif1+βif2, for i ≥ 3, where the coefficients
αi, βi are in O(

√
V ). These polynomials have degree max(deg(f1),deg(f2)) and

their coefficients are of size O(
√

V max(coeff(f1), coeff(f2))).
There exist two variants of MNFS: an asymmetric one, coming from factor-

ing [13], where the relations always involve the first number field, and a symmet-
ric one [6], where a relation can involve any two number fields. The asymmetric
variant is more natural when one of the polynomials has smaller degree or coef-
ficients than the others. When all the polynomials have similar features, at first
it could seem that the symmetric case is more advantageous, since the num-
ber of possible relations grows as V 2 instead of V . However, the search time is
also increased, since for each candidate φ, we always have to test V norms for
smoothness, while in the asymmetric setup when the first norm is not smooth
we do not test the others. At the boundary case studied, we did not find any
cases where the symmetric variant performed better. Hence, in the rest of the
paper, when talking about MNFS, we refer to its asymmetric variant.

(Extended) Tower Number Field Sieve. The TNFS or exTNFS variants cover
the cases where R = Z[ι]/h(ι), where h is a monic irreducible polynomial. In the
TNFS case, the degree of h is taken to be exactly equal to n, while the exTNFS
notation refers to the case where n = κη is composite and the degree of h is η.
Both TNFS and exTNFS can use either two number fields or V � 2 number
fields. In the latter case, the prefix letter M is added referring to the MNFS
variant. Details about (M)(ex)TNFS and their variants are given in [5,30,31,38].

Special Number Field Sieve. The SNFS variant [27] applies when the character-
istic p is the evaluation of a polynomial of small degree with constant coefficients,
which is a feature of several pairing construction families. Thus, the algorithm
differs from NFS in the choice of the polynomials f1 and f2. To date, there is no
known way to combine this efficiently with the multiple variant of NFS. However,
it can be applied in the (ex)TNFS setup, giving STNFS and SexTNFS.

Function Field Sieve. The FFS algorithm can be viewed in our general setting
by choosing the polynomial ring R = Fp[ι]. The polynomials f1 and f2 are then
bivariate, and therefore define plane curves. The algebraic structures replacing
number fields are then function fields of these curves. FFS cannot be combined
efficiently with a multiple variant. In fact, FFS itself is already quite similar
to a special variant; this explains this difficulty to combine it with the multiple
variant, and to design an even more special variant. The tower variant is relevant
when n is composite, and it can be reduced to a change of base field. We discuss
this further in Sect. 3.3.

In [24], Joux and Lercier proposed a slightly different setting. Although not
faster than the classical FFS in small characteristic, it is much simpler, and fur-
thermore, it gave rise to the pinpointing technique [21] which is highly relevant
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in our case where the characteristic is not so small. We recall their variant now,
since this is the setting we will use in the rest of the paper. The algorithm starts
by choosing two univariate polynomials g1, g2 ∈ Fp[x] of degrees n1, n2 respec-
tively such that n1n2 ≥ n and there exists a degree-n irreducible factor f of
x − g2(g1(x)). Then, let us set y = g1(x). In the target finite field represented
as Fp[x]/(f(x)), we therefore also have the relation x − g2(y). The factor basis
F is defined as the set of all univariate, irreducible, monic polynomials of de-
gree D for some constant D, in x and y. As usual, the sieving phase computes
multiplicative relations amongst elements of the factor basis, that become lin-
ear relations between discrete logarithms. We sieve over bivariate polynomials
T (x, y) of the form T (x, y) = A(x)y + B(x), where A,B have degrees d1, d2 and
A is monic. As an element of the finite field, this can be rewritten either as a
univariate polynomial in x, namely Fx(x) = T (x, g1(x)), or as a univariate poly-
nomial in y, namely Fy(y) = T (g2(y), y). We get a relation if both Fx(x) and
Fy(y) are D-smooth. Once enough relations are collected, the linear algebra and
descent steps are performed.

Several improvements to FFS exist when the finite field is a Kummer ex-
tension. This is not addressed in this work, since the situation does not arise
naturally in the pairing context, and can be easily avoided by pairing designers.

3 The FFS Algorithm at the Boundary Case

We consider a finite field of the form Fpn , where p is the characteristic and n the
extension degree. From now on, we set Q = pn. Since our analysis is asymptotic,
any factor that is ultimately hidden in the o(1) notation of the LQ expression
is ignored. Furthermore, inequalities between quantities should be understood
asymptotically, and up to negligible factors.

3.1 Complexity Analysis of FFS

Our description of the complexity analysis of FFS is based on [35]. However, we
slightly deviate from their notations as theirs lead to wrong complexities (see
Appendix 4 of our longer version [15] of this article for details).

First, a parameter Δ ≥ 1 is chosen which controls the balance between the
degrees of the defining polynomials g1 and g2. We select g1 and g2 of degree
deg g1 = n1 = �nΔ� and deg g2 = n2 = �n/Δ�. Since we use the pinpointing
technique, which we recall in Sect. 3.2, we also enforce g1(x) = xn1 or g2(y) =
yn2 , depending on which side we want to pinpoint with.

For the analysis, the smoothness bound D ≥ 1 is also fixed. Once cp, Δ
and D are fixed, we look at the complexity of the three steps of the algorithm.
For the linear algebra, the cost Clinalg is quadratic in the size of the factor basis,
and we get Clinalg = LQ (1/3, 2cpD). For the other steps, the complexity depends
on bounds d1 and d2 on the degree of the polynomials A and B, used to find
relations. Asymptotically, no improvement is achieved by taking d1 	= d2. There-
fore, we set the following notation: d12 = d1 = d2. However, the value d12 is not
necessarily the same for the sieving and descent steps.
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Analysis of the sieving step. Asymptotically, we have deg Fx = n1 and
deg Fy = d12n2. Note that in truth deg Fx = n1+d12 but d12 is a constant, hence
can be ignored, since n1 goes to infinity. From these values and the smoothness
bound D, we apply Flajolet, Gourdon and Panario’s theorem [34] and deduce
the following smoothness probabilities PFx

and PFy
:

PFx
= LQ

(
1
3
,

−√
Δ

3D
√

cp

)
, and PFy

= LQ

(
1
3
,

−d12

3D
√

cpΔ

)
.

The number of (A,B) pairs to explore before having enough relations is then
P−1

Fx
P−1

Fy
times the size of the factor base, i.e., pD. This is feasible only if the

degree d12 of A and B is large enough, and, recalling that A is monic, this leads
to the following constraint: p2d12+1 ≥ P−1

Fx
P−1

Fy
pD.

Furthermore, using the pinpointing technique allows to find relations faster
than exploring them all. We simply state here that the cost per relation with
pinpointing is min(P−1

Fx
, P−1

Fy
)+p−1P−1

Fx
P−1

Fy
. The total cost Csiev for constructing

the whole set of relations is then this quantity multiplied by pD and we get

Csiev = pD−1P−1
Fx

P−1
Fy

+ pD min(P−1
Fx

, P−1
Fy

). (1)

Analysis of the descent step. During the descent step, it can be shown that
the bottleneck happens at the leaves of the descent tree, i.e., when descending
polynomials of degree D +1, just above the smoothness bound. The smoothness
probabilities PFx

and PFy
take the same form as for the sieving step, but the fea-

sibility constraint and the cost are different. Since we only keep the (A,B) pairs
for which the degree D + 1 polynomial to be descended divides the correspond-
ing norm, we must subtract D +1 degrees of freedom in the search space, which
becomes p2d12−D. The descent step will therefore succeed under the following
constraint: p2d12−D ≥ P−1

Fx
P−1

Fy
. Indeed, the cost of descending one element is

P−1
Fx

P−1
Fy

, as only one relation is enough. Finally, the number of nodes in a descent
tree is polynomial, and the total cost Cdesc of this step remains Cdesc = P−1

Fx
P−1

Fy
.

Overall complexity. To obtain the overall complexity for a given value of cp,
we proceed as follows: for each Δ ≥ 1 and D ≥ 1, we look for the smallest
value of d12 ≥ 1 for which the feasibility constraint is satisfied for sieving and
get the corresponding Csiev; then we look for the smallest value of d12 ≥ 1
such that the feasibility constraint is satisfied for the descent step and get the
corresponding Cdesc. The maximum complexity amongst the three costs gives a
complexity for these values of Δ and D. We then vary Δ and D and keep the
lowest complexity. The result is shown on the left of Fig. 3, where the colors
indicate which step is the bottleneck for each range of cp values.

3.2 The Pinpointing Technique

In [21], Joux introduces a trick that allows to reduce the complexity of the
sieving phase. We briefly recall the main idea in the particular case where we use
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Fig. 3. On the left, the complexity of FFS at the boundary case and the dominant
phase as a function of cp, obtained after fixing the error in [35]. On the right, assuming
n has appropriate factors, the lowered complexity of FFS for small values of cp when
considering shifts. In this plot, we consider κ = 2, 6. We only plot points of the curves
C2 and C6 which are lower than the original FFS curve.

pinpointing on the x-side, and when d12 = 1. The polynomial g1 is restricted to
the particular form g1(x) = xn1 . For a pair of polynomials A(x) = x+a, B(x) =
bx+c, the polynomial Fx(x) becomes Fx(x) = T (x, g1(x)) = xn1+1+axn1+bx+c.
One can then perform the change of variable x 
→ tx for t in F

∗
p, and, making the

expression monic, one gets the following polynomial Gt(x) = xn1+1 + at−1xn1 +
bt−n1x+ ct−n1−1. If Fx(x) is D-smooth, so is Gt(x), which corresponds to Fx(x)
with the (A,B)-pair given by A(x) = x + at−1 and B(x) = (bt−n1x + ct−n1−1).

To evaluate Csiev using the pinpointing technique, we first need to consider
the cost of finding the initial polynomial, i.e., an (A,B)-pair such that Fx(x)
is D-smooth. Then, varying t ∈ F

∗
p allows to produce p − 1 pairs which, by

construction, are also smooth on the x-side. We then need to check for each of
them if Fy(y) is also smooth. The total cost is thus P−1

Fx
+ p, and the number of

relations obtained is pPFy
. Finally the cost per relation is P−1

Fy
+ (pPFx

PFy
)−1.

By symmetry, the only difference when doing pinpointing on the y-side is the
first term which is replaced by P−1

Fx
. Choosing the side that leads to the lowest

complexity, and taking into account that we have to produce pD relations leads
to the overall complexity for the sieving step given in Eq. (1) above.

3.3 Improving the Complexity of FFS in the Composite Case

We are able to lower the complexity of FFS when the extension degree n is
composite. This case often happens in pairings for efficiency reasons.

Let n = ηκ. This means we can rewrite our target field as Fpn = Fpηκ = Fp′η ,
where p′ = pκ. Note that this would not work in the NFS context because p′ is
no longer a prime. From p = LQ (1/3, cp), we obtain p′ = LQ (1/3, κcp). Thus
looking at the complexity of FFS in Fpn for some cp = α is equivalent to looking
at the complexity of FFS in Fp′η at some value c′

p = κα. This corresponds to a shift
of the complexity by a factor of κ. More generally, assume n can be decomposed
as a product of multiple factors. For each factor κ of n, one can consider the target
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field Fp′r , where p′ = pκ and r = n/κ. This gives rise to a new complexity curve
Cκ, shifted from the original one by a factor of κ. One can then consider the final
curve C = minκ≥1 Cκ, that assumes that n has many small factors. This lowers the
complexity of FFS for small values of cp as can be seen in Fig. 3. One of the most
significant examples is when cp = (1/6)×(2/81)1/3 = 0.049. The FFS complexity
is LQ(1/3, 1.486) in this case, while if n is a multiple of 6, we can use p′ = p6, so
that we end up at the point where FFS has the lowest complexity, and we reach
LQ(1/3, 1.165).

More generally, even when the characteristic is small, if n = ηκ is composite
we can work with Fpκ as a base field, and if pκ has the appropriate size we can
have a complexity that is lower than the LQ(1/3, (32/9)1/3) of the plain FFS
in small characteristic. The optimal case is when κ = (2/81)1/3n1/3(logp n)2/3.
This strategy is very similar to the extended Tower NFS technique where we try
to emulate the situation where the complexity of NFS is the best.

4 Tools for the Analysis of NFS and Its Variants

The main difficulty when evaluating the complexity of NFS is the amount of
parameters that influence in a non-trivial way the running time or even the
termination of the algorithm. In this section we explain our methodology to find
the set of parameters leading to the fastest running time. We do not consider the
space complexity. Indeed, in all the variants of NFS under study, the memory
requirement is dominated by the space required to store the matrix of relations,
which is equal (up to logarithmic factors) to the square root of the running time
to find a kernel vector in this matrix.

4.1 General Methodology

Parameters and their constraints. As often done in an asymptotic complex-
ity analysis, even if parameters are assumed to be integers, they are considered
as real numbers. This is a meaningful modelling as long as the numbers tend to
infinity since the rounding to the nearest integer will have a negligible effect. In
some of the variants, however, some integer parameters remain bounded. This
is the case for instance of the (r, k) parameters in MNFS-A, detailed in Sect. 6.
We call continuous parameters the former, and discrete parameters the latter.

The analysis will be repeated independently for all values of the discrete
parameters, so that we now concentrate on how to optimize the continuous pa-
breakrameters for a given choice of discrete parameters. We call a set of parameters
valid if the algorithm can be run and will finish with a high probability. Many
parameters are naturally constrained within a range of possible values in R. For
instance, a smoothness bound must be positive. In addition, one must consider
another general constraint to ensure the termination of the algorithm: the num-
ber of relations produced by the algorithm for a given choice of parameters must
be larger than the size of the factor basis. We will refer to this constraint as the
Main Constraint in the rest of the paper.
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This inequality can be turned into an equality with the following argument
(similarly as in Sect. 3, equality is up to asymptotically negligible factors).
Assume a set of parameters gives a minimum running time, and for these pa-
rameters the number of relations is strictly larger than the size of the factor
basis. Then, by reducing the bound on the coefficients of the polynomials φ used
for sieving, one can reduce the cost of the sieving phase, while the costs of lin-
ear algebra and individual logarithm steps stay the same. Therefore, one can
construct a new set of parameters with a smaller running time.

The costs of the three phases. Let Csiev, Clinalg and Cdesc be the costs of the
three main phases of NFS. The overall cost of computing a discrete logarithm is
then the sum of these three quantities. Up to a constant factor in the running
time, the optimal cost can be deduced by minimizing the maximum of these
three costs instead of their sum. Given the form of the formulas in terms of the
parameters, this will be much easier to handle.

A natural question that arises is whether, at the optimum point, one cost
“obviously” dominates the others or on the contrary is negligible. The two fol-
lowing statements were previously given without justification and we correct this
issue here. First, the best running time is obtained for parameters where the lin-
ear algebra and the sieving steps take a similar time. We explain why there is
no reason to believe this assumption is necessarily true. Secondly, the cost of
the individual logarithm step is negligible. We justify this in this setting with a
theoretical reason.

Equating the cost of sieving and linear algebra. In the most simple variant of
NFS for solving the discrete logarithm in a prime field using two number fields,
the best complexity is indeed obtained at a point where linear algebra and siev-
ing have the same cost. However, we would like to emphasize that this is not
the result of an “obvious” argument. Let us assume that the linear algebra is
performed with an algorithm with complexity O(Nω), where ω is a constant.
The matrix being sparse, the only lower bound we have on ω is 1, while the
best known methods [14] give ω = 2. By re-analyzing the complexity of NFS
for various values of ω, we observe that the optimal cost is obtained at a point
where the linear algebra and the sieving have similar costs only when ω ≥ 2.
Were there to be a faster algorithm for sparse linear algebra with a value of ω
strictly less than 2, the complexity obtained with Csiev = Clinalg would not be
optimal. Therefore, any “obvious” argument for equating those costs should take
into account that the current best exponent for sparse linear algebra is 2.

Negligible cost of individual logarithm step. As explained previously, the indi-
vidual logarithm phase consists of two steps: a smoothing step and a descent
by special-q. We refer to [16, Appendix A] where a summary of several vari-
ants is given, together with the corresponding complexities. The smoothing part
is somewhat independent and has a complexity in LQ(1/3, 1.23), that is lower
than all the other complexities. Note however that [16] does not cover the case
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where a discrete logarithm in an extension field is sought. The adaptation can be
found in [6, Appendix A] and the complexity remains the same. For the special-
q descent step, the analysis of [16] does not need to be adapted, since all the
computations take place at the level of number fields. Using sieving with large
degree polynomials, it is shown that all the operations except for the ones at the
leaves of the descent trees take a negligible time LQ(1/3, o(1)). Finally the oper-
ations executed at the leaves of the tree are very similar to the ones performed
during sieving to find a single relation. Therefore they also take a negligible time
compared to the entire sieving step that must collect an LQ(1/3) subexponen-
tial quantity of relations, while we only require a polynomial quantity for the
descent. As a consequence, in the context of NFS and its variants, the individual
logarithm phase takes a much smaller time than the sieving phase.

Overall strategy for optimizing the complexity. First we fix values for
the discrete parameters. Since these values are bounded in our model, there are
only finitely many choices. We then apply the following recursive strategy where
all the local minima encountered are compared in the end and the smallest is
returned. The strategy executes the following two steps. First, in the subvariety
of valid parameters satisfying the Main Constraint, search for local minima of
the cost assuming Csiev = Clinalg. Then, recurse on each plausible boundary of
the subvariety of parameters.

In order for our analysis to remain as general as possible, we have also con-
sidered the case where the costs of sieving and linear algebra are not equal. We
then look for local minima for Csiev and see if this results in a lower complexity.
We do not detail this case since this situation has not occurred in our analyses,
but we insist on the necessity to perform these checks.

We emphasize that we have indeed to first look for minima in the interior of
the space of valid parameters and then recurse on its boundaries. This is imposed
by the technique we use to find local minima. Indeed, we assume that all the
quantities considered are regular enough to use Lagrange multipliers. However,
this technique cannot be used to find a minimum that would lie on a boundary.
This is the case for example of STNFS as explained in Sect. 6.3.

In general, only few cases are to be considered. For instance, except for a few
polynomial selection methods, there are no discrete parameters. Also, boundary
cases are often non-plausible, for example, when the factor base bound tends
to zero or infinity. Some cases are also equivalent to other variants of NFS, for
instance when the number of number fields in MNFS goes to zero, the boundary
case is the plain NFS.

Notations. In the analysis of NFS and its variants, parameters that grow to
infinity with the size Q of the finite field must be chosen with the appropriate
form to guarantee an overall LQ(1/3) complexity. We summarize in Table 1 the
notations used for these parameters, along with their asymptotic expressions.
For convenience, in order to have all the notations at the same place, we include
parameters that will be introduced later in the paper.
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Table 1. Notations and expressions for most of the quantities involved in the analysis
of NFS and its variants.

Notation Asympt. expression Definition

General parameters

p LQ (1/3, cp) Characteristic of finite field FQ, where Q = pn

n 1
cp

(
log Q

log log Q

)2/3
Exponent of finite field FQ, where Q = pn

B LQ (1/3, cB) Smoothness bound

t ct
cp

(
log Q

log log Q

)1/3
Degree of the sieving polynomials φ

A (log Q)cAcp Bound on coefficients of φ. Note At = LQ (1/3, cAct)

P LQ (1/3, pr) Probability that φ leads to a relation

MNFS parameters

V LQ (1/3, cV ) Number of number fields in MNFS

B′ LQ (1/3, cB′ ) Second smoothness bound for asymmetric MNFS

P1 LQ (1/3, pr1) Probability of smoothness in the first number field

P2 LQ (1/3, pr2) Probability of smoothness in any other number field

Other parameters

d δ
(

log Q
log log Q

)2/3
Degree of polynomial in the case of JLSV2

η cη

(
log Q

log log Q

)1/3
Factor of n in the case of (ex)TNFS; deg h = η

κ cκ

(
log Q

log log Q

)1/3
Other factor of n in the case of (ex)TNFS; cκ = 1

cpcη

4.2 Smoothness Probability

During the sieving phase, we search for B-smooth norms. A key assumption in
the analysis is that the probability of a norm being smooth is the same as that
of a random integer of the same size. This allows us to apply the theorem by
Canfield-Erdős-Pomerance [10]. We use the following specific version:

Corollary 1. Let (α1, α2, c1, c2) be four real numbers such that 1 > α1 > α2 > 0
and c1, c2 > 0. Then the probability that a random positive integer below
LQ(α1, c1) splits into primes less than LQ(α2, c2) is given by

LQ

(
α1 − α2, (α1 − α2)c1c−1

2

)−1
.

The norms are estimated based on their expressions as resultants. In the
classical (non-tower) version of NFS, for a given candidate φ, the norm Ni in
the i-th number field given by fi takes the form Ni = cRes(fi, φ), where c is a
constant coming from the leading coefficient of fi that can be considered smooth
(possibly by including its large prime factors in the factor basis).

The definition of the resultant as the determinant of the Sylvester matrix
gives a bound that follows from Hadamard’s inequality (see [7]):

|Res(fi, φ)| ≤ (d + 1)(t−1)/2td/2||fi||(t−1)
∞ ||φ||d∞,
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where d = deg f and t = 1 + deg h. Note that in our setting, d must be larger
than n which is roughly in (log Q)2/3, while t is in (log Q)1/3, so that the factor
(d + 1)(t−1)/2 will be negligible but the factor td/2 will not.

A note on Kalkbrener’s corollary. Recent papers including [3,27,36,37] have
mentioned a result from Kalkbrener [29] to upper bound the value of the combi-
natoric term that appears in the resultant. In [29], Theorem 2 counts the number
of monomials in the matrix. However, two permutations can give the same mono-
mial, and thus the number of permutations is not bounded by the number of
monomials. We emphasize that this result cannot be used this way; this error
leads to wrong (and underestimated) complexities. Indeed combinatorial terms
cannot be neglected at the boundary case.

When analyzing tower variants (see [30, Lemma 1] and [38, Equation 5]),
the ring R is Z[ι]/h(ι), and in all cases, the optimal value for the degree of
φ(X) is 1 (i.e. t = 2, in the general setting). A polynomial φ is therefore
of the form φ(X) = a(ι) + b(ι)X, where a and b are univariate polynomials
over Z of degree less than deg h, with coefficients bounded in absolute value
by A. Up to a constant factor which can be assumed to be smooth without
loss of generality, the norm Ni(φ) in the field defined by fi(X) is then given
by Resι

(
ResX

(
a(ι) + b(ι)X, fi(X)

)
, h(ι)

)
, and this can be bounded in absolute

value by

|Ni(φ)| ≤ A(deg h)(deg fi)||fi||deg h
∞ ||h||deg fi((deg h)−1)

∞ C(deg h,deg fi),

the combinatorial contribution C being C(x, y) = (x + 1)(3y+1)x/2(y + 1)3x/2.
In the case of TNFS where n is prime, the degree of h is equal to n, thus both

factors of the combinatorial contribution are non-negligible. On the other hand,
when n = ηκ is composite with appropriate factor sizes, one can use exTNFS
and take deg h = η and deg f ≥ κ, in such a way that only the first factor of C
will contribute in a non-negligible way to the size of the norm.

4.3 Methodology for the Complexity Analysis of NFS

During sieving, we explore At candidates, for which a smoothness test is per-
formed. A single smoothness test with ECM has a cost that is non-polynomial,
but since it is sub-exponential in the smoothness bound, it will be in LQ(1/6)
and therefore contribute only in the o(1) in the final complexity. We therefore
count it as a unit cost in our analysis. In the plain NFS, the cost of sieving
is therefore At. In the asymmetric MNFS, we should in principle add the cost
of testing the smoothness of the V − 1 remaining norms when the first one is
smooth. With the notations of Table 1, the sieving cost is therefore At(1+P1V ).
In what follows, we will assume that P1V � 1, i.e. pr1+cV < 0 and check at the
end that this hypothesis is valid. As for the linear algebra, the cost is quadratic in
the size of the factor basis. According to the prime number theorem, the number
of prime ideals of norm bounded by B is proportional to B up to a logarithmic
factor. In the asymmetric MNFS setting, the cost is (B +V B′)2, and in general,
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we balance the two terms and set B = V B′. Therefore, in the main case where
we assume equality between sieving and linear algebra, for both the plain NFS
and the asymmetric MNFS variant we get At = B2.

The Main Constraint also requires to have as many relations as the size of
the factor bases. This translates into the equation AtP = B, where P is the
probability of finding a relation, which is equal to P1P2V in the MNFS case.
Combining this with the first constraint simplifies to BP = 1, or, in terms of
exponents in the L-notation:

pr + cB = 0, (2)

where pr = pr1 + pr2 + cV in the case of MNFS.
From the characteristics of the polynomials outputted by the polynomial

selection, one can use the formulae of Sect. 4.2 to express pr in terms of the
parameters cB , ct, and also cV in the MNFS case. Note that we use the equation
At = B2 to rewrite cA as cA = 2cB/ct.

It remains to find a minimum for the cost of the algorithm under the
constraint given by Eq. (2). To do so, we use Lagrange multipliers. Let c =
pr + cB be the constraint seen as a function of the continuous parameters. The
Lagrangian function is given by L(parameters, λ) = 2cB + λc, where λ is an
additional non-zero variable. At a local minimum for the cost, all the partial
derivatives of L are zero, and this gives a system of equations with as many
equations as indeterminates (not counting cp which is seen as a fixed parame-
ter). Since all the equations are polynomials, it is then possible to use Gröbner
basis techniques to express the minimum complexity as a function of cp.

More precisely, in the case of the asymmetric MNFS where the variables are
cB , ct and cV , the system of equations is⎧⎪⎪⎨

⎪⎪⎩

∂L
∂cB

= 2 + λ ∂c
∂cB

= 0
∂L
∂ct

= λ ∂c
∂ct

= 0
∂L
∂cV

= λ ∂c
∂cV

= 0
pr1 + pr2 + cV + cB = 0 ,

where the first equation plays no role in the resolution, but ensures that λ
is non-zero, thus allowing to remove the λ in the second and third equation.
This becomes an even simpler system in the case of the plain NFS, where the
parameter cV is no longer present, thus leading to the system{

∂c
∂ct

= 0
pr + cB = 0 .

In the case where the expressions depend on discrete parameters, we can
keep them in the formulae (without computing partial derivatives with respect
to them, which would not make sense) and compute a parametrized Gröbner
basis. If this leads to a system for which the Gröbner basis computation is too
hard, then we can instantiate some or all the discrete parameters and then solve
the system for each choice.

The cases not covered by the above setting, including the cases where we do
not assume equality between sieving and linear algebra are handled similarly.
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5 Polynomial Selections

The asymptotic complexity of all the algorithms presented in Sect. 2 depends
on the characteristics of the polynomials outputted by the polynomial selection
method considered. We briefly summarize in this section the various existing
polynomial selection methods. We distinguish the cases when n is composite
and when p is of a special form, which leads to considering different algorithms.
The parameters for all the polynomial selections we are going to consider are
summarized in Table 2.

5.1 Polynomial Selections for NFS and MNFS

We first list the methods where no particular considerations are made on the
extension degree n or the characteristic p.
JLSV0. This is the simplest polynomial method there exists. We consider a
polynomial f1 of degree n irreducible mod p such that the coefficients of f1 are
in O(1). We construct f2 = f1 +p and thus coefficients of f2 are in O(p) and the
degree of f2 is also n. Then trivially we have the condition that f2|f1 mod p as
required for the algorithms to work.
JLSV1. This method was introduced in [25] and we refer to the paper for details.
We only note here that the degree of the polynomials outputted are the same
as those of JLSV0. However, the size of coefficients are balanced as opposed to
JLSV0. This difference does not affect the overall complexity of the algorithm.
JLSV2. This polynomial selection is presented in [25]. This method uses lattices
to output the second polynomial, the idea being that in order to produce a
polynomial with small coefficients, the latter are chosen to be the coefficients of
a short vector in a reduced lattice basis.
GJL. The Generalized Joux-Lercier (GJL) method is an extension to the non-
prime fields of the method presented in 2003 by Joux and Lercier in [23]. It was
proposed by Barbulescu, Gaudry, Guillevic and Morain in [3, Paragraph 6.2],
and uses lattice reduction to build polynomials with small coefficients.
Conjugation. In [3], the authors propose two new polynomial selection methods,
one of which is Conjugation. It uses a continued fraction method like JLSV1 and
the existence of some square roots in Fp.
Algorithm A. We recall in [15, Appendix B] Algorithm A as given in [37] and
refer to [37] for more details about it. This algorithm also uses lattices to output
the second polynomial and introduces two new parameters: d and r such that
r ≥ n

d := k. The parameters r and k are discrete in the complexity analysis. Note
that the parameter d used in this polynomial selection is also discrete whereas
the polynomial degree also denoted d used in JLSV2 and GJL is continuous.

5.2 Polynomial Selections for exTNFS and MexTNFS

We now look at polynomial selections with composite extension degree n = ηκ.
The most general algorithms are the algorithms B, C and D presented in [36,38]
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that extend algorithm A to the composite case. Thus, the construction of the
polynomials f1 and f2 follow very similar steps as the ones in algorithm A.
We merely point out the main differences with algorithm A. These algorithms
require the additional condition gcd(η, κ) = 1. Similarly as for algorithm A, they
introduce two new parameters: d and r such that r ≥ κ/d := k.

Algorithm B. This algorithm is identical to algorithm A adapted to the composite
setup where n = ηκ. Note that if η = 1 and κ = n, we recover algorithm A. For
convenience, we recall it in [15, Appendix B].

Algorithms C and D. The polynomial selection C is another extension of A to
the setup of exTNFS. It introduces a new variable λ ∈ [1, η] that plays a crucial
role in controlling the size of the coefficients of f2. However, in our case, when
analysing the complexity of M(ex)TNFS-C one realizes that the lowest complex-
ity is achieved when λ = 1 which brings us back to the analysis of B. As for
algorithm D, this is a variant that allows to replace the condition gcd(η, κ) = 1
by the weaker condition gcd(η, k) = 1. Since the outputted polynomials share
again the same properties as algorithm B, the complexity analysis is identical.
Therefore, we will not consider C or D in the rest of the paper.

5.3 Polynomial Selections for SNFS and STNFS

For SNFS and STNFS, the prime p is given as the evaluation of a polynomial P of
some degree λ and with small coefficients. In particular, we can write p = P (u),
for u ≈ p1/λ. Note that the degree λ is a fixed parameter which does not depend
on p. We summarize the construction of the polynomials f1 and f2 given in [27].
The first polynomial f1 is defined as an irreducible polynomial over Fp of degree n
and can be written as f1(X) = Xn + R(X) − u, where R is a polynomial of
small degree and coefficients taken in the set {−1, 0, 1}. The polynomial R does
not depend on P so ||f1||∞ = u, and from p = P (u) we get ||f1||∞ = p1/λ.
The polynomial f2 is chosen to be f2(X) = P (f1(X) + u). This implies f2(X)
(mod f1(X)) = p, and thus f2(X) is a multiple of f1(X) modulo p.

6 Complexity Analyses of (M)(ex)(T)NFS

Following the method explained in Sect. 4, we have computed the complexities
of the algorithms presented in Sect. 2 with the polynomial selections given in
Sect. 5. We report the norms and the complexities in Table 3. Since each norm
has the form LQ (2/3, c), and each complexity has the form LQ(1/3, c), we only
report the values of c. We illustrate our methodology by giving details of the
computation of the complexity analysis of the best performing variants.

6.1 (M)NFS

In the case of (M)NFS, the best complexity is achieved by the MNFS variant
using the polynomial selection A and when equating the cost of sieving and of
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Table 2. Parameters of the polynomials f1, f2 outputted by various polynomial selec-
tion methods for (M)NFS in the first table, (M)exTNFS in the second table and
S(T)NFS in the third table.

Polynomial NFS MNFS

selection deg f1 deg f2 ||f1||∞ ||f2||∞ deg f1 deg f2 ||f1||∞ ||f2||∞
JLSV0 n n O(1) O(p) – – – –

JLSV1 n n O(
√

p) O(
√

p) n n O(
√

p) O(
√

V
√

p)

JLSV2 n d > n O(pn/(d+1)) O(pn/(d+1)) n d > n O(pn/(d+1)) O(
√

V pn/(d+1))

GJL d + 1 > n d O(1) O(pn/(d+1)) d + 1 > n d O(1) O(
√

V pn/(d+1))

Conjugation 2n n O(log p) O(
√

p) 2n n O(log p) O(
√

V
√

p)

A d(r + 1) dr O(log p) O(pn/d(r+1)) d(r + 1) dr O(log p) O(
√

V pn/d(r+1))

Polynomial exTNFS MexTNFS

selection deg f1 deg f2 ||f1||∞ ||f2||∞ deg f1 deg f2 ||f1||∞ ||f2||∞
JLSV2 κ d > κ O(pκ/(d+1)) O(pκ/(d+1)) κ d > κ O(pκ/(d+1)) O(

√
V pκ/(d+1))

B d(r + 1) dr O(log p) O(pk/(r+1)) d(r + 1) dr O(log p) O(
√

V pk/(r+1))

Polynomial selection deg f1 deg f2 ||f1||∞ ||f2||∞
SNFS n nλ p1/λ O((log n)λ)

STNFS κ κλ p1/λ O
(
(log κ)λ

)

linear algebra. The continuous parameters to consider in this case are B, A, t,
V , and the discrete parameters are r and k.

The norms of the polynomials outputted by the polynomial selection A are
bounded by td(r+1)/2(d(r + 1))t(log p)tAd(r+1) and tdr/2(dr)tQt/d(r+1)

√
V

t
Adr.

Using Corollary 1, we compute the probabilities of smoothness for both norms.
The constants in the LQ notation for these probabilities are given by pr1 =
−1
3cB

(
r+1
6kcp

+ (r+1)cA

k

)
, and pr2 = −1

3(cB−cV )

(
r

6kcp
+ rcA

k + kct

r+1 + ctcV

2cp

)
. Using the

condition P = 1/B allows us to obtain a non-linear equation in the various pa-
rameters considered. In order to minimize 2cB under this non-linear constraint,
we use Lagangre multipliers and solve the system exhibited in Sect. 4 with
Gröbner basis. This allows us to obtain an equation of degree 15 in cB , degree 9
in cp, and degrees 10 and 8 in r and k. The equation is given in [15, Appendix C].
Recall that r and k are discrete values. One can loop over the possible values
of r, k and keep the values which give the smallest complexity. When cp ≥ 1.5,
the optimal set of parameters is given by (r, k) = (1, 1). When 1.2 ≤ cp ≤ 1.4,
the values of (r, k) need to be increased to find a valid complexity. For cp ≤ 1.1,
no values of (r, k) allow us to find a positive root for cV , thus there is no valid
complexity with this method.

The last step of our strategy consists in recursing on each plausible boundary
of the subvariety of parameters. This case is already covered by the previous
steps. Indeed, the only parameter where it makes sense to consider the boundary
is V , and when the latter goes to zero, this means we are considering NFS again.
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An attempt at lowering the complexity of MNFS. Some polynomial selections
such as A and JLSV2 output two polynomials f1 and f2 where f2 is taken to
be the polynomial which coefficients are the coefficients of the shortest vector
in an LLL-reduced lattice of some dimension D. The remaining V − 2 number
fields are defined by polynomials which are linear combinations of f1 and f2.
From the properties of LLL, we assume the vectors in the LLL-reduced basis
have similar norms. Instead of building fi as αif1 + βif2 where αi, βi ≈ √

V ,
one can take a linear combination of more short vectors, and thus have fi =
αi,1f1+αi,2f2+ · · ·+αi,DfD and αi,j ≈ V 1/2D. However, this does not affect the
asymptotic complexity. When cp → ∞, the coefficient term becomes negligible.
On the other hand, when cp is small, the norms become smaller and this results
in a slightly lower complexity. However the gain is very small, nearly negligible.

When looking at TNFS. We consider a linear polynomial g and a polynomial f
of degree d where both polynomials have coefficients of size O

(
p1/(d+1)

)
. This

corresponds to the naive base-m polynomial selection. The TNFS setup requires
a polynomial h of degree n with coefficients of size O(1). As usual, to compute the
complexity, we are interested in the size of the norms. This is given in Sect. 4.2
and when evaluating the term C(n, d), which is not negligible due to the size
of n as opposed to the large characteristic case presented in [5], we note that
the overall complexity of TNFS at this boundary case is greater than the usual
LQ (1/3). Indeed, we have

log C(n, d) =
δ

cp
(log Q)4/3(log log Q)−1/3 +

4
3cp

(log Q)2/3(log log Q)1/3.

Since (log Q)4/3(log log Q)−1/3 > (log Q)2/3(log log Q)1/3 for large enough value
of Q, we have C(n, d) > LQ(2/3, x) for any constant x > 0. Thus this algorithm
is not applicable in this case. Moreover, if we write p = LQ (α, c), this argument
is valid as soon as α ≤ 2/3.

6.2 (M)exTNFS

When the extension degree n = ηκ is composite, using the extended TNFS
algorithm and its multiple field variant allows to lower the overall complexity.

Before starting the complexity analysis, we want to underline a main dif-
ference with other analyses seen previously. So far, the degree t of the siev-
ing polynomials has always been taken to be a function of log Q, i.e., we

usually set t = ct

cp

(
log Q

log log Q

)1/3

. In the following analysis, the value of t is
a discrete value. Indeed, if one chooses to analyze the complexity using t as
a function of log Q, we get the following value in the product of the norms:
Q(t−1)/(d(r+1)) = LQ (1, kctcη/(r + 1)) . This implies that the norms become too
big to give a final complexity in LQ (1/3).

We now concentrate on the analysis of exTNFS, using Algorithm B. Contin-
uous parameters are B, A, η and the discrete values are r, k, t. For simplicity we
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report only the case t = 2. The product of the norms is given by

N1N2 = Aηd(2r+1)pkη/(r+1)C(η, dr)C(η, d(r + 1)).

The two combinatorial terms are not negligible at this boundary case. The prob-
ability of getting relations is given by

P = LQ

(
1
3
,

−1
3cB

(
(2r + 1)cA

k
+

kcηcp

r + 1
+

2r + 1
2kcp

))
,

and using the condition P = 1/B allows us to obtain a non-linear equation in the
various parameters considered. In order to minimize 2cB under this non-linear
constraint, we use Lagrange multipliers and solve the system exhibited in Sect. 4
with a Gröbner basis approach. This allows us to obtain an equation of degree 4
in cB and r and degree 2 in cp and k. The equation is given in [15, Appendix C].
Since r, k are discrete values, one can then loop through their possible values
and pick the ones which give the smallest complexity.

A note on the JLSV2 polynomial selection. When considering the JLSV2 poly-
nomial selection for exTNFS (same for MexTNFS), the norms are bounded by

|N1| < Aηκ||f ||η∞C(η, κ) = Aηκpκη/(d+1)C(η, κ),
|N2| < Aηd||g||η∞C(η, d) = Aηdpκη/(d+1)C(η, d).

The terms C(η, κ) and C(η, d) are not negligible in this case, and C(η, κ) =
LQ (2/3, cηcκ/2). Similarly, we have C(η, d) = LQ (2/3, δcη/2) . By looking at
the first term of N2, that is Aηd, and the value of C(η, d), one notes that the
norm is minimized when η = 1. This means that n is not composite. Thus, no
improvement to JLSV2 can be obtained by considering a composite n.

6.3 S(T)NFS

We give as an example the complexity analysis of SNFS and then explain why
STNFS is not applicable at this boundary case.

SNFS. From the characteristics of the polynomials outputted by the polynomial
selection used for SNFS given in Table 2, we compute the product of the norms
which is given by N1N2 = n2tλttn(λ+1)p1/λAn(λ+1)(log(n))λt. The probability
that both norms are smooth is given by P = LQ

(
1
3
, −1
3cB

(
λ+1
3cp

+ (λ + 1)cA + ct
λ

))
.

We consider the usual constraint given by the NFS analysis, cB + p = 0. By de-
riving this constraint with respect to ct and using a Gröbner basis approach, we
obtain the following equation of cB as a function of cp:

81c4Bc2pλ2 − 18c2Bcpλ3 − 18c2Bcpλ2 − 72cBc2pλ2 − 72cBc2pλ + λ4 + 2λ3 + λ2 = 0.

When cp → ∞, the complexity is given by 2cB = (64(λ + 1)/(9λ))1/3. When
λ = 1, this value is equal to (128/9)1/3. When λ ≥ 2, the complexity becomes
better than (128/9)1/3. If λ is chosen to be a function of log Q, for example if
λ = n, then the norms become too big, and the resulting complexity is much
higher. The complexity of SNFS for various values of λ is given in Fig. 4.
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STNFS. We look at the composite case where n = ηκ and consider the exTNFS
algorithm with the special variant. From Table 2, we have the following norms:
N1 = Anpη/λC(η, κ) and N2 = Anλ(log κ)ηλC(η, κλ).

First, the term (log κ)ηλ is negligible due to the size of κ and η. Among the
remaining terms, for a fixed λ value, one can see that the size of the norms
is minimized when η = 1, thus when n is not composite. Hence, applying the
special variant to the exTNFS algorithm will not output any valid complexity.
The STNFS algorithm can be used in medium characteristics as shown in [30].
In this case, the value of λ is chosen to be a function of log Q, and allows to
obtain a minimal value for the complexity where the value of η is not necessarily
equal to 1. In particular, the product nλ can be chosen such as to keep the norm
in LQ (2/3) since n is not fixed as opposed to the boundary case.

Table 3. Norms and complexities for (M)(ex)(S)NFS algorithms.

Algorithm N1 N2 Complexity 2cB

cp = 1 cp = 5 cp → ∞
NFS-JLSV0 1

6cp
+ ct

2 + cA
1

6cp
+ ct

2 + cA 2.54 2.45
(

128
9

)1/3 ≈ 2.4

NFS-JLSV1 1
6cp

+ ct
2 + cA

1
6cp

+ ct
2 + cA 2.54 2.45

(
128
9

)1/3 ≈ 2.4

NFS-JLSV2 1
6cp

+ ct
δcp

+ cA
δ
6 + ct

δcp
+ δcAcp 2.87 2.62

(
128
9

)1/3 ≈ 2.4

NFS-A r+1
6kcp

+
(r+1)cA

k
r

6kcp
+

rcA
k

+ kct
r+1 2.39 2.24

(
96
9

)1/3 ≈ 2.2

MNFS-JLSV1 1
6cp

+ ct
2 + cA

1
6cp

+ ct
2 + cA +

ctcV
2cp

2.52 2.36 2 3√7+4
√

3

32/3 ≈ 2.31

MNFS-JLSV2 1
6cp

+ ct
δcp

+ cA
δ
6 + ct

δcp
+ δcpcA +

ctcV
2cp

– 2.62 2
3

3
√

23 + 13
√

13
2 ≈ 2.396

MNFS-A r+1
6kcp

+
(r+1)cA

k
r

6kcp
+

rcA
k

+ kct
r+1 +

ctcV
2cp

– 2.22 2
3
√

3
5 +

4
√

2
3

5 ≈ 2.156

exTNFS-B
(r+1)cA

k
+ r+1

2kcp

rcA
k

+
kcηcp

r+1 + r
2kcp

2.23 1.89
(

48
9

)1/3 ≈ 1.747

MexTNFS-B
(r+1)cA

k
+ r+1

2kcp

rcA
k

+
kcηcp

r+1 + r
2kcp

+
cV cη

2 2.66 2.02 2
3
√

3
10 +

2
√

2
3

5 ≈ 1.71

SNFS-λ 1
6cp

+ ct
λ

+ cA
λ

6cp
+ λcA – –

( 64(λ+1)
9λ

)1/3

SNFS-2 1
6cp

+ ct
2 + cA

2
6cp

+ 2cA 2.39 2.24
(

192
18

)1/3 ≈ 2.20

SNFS-56 1
6cp

+ ct
56 + cA

56
6cp

+ 56cA 4.27 2.63
(

3648
504

)1/3 ≈ 1.93

STNFS cA +
cηcp

λ
+

cηcκ
2 λcA +

cηcκλ

2 – – –

7 Crossover Points Between NFS, FFS and the
Quasi-polynomial Algorithms

7.1 Quasi-polynomial Algorithms

After half a decade of both practical and theoretical improvements led by several
teams and authors, the following result was finally proven in 2019:
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Fig. 4. Complexities of NFS and all its variants as a function of cp.

Theorem 1 (Theorem 1.1. [32]). Given any prime number p and any positive
integer n, the discrete logarithm problem in the group F

×
pn can be solved in

expected time CQP = (pn)2 log2(n)+O(1).

This complexity is quasi-polynomial only when p is fixed or slowly grows
with Q. When p is in the whereabouts of LQ(1/3) and n in (log Q)2/3, we obtain
a complexity comparable to LQ(1/3). Therefore this algorithm must come into
play in our study; we abbreviate it by QP, even if in our range of study its
complexity is no longer quasi-polynomial.

7.2 Crossover Between FFS and QP

When p = LQ (1/3, cp), the complexity of QP algorithms is a power of the term
exp

(
log(Q)1/3(log log Q)5/3

)
larger than any LQ(1/3) expression. The crossover

point is therefore for a characteristic p growing slower than an LQ(1/3) ex-
pression. In this area, the complexity of FFS is CFFS = LQ(1/3, (32/9)1/3) or
Cshifted FFS = LQ(1/3, (128/81)1/3) if n is composite and has a factor of exactly
the right size so that the shifted FFS yields an optimal complexity.

The crossover point is when the expression of CQP takes the LQ(1/3) form.
More precisely, this occurs when p has the following expression

p = exp
(
γp(log Q)1/3(log log Q)−1/3

)
=: MQ (1/3, γp) ,

where we define the notation MQ (α, β) = exp (β(log Q)α(log log Q)−α). This
MQ function fits as follows with the LQ function: for any positive constants
α, β, γ, and ε, when Q grows to infinity we have the following inequalities
LQ (1/3 − ε, β) � MQ (1/3, γ) � LQ (1/3, α) .
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Writing Q = pn with p of this form, the formula for the extension n becomes
n = 1

γp
(log Q)2/3(log log Q)1/3, so that the cost of the QP algorithm is

CQP = LQ

(
1
3
,

4γp

3 log 2

)
.

Equating this cost with the complexity of FFS, we obtain the crossover point.
If only the non-shifted FFS is available, for instance because n is prime, then the
crossover is when p = MQ(1/3, ( 32 )1/3 log 2). Otherwise, if n has a factor of an
appropriate size for the shifted FFS, the crossover is at p = MQ(1/3, ( 23 )1/3 log 2).

7.3 Crossover Between NFS and FFS

We compare the performance of FFS with the best variants of NFS. All complex-
ities are expressed as LQ (1/3, c), where c is a function of cp. Thus, it is enough
to compare the values of c for each algorithm. Let cFFS be this value in the case
of FFS and cNFS for NFS and all its variants.

We look for the value of cp for which cFFS = cNFS, where the best variant of
NFS depends on the considerations made on n and p. Indeed, when no special
considerations are made on either n or p, the best algorithm among the vari-
ants of NFS is MNFS-A as seen in Sect. 6. When n is composite, the algorithm
that performs best when cp is small is (M)exTNFS-B depending on cp. Finally,
when p is taken to have a special form, the SNFS algorithm gives a complexity
when cp is small and MNFS does not. For each of these algorithms, we know
cNFS as a function of cp. Moreover, when looking at the FFS algorithm, we note
that the crossover value is located in the area where the linear algebra phase is
the dominant and that in this area the value of D is 1. Thus cFFS = 2cp. Hence,
we are able to compute exact values of these crossover points which we report in
Table 4. The complexity of SNFS depends on the value of λ. We report in Table 4
the smallest value for cp for the crossover point with FFS, which corresponds to
λ = 3. Note also that for the range of cp for which the NFS variants intersect
FFS, the variant exTNFS performs similarly than MexTNFS, and thus we only
report the crossover point with MexTNFS.

Table 4. Values of cp for crossover points between FFS and variants of NFS, together
with their relative complexities LQ(1/3, c).

normal p special p, λ = 3

n prime cp = 1.23, c = 2.46, MNFS-A cp = 1.17, c = 2.34, SNFS-3

n composite cp = 1.14, c = 2.28, MexTNFS-B –
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8 Considering Pairings

When constructing a pairing e : E × E → Fpn for some elliptic curve E over
the finite field Fp, one must take into account the hardness of DLP in both a
subgroup of E and in Fpn = FQ. A natural question arises.

Question Asymptotically what finite field Fpn should be considered in order to
achieve the highest level of security when constructing a pairing?

The goal is to find the optimal p and n that answers the above question.
Note that pairings always come with a given parameter that indicates whether
the prime-order subgroup of E is large. More precisely, this parameter ρ is defined
as ρ = log p/ log r where r is the size of the relevant prime-order subgroup of E
over Fp. In all the known constructions, we have ρ ∈ [1, 2].

8.1 Landing at p = LQ(1/3) is Not as Natural as It Seems

The fastest known algorithm to solve the DLP on elliptic curves is Pollard rho
with a running-time of O(

√
r), which means O(p1/2ρ). In order to optimize the

security of the scheme that uses such a pairing, a naive and common approach
is to balance the two asymptotic complexities, namely p1/2ρ and LQ(1/3). This
would result in p = LQ(1/3). This equality is not as simple to justify. In the FFS
algorithm, the cost of sieving and linear algebra are not taken to be equal, which
is a common hypothesis made in the complexity analyses of NFS for example.
Assuming this equality would potentially lead to worse complexities. For the
same reason, equalizing the cost of the DLPs on the elliptic curve and on the
finite field may miss other better options. Interestingly enough, we need the full
comprehension of asymptotic complexities at this boundary case to understand
why we consider finite fields of this size.

In order to avoid quasi-polynomial algorithms, it is clear that one must
choose p � MQ(1/3, (2/3)1/3 log 2). Since FFS and all the variants of NFS have a
complexity in LQ(1/3, c), we then look for finite fields for which the algorithms
give the largest c. We distinguish five different areas:

1. Small characteristic when p � MQ(1/3, (2/3)1/3 log 2). FFS reaches a
complexity with c = (32/9)1/3 ≈ 1.53, or lower if n is composite.

2. Boundary case studied in this article. Various algorithms coexist. When
considering the complexity of the optimal algorithms, c roughly varies from
1.16 to 2.46. Note that 2.46 is the best complexity reached at the crossover
point between FFS and MNFS-A when nothing is known about p and n.

3. Medium characteristic. The best complexity in the general case is reached
by MNFS-A, giving c ≈ 2.15.

4. Boundary case between medium and large characteristics. The lowest
complexities in the general case are reached by MNFS-A or MTNFS. In all
cases, 1.70 ≤ c ≤ 2.15.

5. Large characteristic. The lowest complexity in the general case is reached
again by MNFS-A, giving here c ≈ 1.90.
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Thus, we see that the best choice is indeed p = LQ(1/3) so one can expect to
reach the highest complexities for DLPs, in particular higher than LQ(1/3, 2.15).

8.2 Fine Tuning of cp to Get the Highest Security

Let us now find cp that optimizes the security. Let CE (resp. CFQ
) be the cost of

the discrete logarithm computation on the subgroup of the elliptic curve E (resp.
the finite field FQ). On one hand, we have CE = p1/2ρ. This can be rewritten as
CE = LQ (1/3, cp/2ρ). For ρ fixed, CE is an increasing function of cp.

On the other hand, the best algorithm to compute discrete logarithms in a
finite field depends on three parameters: the size of the characteristic p, the form
of p and whether the extension degree n is composite.

General case. Assuming nothing about n and p, the best variant of NFS at
this boundary case is MNFS-A. Thus, we have

CFQ
=

{
LQ (1/3, cFFS(cp)) , when cp ≤ σ

LQ (1/3, cMNFS-A(cp)) , when cp ≥ σ

where calgo(cp) is the constant in the LQ expression of the complexity of the
algorithm “algo”, and σ is the crossover value of cp between FFS and MNFS-A.

We then want to find the value of cp that maximizes min(CE , CFQ
). Figure 5

shows how the relevant algorithms varies with respect to cp. Note that the
crossover point between CE and CFQ

is not with FFS: we just need to compare
CE with the complexity of MNFS-A. The latter being a decreasing function with
respect to cp, whereas CE is an increasing function, we conclude that the highest
complexities are given at the crossover points between these curves.

For ρ = 1, the optimal choice is p = LQ(1/3, 4.45), which results in an
asymptotic complexity in LQ(1/3, 2.23). For ρ = 2, the optimal choice is p =
LQ(1/3, 8.77) resulting in a complexity in LQ(1/3, 2.19). Increasing ρ from 1 to 2
increases the optimal value of cp, and thus the asymptotic complexity decreases.

If the extension degree n is composite. The best option as an adversary is
to use MexTNFS-B. Its complexity is a decreasing function below the complexity
of MNFS-A (see [15, Appendix D]). Thus, the strategy remains the same. With
ρ = 1 and cp = 3.81 we obtain an asymptotic complexity in LQ(1/3, 1.93). With
ρ = 2 and cp = 7.27 we have a complexity in LQ(1/3, 1.82).

Special sparse characteristics can be used! When p is given by the eval-
uation of a polynomial of low degree λ, SNFS is applicable. Yet Fig. 4 shows
that SNFS is not always a faster option than MNFS-A. The behavior of SNFS
with regards to MNFS-A depends on λ:
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Fig. 5. Comparing the complexities of FFS, MNFS-A and Pollard rho for ρ = 1 and
ρ = 2. I1 and I2 are the crossover points of CE and CFQ .

– If λ = 2 or λ ≥ 29, then MNFS-A if faster than the related SNFS for all ρ.
– If 3 ≤ λ ≤ 16, the related SNFS if faster than MNFS-A for all ρ.
– If 17 ≤ λ ≤ 28, the best choice depends on ρ. For instance, if λ = 20 MNFS-A

is faster if ρ ≤ 1.3 but SNFS becomes faster if 1.3 ≤ ρ, see Fig. 6.

Surprisingly enough, this means that we can construct a pairing with a spe-
cial sparse characteristic without asymptotically decreasing the security of the
pairing. For instance, with λ = 20, ρ = 1, the best option is to take cp = 4.45.
This gives a complexity in LQ(1/3, 2.23), which is the one obtained with a nor-
mal p of the same size. But for λ = 20 and ρ = 2 the security gets weaker than
in the normal case: taking cp = 8.51 allows to decrease the complexity from
LQ(1/3, 2.19) (for a normal p) to LQ(1/3, 2.13) (for this special p).

Combining special p and composite n. We saw in Sect. 6.3 that combining
SNFS and exTNFS-B is not possible at this boundary case. Since MexTNFS-B
is always lower than SNFS for the cp considered, with both n composite and p
special, the best option is to ignore the form of p, and apply MexTNFS-B.

8.3 Conclusion

We studied all possible cases regarding p and n in order to extract the optimized
values of cp, leading to the highest asymptotic security of the related pairing.
Table 5 summarizes these complexities depending on what is known about p
and n. We give our results for the ρ = 1 particular case to get bounds on com-
plexities. Indeed, decreasing ρ decreases the complexities as well, so the values in
Table 5 are upperbounds on the asymptotic complexities of all currently known
pairing constructions. Moreover, ρ = 1 is achieved with some well-known effi-
cient pairing friendly curves such as MNT or BN curves. Yet we emphasize that
these families are not asymptotic and, to the best of our knowledge, designing an
efficient asymptotic family of pairings reaching ρ = 1 is still an open question.

The best asymptotic security is given by ρ = 1, n prime, and p = LQ(1/3, 4.45),
with p either normal or the evaluation of a degree d polynomial, with d ≥ 29 or
d = 2. The asymptotic complexities of all relevant attacks are in LQ(1/3, 2.23).
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Table 5. Optimal choices for pairing constructions, depending on the form of p and
n. Each cell gives the value cp determining p as p = LQ(1/3, cp), together with calgo,
which gives the best asymptotic complexity LQ(1/3, calgo) reached by the algorithm
algo for the related case.

normal p special p special p

λ = 20 λ = 3

n prime cp = 4.45, cMNFS-A = 2.23 cp = 4.36, cSNFS-3 = 2.18

n composite cp = 3.81, cMexTNFS-B = 1.91

Fig. 6. Increasing ρ makes the security decrease. The first figure gives optimized val-
ues of cp as a function of ρ, and the second figure shows the second constant in the
complexities, as a function of ρ, depending on the algorithm.
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