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Abstract. We give a four-round black-box construction of a commit-
and-prove protocol with succinct communication. Our construction is WI
and has constant soundness error, and it can be upgraded into a one
that is ZK and has negligible soundness error by relying on a round-
preserving transformation of Khurana et al. (TCC 2018). Our construc-
tion is obtained by combining the MPC-in-the-head technique of Ishai et
al. (SICOMP 2009) with the two-round succinct argument of Kalai et al.
(STOC 2014), and the main technical novelty lies in the analysis of the
soundness—we show that, although the succinct argument of Kalai et al.
does not necessarily provide soundness for NP statements, it can be used
in the MPC-in-the-head technique for proving the consistency of com-
mitted MPC views. Our construction is based on sub-exponentially hard
collision-resistant hash functions, two-round PIRs, and two-round OTs.

1 Introduction

In this paper, we obtain a new commit-and-prove protocol by relying on tech-
niques in the area of succinct arguments. We start by giving some backgrounds.

Succinct arguments. Informally speaking, a succinct argument is an argu-
ment system with small communication complexity and fast verification time—
typically, when a statement about T -time deterministic or non-deterministic
computation is proven, the communication complexity and the verification time
are required to be polylogarithmic in T . (The security requirements are, as usual,
completeness and computational soundness.) Succinct arguments are useful when
resources for communication and verification are limited; for example, a direct
application of succinct arguments is delegating computation [GKR15] (or ver-
ifiable computation [GGP10]), where a computationally weak client delegates
heavy computations to a powerful server and the client uses succinct arguments
to verify the correctness of the server’s computation efficiently. It was shown that
a four-round succinct argument for all statements in NP can be obtained from
collision-resistance hash functions [Kil92]. Since then, succinct arguments have
been actively studied, and protocols with various properties have been proposed.

Among existing succinct arguments, the most relevant to this work is the one
by Kalai et al. [KRR14] (KRR succinct argument in short), which has several
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desirable properties such as (1) being doubly efficient [GKR15] (i.e., not only
the verifier but also the prover is efficient), (2) being a two-round protocol (i.e.,
the scheme consists of a single query message from the verifier and a single
answer message from the prover), and (3) being proven secure under standard
assumptions, especially without relying on unfalsifiable assumptions and random
oracles. More concretely, when the statement is about the correctness of a T -
time computation, the communication complexity and the verifier running time
is polylogarithmic in T while the prover running time is polynomial in T , and
the security is proven assuming the existence of private information retrieval
(PIR) or fully homomorphic encryption (FHE).

Given the powerful properties of KRR succinct argument, it is natural to
expect that it has many cryptographic applications. For example, since argument
systems have been extensively used in the design of cryptographic protocols, one
might expect that the efficiency of such cryptographic protocols can be improved
by simply plugging in KRR succinct argument.

However, using KRR succinct argument in cryptographic applications is
actually non-trivial. One difficulty is that the soundness of KRR succinct
argument is currently proven only for some specific types of NP statements
[KP16,BHK17,BKK18] (originally, its soundness was proven for statements in
P [KRR14]). Another difficulty is that it does not provide any privacy on wit-
nesses when it is used for NP statements.

Nonetheless, recent works showed that KRR succinct argument can be
used in some cryptographic applications. For example, by cleverly combin-
ing KRR succinct argument with other cryptographic primitives, Bitansky
et al. [BBK16] obtained a three-round zero-knowledge argument against uniform
cheating provers, Brakerski and Kalai [BK20] obtained a succinct private access
control protocol for the access structures that can be expressed by monotone
formulas, and Morgan et al. [MPP20] obtained a succinct non-interactive secure
two-party computation protocol.

The number of applications is, however, still limited. A potential reason for
this limitation is that the current techniques inherently use cryptographic prim-
itives in non-black-box ways. Concretely, to hide the prover’s witness, the cur-
rent techniques use KRR succinct argument under other cryptographic protocols
(such as garbling schemes) and thus require non-black-box accesses to the codes
of the cryptographic primitives that underlies KRR succinct argument. Conse-
quently, the current techniques cannot be used for applications where black-box
uses of cryptographic protocols are desirable, such as the application to commit-
and-prove protocols, which we discuss next.

Commit-and-prove protocols. Informally speaking, a commit-and-prove protocol
is a commitment scheme in which the committer can prove a statement about
the committed value without opening the commitment. Proofs by the committer
are required to be zero-knowledge (ZK) or witness-indistinguishable (WI), where
the former requires that the views of the receiver in the commit and prove
phases can be simulated in polynomial time without knowing the committed
value, and the latter requires that for any two messages and any statement such
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that both of the messages satisfy the statement, the receiver cannot tell which
of the messages is committed even after receiving a proof on the statement.
Commit-and-prove protocols were implicitly used by Goldreich et al. [GMW87]
for obtaining a secure multi-party computation protocol with malicious security,
and later formalized by Canetti et al. [CLOS02].

A desirable property of commit-and-prove protocols is that they are con-
structed in a black-box way, i.e., in a way that uses the underlying cryptographic
primitives as black-box by accessing them only through their input/output inter-
faces. Indeed, this black-box construction property is essential when commit-and-
prove protocols are used as a tool for enforcing honest behaviors on malicious
parties without relying on non-black-box uses of the underlying cryptographic
primitives (see, e.g., [GLOV12,LP12,GOSV14]).

Very recently, Hazay and Venkitasubramaniam [HV18] and Khurana et al.
[KOS18] gave four-round black-box constructions of ZK commit-and-prove pro-
tocols, where the round complexity of a commit-and-prove protocol is defined as
the sum of that of the commit phase and that of the prove phase. Their protocols
are round optimal since the commit and prove phases of their commit-and-prove
protocols can be thought of as black-box ZK arguments (where the prover first
commits to a witness and then proves the validity of the committed witness) and
black-box ZK arguments are known to require at least four rounds [GK96]. Their
protocols also have the delayed-input property, i.e., the property that statements
to be proven on committed values can be chosen adaptively in the last round of
the prove phase.

The commit-and-prove protocols by Hazay and Venkitasubramaniam [HV18]
and Khurana et al. [KOS18] are not succinct in the sense that when the statement
is expressed as a T -time predicate on the committed value, the communication
complexity depends at least linearly on T . This is because both of their protocols
were obtained via transformations from the three-round constant-sound commit-
and-prove protocol of Hazay and Venkitasubramaniam [HV16], which is not
succinct in the above sense.

1.1 Our Result

Our main result is a four-round black-box construction of a constant-sound WI
commit-and-prove protocol with succinct communication complexity.

Theorem 1. Assume the existence of sub-exponentially hard versions of the fol-
lowing cryptographic primitives: a collision-resistant hash function family, a two-
round oblivious transfer protocol, and a two-round private information retrieval
protocol. Then, there exists a constant-sound WI commit-and-prove protocol with
the following properties.

1. The round complexity is 4, and the protocol satisfies the delayed-input property
and uses the above cryptographic primitives in a black-box way.

2. When the length of the committed value is n and the statement to be proven
on the committed value is a T -time predicate, the communication complexity
depends polynomially on log n, log T , and the security parameter.
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Our commit-and-prove protocol uses a variant of KRR succinct argument (which
is obtained from the private information retrieval protocol), and succinctness of
our commit-and-prove protocol is inherited from that of KRR succinct argument.
We assume sub-exponential hardness on the cryptographic primitives since we
use complexity leveraging.

ZK and negligible soundness error. Given our constant-sound WI commit-and-
prove protocol, we can use (a minor variant of) a transformation of Khurana et al.
[KOS18] to transform it into a 4-round ZK commit-and-prove protocol with
negligible soundness error. The resultant commit-and-prove protocol still satisfies
the delayed-input property, the black-box uses of the underlying primitives, and
the succinct communication complexity. (See the full version of this paper for
details.)

Verification time. The verification of our commit-and-prove protocol is not
succinct, i.e., the verifier running time depends polynomially on T . Although
we might be able to make it succinct by appropriately modifying our protocol
(see Appendix A for details), we do not explore this possibility in this work so
that we can focus on our main purpose, i.e., on showing how to use KRR succinct
argument in black-box constructions of commit-and-prove protocols.

Complexity leveraging. As mentioned above, we use complexity leveraging in
the proof of Theorem 1. Although we might be able to avoid the use of com-
plexity leveraging by using known techniques (e.g., by relying on extractable
commitments [PW09]), we do not explore this possibility in this work for the
same reason as above.

Comparison with existing schemes. As explained above, Hazay and Venkita-
subramaniam [HV18] and Khurana et al. [KOS18] gave four-round black-box
ZK commit-and-prove protocols with the delayed-input property. Their schemes
rely on a weak primitive (injective one-way functions) but do not have succinct
communication.

Goyal et al. [GOSV14] and Ishai and Weiss [IW14] studied black-box commit-
and-prove protocols with succinct communication under slightly different defini-
tions than ours.1 If their techniques are used to obtain schemes under our def-
initions, the resultant schemes will rely on a weak primitive (collision-resistant
hash functions) but have round complexity larger than 4.2

1 For example, the definition in [IW14] considers non-deterministic statements on com-
mitted values but the statements are assumed to be fixed in the commit phase,
whereas our definition considers deterministic statements but the statements are
allowed to be chosen after the commit phase is completed.

2 Roughly speaking, this is because in a setting where statements to be proven
are chosen after the commit phase (e.g., the delayed-input setting), techniques in
[GOSV14,IW14] require that (1) the commit phase has 2 rounds as it needs to be
succinct and (2) the prove phase has 3 rounds as it has a commit-challenge-response
structure.
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Kalai and Paneth [KP16] observed that when messages are committed by
using Merkle tree-hash, KRR succinct argument can be used for proving state-
ments on the committed messages. The resultant scheme is succinct in terms
of both communication complexity and verification time, but uses the underly-
ing hash function in a non-black-box way and does not have privacy properties
(which are not needed for the purpose of [KP16]).

1.2 Overview of Our Commit-and-Prove Protocol

The overall approach is to combine KRR succinct argument with the MPC-in-
the-head technique [IKOS09].

Let us first recall how we can obtain a non-succinct WI commit-and-prove
protocol by using the MPC-in-the-head technique. Let M ∈ N be an arbitrary
constant, Π be any 2-private semi-honest secure M -party computation protocol
with perfect completeness,3 OT be any two-round 1-out-of-M2 oblivious transfer
(OT) protocol, SBCom be any statistically binding commitment scheme, and
SHCom be any statistically hiding commitment scheme. We assume that the
hiding property of SBCom can be broken in a quasi-polynomial time Tsb, and
the security of the other primitives holds against poly(Tsb)-time adversaries.

Commit phase. To commit to a message xcom, the committer (1) chooses ran-
dom x1

mpc, . . . , x
M
mpc such that x1

mpc⊕· · ·⊕xM
mpc = xcom, (2) chooses randomness

r1mpc, . . . , r
M
mpc for the M parties of Π, and (3) commits to stμ0 := (xμ

mpc, r
μ
mpc)

for each μ ∈ [M ] by using SHCom. (Note that each stμ0 can be thought of
as an initial state of a party of Π.) For each μ ∈ [M ], let decμ

sh denote the
decommitment of SHCom for revealing stμ0 .

Prove phase. In the first round, the receiver computes a receiver message of
OT by using random (α, β) ∈ [M ] × [M ] as the input,4 and sends it to the
committer.
In the second round, to prove f(xcom) = 1 for a predicate f , the committer
does the following. (1) Execute Π in the head by using st10, . . . , st

M
0 as the

initial states of the M parties and using f ′ : (y1, . . . , yM ) �→ f(y1 ⊕ · · ·⊕ yM )
as the functionality to be computed. Let view1, . . . , viewM be the views of the
parties in this execution of Π. (2) For each μ ∈ [M ], compute a commitment
to (decμ

sh, view
μ) by using SBCom. Let decμ

sb be the decommitment of SBCom
for revealing (decμ

sh, view
μ). (3) Compute a sender message of OT by using

{(decμ
sb, dec

ν
sb)}μ,ν∈[M ] as the input. (4) Send the commitments and the OT

message to the receiver.
In the verification, the receiver (1) recovers decα

sb, dec
β
sb from the OT mes-

sage, (2) checks that they are valid decommitments of SBCom for revealing
decα

sh, view
α, decβ

sh, view
β and that decα

sh, dec
β
sh are valid decommitments of

SHCom for revealing stα0 , stβ0 , and (3) checks the following two conditions on
stα0 , viewα, stβ0 , viewβ .

3 Such an MPC protocol can be obtained unconditionally (e.g., the 2-private five-party
protocol by Ben-Or et al. [BGW88,AL17]).

4 We assume that the set [M ]× [M ] is identified with the set [M2] in a canonical way.
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1. The views viewα, viewβ are consistent in the sense that the messages that
the party Pα receives from the party P β in viewα is equal to the messages
that P β sends to Pα in viewβ and vice versa.

2. For each ξ ∈ {α, β}, the view viewξ indicates that the initial state of P ξ

is stξ0 and the output is 1.

First, the constant soundness follows from the receiver security of OT and the
perfect completeness of Π. Roughly speaking, this is because (1) the receiver
security of OT guarantees that the committer can convince the verifier with
high probability only when it commits to initial states and views that satisfy
the above two conditions for every α, β ∈ [M ],5 and (2) when the committed
initial states and views satisfy the above two conditions for every α, β ∈ [M ],
the perfect completeness of Π guarantees f(xcom) = 1, where xcom is derived
from the committed initial states. Next, the witness-indistinguishability follows
from the receiver security of OT and the 2-privacy of Π. This is because the
former guarantees that the receiver only learns the committed initial states and
views of two parties and the latter guarantees the committed initial states and
views of any two parties do not reveal any information about xcom. Finally, this
scheme is not succinct since the committer sends the initial states and views of
Π (or more precisely the decommitments to them) via OT.

Now, to make the above scheme succinct, we combine it with KRR succinct
argument. The idea is to let the committer send succinct arguments about the
initial states and views (instead of the initial states and views themselves) via
OT. That is, we let the committer prove that the above two conditions hold
on the committed initial states and views of each pair of the parties, where a
separate instance of KRR succinct argument is used for each pair of the parties,
and let it send the resultant M2 succinct arguments via OT. (Note that KRR
succinct argument can naturally be combined with OT since it is a two-round
protocol.) As a minor modification, we also let the committer use a succinct
commitment scheme to commit to the initial states and the views.

Unfortunately, although the modifications are intuitive, proving the sound-
ness of the resultant scheme is non-trivial. (In contrast, the WI property can
be proven similarly to the WI property of the original scheme. The key point is
that, although KRR succinct argument does not provide any witness privacy, we
can still prove WI of the whole scheme since in each instance of KRR succinct
argument, the witness—initial states and views of a pair of the parties—does
not reveal any secret information anyway.)

A natural approach for proving the soundness would be to first prove the
soundness of each instance of KRR succinct argument and then derive the sound-
ness of the whole scheme from it. Indeed, if we can show that each of the M2

instances of KRR succinct argument provides an argument-of-knowledge prop-
erty (which allows us to extract the committed initial states and views from the
cheating committer), we can easily prove the soundness of the whole scheme.
5 Formally, complexity leveraging is required in this argument since the receiver secu-

rity of OT needs to hold even against adversaries that extract the committed initial
states and views by brute force.
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The problem of this approach is that KRR succinct argument is not known
to provide soundness for all statements in NP, and hence, does not necessarily
provide soundness when it is used as above.

Our actual approach is to show that, while each of the instances of KRR suc-
cinct argument does not necessarily provide soundness, they as a whole provide a
meaningful notion of the soundness, which can be used to prove the soundness of
the whole scheme. Specifically, by getting into the security proof of the soundness
of KRR succinct argument, we show that when M2 instances of KRR argument
are used in parallel for proving the consistency of each pair of the committed
views etc. as above, then they as a whole guarantee that the committed views
are mutually consistent etc.

We give more detailed overviews of our approach from Sect. 3 to Sect. 6 after
giving necessary definitions in Sect. 2.

2 Preliminaries

2.1 Notations and Conventions

We denote the security parameter by λ. We assume that every algorithm takes
the security parameter as input, and often do not write it explicitly.

We identify a bit-string with a function in the following manner: a bit-string
x = (x1, . . . , xn) is thought of as a function x : [n] → {0, 1} such that x(i) = xi.
More generally, for any finite field F , we identify a string over F with a function
in the same manner. For a vector v = (v1, . . . , vn) and a set S ⊆ [n], we define
v|S by v|S :={vi}i∈S . Similarly, for a function f : D → R and a set S ⊆ D, we
define f |S by f |S :={f(i)}i∈S .

For any two probabilistic interactive Turing machines A and B and any input
xA to A and xB to B, we denote by (outA, outB) ← 〈A(xA), B(xB)〉 that the
output of an interaction between A(xA) and B(xB) is (outA, outB), where outA
is the output from A and outB is the output from B.

2.2 Witness-Indistinguishable Commit-and-Prove Protocols

We give the definition of witness-indistinguishable commit-and-prove protocols.
Our definition is based on the definition by Khurana et al. [KOS18] but is slightly
different from it; see Appendix B for the differences.

A witness-indistinguishable (WI) commit-and-prove protocol 〈C,R〉 is a pro-
tocol between a committer C = (C.Com,C.Dec,C.Prv) and a receiver R =
(R.Com,R.Dec,R.Prv), and it consists of three phases.

1. In the commit phase, C.Com takes a message x ∈ {0, 1}n as input and inter-
acts with R.Com to commit to x.6 At the end of the interaction, C.Com outputs
its internal state stC and R.Com outputs the commitment com, which is the
transcript of the commit phase.

6 We assume that the length of the message to be committed, n, is implicitly given to
the receiver as input.
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2. In the prove phase, C.Prv takes a predicate f as input along with stC , and
interacts with R.Prv to prove that f(x) = 1 holds, where R.Prv takes (com, f)
as input, At the end of the interaction, R.Prv outputs either 1 (accept) or 0
(reject).

3. In the open phase, C.Dec takes an index i ∈ [n] as input along with stC , and
interacts with R.Dec to reveal the i-th bit of x, where R.Dec takes (com, i)
as input. At the end of the interaction, R.Dec outputs either a bit xi as the
decommitted bit, or ⊥ (reject).

In this paper, we focus on a WI commit-and-prove protocol such that (1) both
the prove phase and the open phase consist of two rounds, (2) the first round of
the prove phase does not depend on the commitment com and the predicate f ,7

and (3) the first round of the open phase does not depend on the commitment
com. Because of (1) and (2), R.Prv can be split into two algorithms, R.Prv.Q
and R.Prv.D, such that the prove phase proceeds as follows: (Q, stR) ← R.Prv.Q;
π ← C.Prv(stC , f,Q); b ← R.Prv.D(stR, com, f, π). Similarly, because of (1) and
(3), R.Dec can be split into two algorithms, R.Dec.Q and R.Dec.D, such that the
open phase proceeds as follows: (Q, stR) ← R.Dec.Q(i); dec ← C.Dec(stC , i, Q);
b ← R.Dec.D(stR, com, dec).

WI commit-and-prove protocols need to satisfy the following security notions.

Definition 1 (Completeness). A commit-and-prove protocol 〈C,R〉 is com-
plete if for any polynomial n : N → N and any λ ∈ N, x ∈ {0, 1}n(λ), and
i ∈ [n(λ)],

Pr
[
xi = x̃i

∣∣∣∣ (stC , com) ← 〈C.Com(x),R.Com〉
(⊥, x̃i) ← 〈C.Dec(stC , i),R.Dec(com, i)〉

]
= 1 .

Definition 2 (Binding). A commit-and-prove protocol 〈C,R〉 is (computa-
tionally) binding if for any polynomial n : N → N, any ppt cheating committer
C∗ = (C.Com∗,C.Dec∗), and any λ ∈ N, the following binding condition holds
with overwhelming probability over the choice of (stC , com) ← 〈C.Com∗,R.Com〉.
– Binding Condition: For every i ∈ [n(λ)], it holds Pr [bbad = 1] ≤ negl(λ)

in the following probabilistic experiment Expbind(C.Dec∗, stC , com, i).
1. For each b ∈ {0, 1}, sample Qb by (Qb, stb) ← R.Dec.Q(i).
2. Run {decb}b∈{0,1} ← C.Dec∗(stC , i, {Qb}b∈{0,1}).
3. For each b ∈ {0, 1}, let x∗

b ← R.Dec.D(stb, com, decb).
4. Output bbad:=1 if and only if x∗

0 �= ⊥ ∧ x∗
1 �= ⊥ ∧ x∗

0 �= x∗
1 holds.

Definition 3 (Soundness). Let ε : N → [0, 1] be a function. A commit-and-
prove protocol 〈C,R〉 is (computationally) ε-sound if for any constant c ∈ N,
there exists a ppt oracle Turing machine E (called an extractor) such that for
any polynomial n : N → N, any ppt cheating committer C∗ = (C.Com∗,C.Prv∗),
and any sufficiently large λ ∈ N, the following soundness condition holds with
overwhelming probability over the choice of (stC , com) ← 〈C.Com∗,R.Com〉.
7 We assume that Time(f) is known to the both parties in advance (where f is

expressed as, e.g., a Turing machine).
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– Soundness Condition8: If it holds

Pr
[
b = 1

∣∣∣∣ (Q, stR) ← R.Prv.Q; (f, π) ← C.Prv∗(stC , Q);
b ← R.Prv.D(stR, com, f, π)

]
≥ ε(λ) +

1
λc

,

then there exists x∗ = (x∗
1, . . . , x

∗
n) ∈ {0, 1}n(λ) such that

∀i ∈ [n(λ)],Pr
[
xi = x∗

i

∣∣∣ (⊥, xi) ← 〈EC.Prv∗(stC ,·)(com, i),R.Dec(com, i)〉
]

≥ 1 − negl(λ)

and

Pr
[

b = 1
∧ f(x∗) = 0

∣∣∣∣ (Q, stR) ← R.Prv.Q; (f, π) ← C.Prv∗(stC , Q);
b ← R.Prv.D(stR, com, f, π)

]

≤ ε(λ) + negl(λ) .

〈C,R〉 is said to be sound if it is ε-sound for a negligible function ε.

Definition 4 (Witness Indistinguishability). 〈C,R〉 is witness-
indistinguishable if for any polynomial n : N → N, any two sequences {x0

λ}λ∈N

and {x1
λ}λ∈N such that x0

λ, x1
λ ∈ {0, 1}n(λ), any ppt cheating receiver R∗ =

(R.Com∗,R.Prv.Q∗), the outputs of Experiment 0 and Experiment 1 are compu-
tationally indistinguishable.

– Experiment b (b ∈ {0, 1}).
1. (stC , stR) ← 〈C.Com(xb

λ),R.Com∗(x0
λ, x1

λ)〉.
2. (f,Q, st′R) ← R.Prv.Q∗(stR). If f(x0

λ) �= 1 or f(x1
λ) �= 1, abort.

3. π ← C.Prv(stC , f,Q).
4. Output (st′R, π).

2.3 Secure Multi-party Computation

We recall the definition of secure multi-party computation (MPC) protocols
based on the description by Ishai et al. [IKOS09]. (We assume that the readers
are familiar with the concept of secure MPC protocols.)

The basic model that is used in this paper is the following. The number of
parties is denoted by M . We focus on MPC protocols that realize any determin-
istic M -party functionality that outputs a single bit (which is obtained by all
the parties), given the synchronous communication over secure point-to-point
channels. We assume that every party implicitly takes as input the M -party
functionality to be computed.

Recall that the view of a party in an execution of an MPC protocol consists
of its input, its randomness, and all the incoming messages that it received from
the other parties during the execution of the protocol. The consistency between
a pair of views is defined as follows.
8 Roughly speaking, the soundness condition requires that if a cheating prover con-

vinces the verifier with sufficiently high probability, then there exists a value x∗ such
that (1) the extractor can decommit com to x∗ and (2) the cheating prover cannot
prove false statements about x∗.
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Definition 5 (Consistent Views). A pair of views viewi, viewj is consistent
(w.r.t. an MPC protocol Π for a functionality f) if the outgoing messages that
are implicitly reported in viewi are identical to the incoming messages that are
reported in viewj and vice versa.

We consider security against semi-honest adversaries. Concretely, we use the
following two security notions.

Definition 6 (Perfect correctness). We say that an MPC protocol Π satis-
fies perfect correctness if for any deterministic M -party functionality f and for
any private inputs to the parties, the probability that the output of some party in
an honest execution of Π is different from the output of f is 0.

Definition 7 (2-privacy). We say that an MPC protocol Π satisfies per-
fect 2-privacy if for any deterministic M -party functionality f , there exists a
ppt simulator Smpc such that for any private inputs x1, . . . , xM to the par-
ties and every pair of corrupted parties, T ⊂ [M ] such that |T | = 2, the
joint view ViewT (x1, . . . , xM ) of the parties in T is identically distributed with
Smpc(T, {xi}i∈T , f(x1, . . . , xM )).

2.4 Probabilistically Checkable Proofs (PCPs)

We recall the definition of probabilistically checkable proofs (PCPs) based on
the description by Brakerski et al. [BHK17]. Roughly speaking, PCPs are proof
systems with which one can probabilistically verify the correctness of statements
by reading only a few bits or symbols of the proof strings. A formal definition is
given below.

Definition 8. A κ-query PCP system (P,V) for an NP language L, where V =
(Q,D), satisfies the following.

– (Completeness) For all λ ∈ N and x ∈ L (with witness w) such that
|x| ≤ 2λ,

Pr
[
D(st, x, π|Q) = 1

∣∣∣∣ (Q, st) ← Q(1λ)
π ← P(1λ, x, w)

]
= 1.

The PCP proof π is a string of characters over some alphabet Σ, and it can be
thought that this string is indexed by a set Γ (by identifying Γ with [N ] in a
canonical way, where N is the length of the string) and Q ⊆ Γ . Alternatively,
π can be thought of as a function from Γ to Σ.

– (Soundness) For all λ ∈ N, all x �∈ L such that |x| ≤ 2λ, and all proof
string π∗,

Pr
[
D(st, x, π∗|Q)

∣∣ (Q, st) ← Q(1λ)
] ≤ 1

2
.

– (Query Efficiency) If (Q, st) ← Q(1λ), then |Q| ≤ κ(λ) and the combined
run-time of Q and D is poly(λ).

– (Prover Efficiency) The prover P runs in polynomial time, where its input
is (1λ, x, w).
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2.5 Definitions from Kalai et al. [KRR14] and Subsequent Works

Computational no-signaling (CNS). We recall the definition of adaptive
(computational) no-signaling [KRR14,BHK17].

Definition 9. Fix any alphabet {Σλ}λ∈N, any {Nλ}λ∈N such that Nλ ∈ N, any
function κmax : N → N such that κmax(λ) ≤ Nλ, and any algorithm Algo such
that for any λ ∈ N, on input a subset Q ⊂ [Nλ] of size at most κmax(λ), Algo
outputs (the truth table of) a function A : Q → Σ ∪{⊥} with an auxiliary output
out.

Then, the algorithm Algo is adaptive κmax-computational no-signaling (CNS)
if for any ppt distinguisher D, any sufficiently large λ ∈ N, any Q,S ⊂ [Nλ]
such that Q ⊆ S and |S| ≤ κmax(λ), and any z ∈ {0, 1}poly(λ),

∣∣∣∣Pr [D(out, A, z) = 1 | (out, A) ← Algo(Q)]
−Pr [D(out, A|Q, z) = 1 | (out, A) ← Algo(S)]

∣∣∣∣ ≤ negl(λ).

We remark that the above definition can be naturally extended for the case
that Algo takes auxiliary inputs, as well as for the case that Algo takes multiple
subsets as input and then outputs multiple functions (see the full version of this
paper).

Adaptive local assignment generator. We recall the definition of adaptive
local assignment generators [PR14,BHK17].

Definition 10. For any function κmax : N → N, an adaptive κmax-local assign-
ment generator Assign on variables {Vλ}λ∈N is an algorithm that takes as input
a security parameter 1λ and a set of at most κmax(λ) queries W ⊆ {1, . . . , |Vλ|},
and outputs a 3CNF formula ϕ on variables Vλ and assignments A : W → {0, 1}
such that the following two properties hold.

– Everywhere Local Consistency. For every λ ∈ N and every set W ⊆
{1, . . . , |Vλ|} such that |W | ≤ κmax(λ), with probability at least 1 − negl(λ)
over sampling (ϕ,A) ← Assign(1λ,W ), the assignment A is “locally consis-
tent” with the formula ϕ. That is, for any i1, i2, i3 ∈ W , if ϕ has a clause
whose variables are vi1 , vi2 , vi3 , then this clause is satisfied with the assign-
ment A(i1), A(i2), A(i3) with probability at least 1 − negl(λ).

– Computational No-signaling. Assign is adaptive κmax-CNS.

No-signaling PCPs. We recall the definition of (computational) no-signaling
PCPs [KRR14,BHK17]. Essentially, no-signaling PCPs are PCP systems that
are sound against no-signaling cheating provers. Specifically, for any function
κmax : N → N, a PCP system (P,V) for a language L, where V = (Q,D), is
adaptive κmax-no-signaling sound with negligible soundness error if it satisfies
the following.



544 S. Kiyoshima

– (No-signaling Soundness) For any adaptive κmax-CNS cheating prover P ∗

and any λ ∈ N,

Pr
[
x∗ �∈ L ∧ D(st, x∗, π∗) = 1

∣∣∣∣ (Q, st) ← Q(1λ)
(x∗, π∗) ← P ∗(1λ, Q)

]
≤ negl(λ) .

3 Outline of Proof of Theorem 1

As mentioned in Sect. 1.2, our commit-and-prove protocol uses the succinct argu-
ment of Kalai et al. [KRR14] (KRR succinct argument in short). Unfortunately,
we do not use it modularly—we slightly modify a building block of KRR suc-
cinct argument (namely, their no-signaling PCP system) when constructing our
protocol, and we see low-level parts of the analysis of KRR succinct argument
when analyzing our protocol.

At a high level, KRR succinct argument is obtained in three steps, starting
from a scheme with a weak soundness notion.

1. Obtain a PCP system such that no CNS adversary can break the soundness
with overwhelming success probability.

2. Obtain a PCP system such that no CNS adversary can break the soundness
with non-negligible success probability.

3. Obtain a succinct argument such that no adversary can break the soundness
with non-negligible success probability.

Somewhat similarly, our commit-and-prove protocol is obtained in five steps,
starting from a non-WI scheme with a weak soundness notion.

1. Obtain a non-WI scheme, 〈C1, R1〉, such that no CNS “well-behaving” adver-
sary can break the soundness with overwhelming success probability. (Well-
behaving adversaries is the class of adversaries that we introduce later.)

2. Obtain a non-WI scheme, 〈C2, R2〉, such that no CNS adversary can break
the soundness with overwhelming success probability.

3. Obtain a non-WI scheme, 〈C3, R3〉, such that no CNS adversary can break
the soundness with non-negligible success probability.

4. Obtain a non-WI scheme, 〈C4, R4〉, such that no adversary can break the
soundness with non-negligible success probability.

5. Obtain a WI scheme, 〈C5, R5〉, such that no adversary can break the sound-
ness with constant success probability.

The most technically interesting step is the first step, and an extensive overview
of this step is given in Sect. 4. Overviews of the other steps are given in Sect. 5
and Sect. 6. The formal proof is given in the full version of this paper.
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3.1 Building Block: Perfect 2-Private MPC Protocol Π

In addition to the cryptographic primitives that are listed in Theorem 1, we use
a 2-private semi-honest secure M -party computation protocol Π with perfect
completeness, where M is an arbitrary constant. (Note that such an MPC pro-
tocol can be obtained unconditionally; cf. Footnote 3.) We denote the parties of
Π by P 1, . . . PM .

For editorial simplicity, we make several simplifying assumptions on Π.

– The length of the initial state of each party is denoted by nst = n + nmpc,
where n is the input length and nmpc is the randomness length, and each
party has nst-bit internal state at the beginning of each round.

– Every party uses the same next-message function in every round.9

– Every party sends a 1-bit message to each party at the end of each round.
– Every party receives dummy incoming messages from all the parties at the

beginning of the first round, and every party sends a dummy outgoing message
to itself at the end of each round. (This assumption is made so that the next-
message function always takes an (nst + M)-bit input, where the last M bits
are the concatenation of the incoming messages.)

– The first bit of the final state of each party denotes the output of that party.

4 Overview of Step 1 (Non-WI Scheme with Soundness
Against CNS Well-Behaving Provers)

We give an extensive overview of our non-WI commit-and-prove protocol
〈C1, R1〉, which is (1 − negl)-sound against CNS “well-behaving” provers. At
a high level, we follow the approach that we outline in Sect. 1.2. That is, we
implement the MPC-in-the-head technique with the MPC protocol Π and a
succinct argument. However, instead of using KRR succinct argument, we use
a variant of the no-signaling PCP system (PCP.PKRR,PCP.VKRR) of Kalai et al.
[KRR14] (which is the main building block of KRR succinct argument and is
referred to as KRR no-signaling PCP in what follows), and we do not use any
cryptographic primitives in this step so that we can focus on information the-
oretical arguments in the analysis. As a result, we can prove soundness only
against very restricted provers, which we define as CNS well-behaving provers.

For simplicity, in this overview, we focus on static soundness, where the state-
ment to be proven by the cheating prover is fixed at the beginning of the prove
phase. We will also make several implicit oversimplifications in this overview.

9 The next-message function takes as input an internal state and incoming messages
of a round, and it outputs the internal state and outgoing messages of the round.
(We assume that the internal state implicitly includes all the incoming messages of
the previous rounds.)
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4.1 Preliminary: Overview of Analysis of KRR No-Signaling PCP

We start by briefly recalling the analysis of KRR no-signaling PCP (i.e., the
analysis of its no-signaling soundness for statements in P), focusing on the parts
that are relevant to this work.10

We first remark that KRR no-signaling PCP is a PCP system for 3SAT, so
at the beginning the statement to be proven is converted into a 3SAT instance.
Specifically, given any statement in P of the form “(f, x) satisfies f(x) = 1”
for some public function f and input x, first the function f is converted into a
carefully designed Boolean circuit C that computes f , and next the statement is
converted into a 3SAT instance ϕ that has the following properties.

1. ϕ has a variable for each of the wires in C, and the values that are assigned to
these variables are interpreted as an assignment to the corresponding wires
in C.

2. The clauses of ϕ checks that (1) for each gate in C, the assignment to its
input and output wires is consistent with the computation of the gate, (2)
the assignment to the input wires of C is equal to x, and (3) the assignment
to the output wire of C is equal to 1.

Now, the analysis of KRR no-signaling PCP roughly consists of three parts.
The first part of the analysis shows that any successful CNS cheating prover

for a statement (f, x) can be converted into a local assignment generator for the
3SAT instance ϕ that is obtained from (f, x) as above. That is, it shows that any
successful CNS cheating prover can be converted into a probabilistic algorithm
Assign such that (1) Assign takes as input a small-size subset of the variables of
ϕ and it outputs an assignment to these variables, and (2) Assign is guaranteed
to satisfy the following everywhere local consistency.

Everywhere local consistency. Assign does not make an assignment that vio-
lates any clause of ϕ. Specifically, when Assign is asked to make an assignment
to the three variables that appear in a clause of ϕ, it makes an assignment
that satisfies this clause.

(Actually, Assign is also guaranteed to be CNS, but we ignore it in this overview
for simplicity.11) We note that Assign does not necessarily comply with a single
global assignment, that is, Assign can assign different values to the same variable
depending on the randomness and the input. We also note that this part of the
analysis holds even for statements in NP. For simplicity, in this overview we
assume that Assign does not err (i.e., the everywhere local consistency holds
with probability 1).

The second part of the analysis shows that the local assignment generator
Assign that is obtained in the first part is guaranteed to comply with a single
global “correct” assignment. A bit more precisely, this part shows the following.
10 We follow the modularization by Paneth and Rothblum [PR14].
11 Concretely, in this overview we assume that Assign is perfect no-signaling, i.e.,

that the RHS of the equation in Definition 10 is 0 even against computationally
unbounded distinguishers.
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Let the correct assignment to a wire in C (or, equivalently, to a variable
in ϕ) be defined as the assignment that is obtained by evaluating C on x,
and let Assign be called correct on a wire in C (or variable in ϕ) if Assign
makes the correct assignment to it whenever Assign is asked to make an
assignment to it. Then, Assign is correct on any wire in C (or variable in
ϕ), and in particular correct on the output wire of C.

Roughly speaking, the above is shown in two steps.

1. First, it is shown, by relying on a specific structure of C, that Assign is correct
on any wire in C if Assign is correct on each input wire of C.

2. Next, it is observed that Assign is indeed correct on each input wire of C due
to the everywhere local consistency and the definition of ϕ (which has clauses
that check that the assignment to the input wires of C is equal to x).

Finally, the last part of the analysis obtains the soundness by combining
what are shown by the preceding two parts. In particular, it is observed that the
existence of Assign as above implies f(x) = 1 since (1) on the one hand, Assign
always assigns 1 to the output wire of C due to the everywhere local consistency
and the definition of ϕ (which has clauses that check that the assignment to the
output wire of C is 1), and (2) on the other hand, Assign always assigns f(x) to
the output wire of C since what is shown by the second part implies that Assign
is correct on the output wire of C.

Remark 1 (Difficulty in the case of NP statements). The above analysis does not
work in general for statements in NP. A difficulty is that when the statement
is in NP, it is unclear how we should define the correct assignment in the
second part of the analysis. Indeed, on the one hand, the correct assignment can
be naturally defined in the case of statements in P since there exists a unique
assignment that any successful prover is supposed to use (namely the assignment
that is derived from x); on the other hand, in the case of statements in NP,
there does not exist a single such assignment. Jumping ahead, below we define
well-behaving provers so that we can define the correct assignment naturally
(while at the same time so that we can use cryptographic primitives later to
force any prover to be well-behaving). ♦

4.2 Protocol Description

In this overview, we consider the following protocol 〈C1, R1〉 = (C.Com1,C.Prv1,
R.Com1,R.Prv.Q1,R.Prv.D1), which is slightly oversimplified from the actual pro-
tocol (see the full version of this paper for the actual protocol). (At this point,
we temporarily ignore the open phase.) We warn that 〈C1, R1〉 is not biding at
all in sends no message in the commit phase.

Commit Phase:

Round 1: Given xcom as the value to be committed, C.Com1 does the following.
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1. Sample random x1
mpc, . . . , x

M
mpc such that x1

mpc ⊕ · · · ⊕ xM
mpc = xcom.

2. For each μ ∈ [M ], define xμ
1,in as follows: sample random rμ

mpc ∈ {0, 1}nmpc

and let stμ0 := xμ
mpc ‖rμ

mpc, i-msgsμ1 := 0M , xμ
1,in:= stμ0 ‖ i-msgsμ1 .

3. Output an empty string as the commitment and store {xμ
1,in}μ∈[M ] as the

internal state.

Prove Phase:

Round 1: R.Prv.Q1 does the following.
1. For each μ, ν ∈ [M ], obtain a set of queries Qμ,ν by running the verifier

of KRR no-signaling PCP.
2. Output {Qμ,ν}μ,ν∈[M ] as the query.

Round 2: Given the statement f and the query {Qμ,ν}μ,ν∈[M ] as input, C.Prv1
does the following.
1. Run the MPC protocol Π in the head for functionality f ′ and initial

states {(stμ0 , i-msgsμ1 )}μ∈[M ],12 where f ′ is defined as f ′ : (y1, . . . , yM ) �→
f(y1 ⊕ · · · ⊕ yM ) and each (stμ0 , i-msgsμ1 ) is recovered from the internal
state of the commit phase. Let {viewμ}μ∈[M ] be the view of the parties
in this execution.

2. For each μ, ν ∈ [M ], obtain a PCP proof πμ:ν by running the prover of
KRR no-signaling PCP on the 3SAT instance ϕμ:ν that we will carefully
design later—roughly speaking, ϕμ:ν takes views of the parties Pμ, P ν of
Π as input, and checks that the views are consistent and that Pμ and P ν

output 1 in the views. (In an honest execution, C.Prv1 uses (viewμ, viewν)
to obtain a satisfying assignment to ϕμ:ν and then uses it to obtain πμ:ν .)

3. Output {πμ:ν |Qμ:ν }μ,ν∈[M ] as the proof.
Verification: Given the statement f and the proof {π∗μ:ν}μ,ν∈[M ] as input,

R.Prv.D1 does the following.
1. Verify each π∗μ:ν by running the verifier of KRR no-signaling PCP, and

let bμ:ν be the verification result.
2. Output 1 if and only if bμ:ν = 1 for every μ, ν ∈ [M ].

4.3 Proof of Soundness

We give an overview of the proof of the soundness. To focus on the main technical
idea, in this overview we consider a weak version of the soundness where the
extractor is only required to extract a committed value (rather than decommit
the commitment as required in Definition 3). Thus, for any successful cheating
prover, the extractor is required to extract a value such that the cheating prover
cannot prove false statements on it.

12 Each i-msgsμ1 is the dummy incoming messages of the first round (cf. Sect. 3.1).
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Overall approach. At a very high level, the proof consists of two parts.
The first part is to obtain an extractor. Toward this end, we first observe that,

by borrowing analyses from Kalai et al. [KRR14], we can convert any successful
CNS cheating prover against 〈C1, R1〉 into a parallel local assignment generator
p-Assign, which gives M2 local assignments to the 3SAT instances {ϕμ:ν}μ,ν∈[M ]

in parallel when it is given M2 subsets of the variables as input. (To see this,
observe that the prove phase of 〈C1, R1〉 consists of M2 parallel executions of
KRR no-signaling PCP.) Then, we obtain an extractor by using p-Assign as
follows.

– Note that since each ϕμ:ν is a 3SAT instance that takes views of Pμ, P ν as
input, for any particular parts of Pμ and P ν ’s views, ϕμ:ν has variables that
are supposed to be assigned with these parts. In the following, when we say
that p-Assign makes an assignment to particular parts of Pμ and P ν ’s views
in ϕμ:ν , we mean that p-Assign makes an assignment to the variables that are
supposed to be assigned with these parts in ϕμ:ν .

– Now, to extract the i-th bit of the committed value, the extractor obtains the
i-th bit of each party’s MPC input by asking p-Assign to make an assignment
to the i-th bit of Pμ’s input in ϕμ:μ for every μ ∈ [M ], and then takes XOR
of the obtained bits.

The second part is to show that any cheating prover cannot prove false state-
ments on the extracted value. In this part, the analysis proceeds similarly to the
analysis of KRR no-signaling PCP. That is, we first define the correct assign-
ment for each of ϕμ:ν , and next show that p-Assign always makes the correct
assignment to any variable in any of ϕμ:ν .

Unfortunately, we do not know how to prove the second part against CNS
cheating provers in general, and thus, we further restrict the provers to be “well-
behaving”.

Well-behaving provers. Roughly speaking, we define well-behaving provers
as follows. Recall that the extractor is obtained by converting the cheating prover
into a parallel local assignment generator. Now, we define well-behaving provers
so that when we convert a successful CNS well-behaving prover into a parallel
local assignment generator p-Assign, it satisfies the following two consistency
properties.

Consistency on the initial states: Once the commit phase is completed,
there exists a unique set of MPC initial states {(stμ0 , i-msgsμ1 )}μ∈[M ] such
that p-Assign always makes assignments that are consistent with it (i.e., for
any μ, ν ∈ [M ], when p-Assign is asked to make an assignment to any bit
of the initial state of Pμ or P ν in ϕμ:ν , then p-Assign always assigns the
corresponding bit of (stμ0 , i-msgsμ1 ) or (stν0 , i-msgsν1)).

Consistency on the views: For every μ, ν, ξ ∈ [M ], when p-Assign is asked
to make an assignment to any bit of Pμ’s view in both ϕμ:ν and ϕμ:ξ, then
the value that p-Assign assigns to it in ϕμ:ν is identical with the value that
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p-Assign assigns to it in ϕμ:ξ. (The same holds for ϕν:μ and ϕξ:μ and for ϕμ:ν

and ϕξ:μ etc.)

Remark 2 (Intuition of the two consistency properties of p-Assign). Essentially,
the above two consistency properties guarantee that p-Assign behaves as if it
were obtained from an honest prover. This is because when p-Assign is indeed
obtained from an honest prover, we can show that p-Assign always assigns the
same MPC initial states once the commit phase is fixed, and assigns the same
Pμ’s view in any ϕμ:ν and ϕμ:ξ. (Roughly speaking, this is because in an honest
execution of 〈C1, R1〉, a set of MPC initial states are fixed in the commit phase,
and the same Pμ’s view is used for computing PCPs on any ϕμ:ν and ϕμ:ξ in
the prove phase.) ♦

Before giving more details on the definition of well-behaving provers, we show
that by restricting the provers to be well-behaving, we can complete the second
part of the above overall approach, where our goal is to show that any cheating
prover cannot prove false statements on the extracted value.

Showing that cheating prover cannot prove false statements. As stated
earlier, the analysis proceeds similarly to the analysis of KRR no-signaling PCP.
That is, we first define the correct assignment for each of ϕμ:ν , and next show that
p-Assign always makes the correct assignment to any variable in any of ϕμ:ν .

Step 1: Defining the correct assignments. We define the correct assignments for
{ϕμ:ν}μ,ν∈[M ] by relying on that p-Assign satisfies the consistency on the initial
states. Recall that it guarantees that once the commit phase is completed, there
exists a unique set of MPC initial states {(stμ0 , i-msgsμ1 )}μ∈[M ] such that p-Assign
always makes local assignments that are consistent with it. Then, we first define
the correct views {viewμ}μ∈[M ] as the views that are obtained by executing Π
on these unique initial states {(stμ0 , i-msgsμ1 )}μ∈[M ], and then define the correct
assignment for ϕμ:ν (μ, ν ∈ [M ]) as the assignment that is derived from the
correct views (viewμ, viewν) of Pμ, P ν . (Recall that ϕμ:ν is a 3SAT instance that
takes views of Pμ, P ν as input.)

From the definition, it is clear that p-Assign is correct on the initial states
in every ϕμ:ν (i.e., p-Assign always assigns the correct assignment to any bit
of the initial states of Pμ, P ν in ϕμ:ν for every μ, ν ∈ [M ]). Also, since the
extractor extracts the committed value by taking XOR of the MPC inputs that
are obtained from p-Assign, p-Assign’s correctness on the initial states implies
that the value that the extractor extracts is unique and is equal to the XOR of
the MPC inputs that are used in the correct views.

Step 2: Showing that p-Assign is correct on every variable. At a high level,
our approach is to apply the second part of the analysis of KRR no-signaling
PCP (Sect. 4.1) on each party’s next-message computation in a “round-by-
round” manner. More concretely, our approach is to first show that p-Assign
is correct on each of the variables that correspond to the internal states and
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incoming/outgoing messages of Round 1 of Π in every ϕμ:ν , next show it on
each of the variables that correspond to those of Round 2 of Π in every ϕμ:ν ,
and so on.

Toward this end, we first remark that we design each 3SAT instance ϕμ:ν

carefully so that it has the following specific structure.

1. Let Nround be the round complexity of Π. Then, ϕμ:ν has variables that can
be partitioned into 4Nround sequences of variables, wξ

1,in,w
ξ
1,out, . . . ,w

ξ
Nround,in,

wξ
Nround,out for ξ ∈ {μ, ν}, such that for each � ∈ [Nround]:
– wξ

�,in is a sequence of variables such that the values that are assigned to
them are interpreted as an internal state and incoming messages of P ξ at
the beginning of Round �.13

– wξ
�,out is a sequence of variables such that the values that are assigned to

them are interpreted as an internal state and outgoing messages of P ξ at
the end of Round �.

2. ϕμ:ν has clauses that check the following.
– In each round, for each of Pμ and P ν , its end state (i.e., its internal state

at the end of the round) and outgoing messages are correctly derived from
its start state (i.e., its internal state at the beginning of the round) and
incoming messages.

– In each round, for each of Pμ and P ν , its start state is equal to its end
state of the previous round.

– In each round, Pμ’s incoming message from P ν at the beginning of the
round is equal to P ν ’s outgoing message to Pμ at the end of the previous
round, and vise versa.

– Both Pμ and P ν output 1 in the last round.

We note that given consistent views of Pμ, P ν in which they output 1, we can
compute a satisfying assignment to the variables in ϕμ:ν efficiently by obtaining
each party’s end state and outgoing messages of each round through the next-
message function.

Now, we first show that if in every ϕμ:ν , p-Assign is correct on Pμ and P ν ’s
start states and incoming messages in Round 1, then in every ϕμ:ν , p-Assign is
also correct on Pμ and P ν ’s end states and outgoing messages in Round 1. A
key observation on this step is that, essentially, what we need to show is that in
every ϕμ:ν , for each ξ ∈ {μ, ν}, if p-Assign is correct on the input of P ξ’s next-
message computation of Round 1, then p-Assign is also correct on the output of
it. Given this observation (and by designing the details of ϕμ:ν appropriately),
we can complete this step by just reusing the second part of the analysis of KRR
no-signaling PCP, where it is shown that if Assign is correct on the input, then
Assign is also correct on the output.

We next show that in every ϕμ:ν , if p-Assign is correct on Pμ and P ν ’s end
states and outgoing messages in Round 1, then in every ϕμ:ν , p-Assign is also
13 We think that each round of Π starts when each party receives incoming messages

from the other parties, and ends when each party sends outgoing messages to the
other parties.
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correct on Pμ and P ν ’s start states and incoming messages in Round 2. In this
step, we consider three cases for each ϕμ:ν .

Case 1. We first consider the correctness on P ξ’s start state of Round 2
(ξ ∈ {μ, ν}). This case is easy and we just need to use the everywhere local
consistency of p-Assign and the definition of ϕμ:ν . Specifically, since ϕμ:ν has
clauses that check that P ξ’s start state of Round 2 is equal to its end state
of Round 1, the everywhere local consistency of p-Assign guarantees that
p-Assign assigns the same value on P ξ’s start state of Round 2 and on P ξ’s
end state of Round 1, and thus, if p-Assign is correct on the latter, it is also
correct on the former.

Case 2. We next consider the correctness on Pμ’s incoming message from P ν

and P ν ’s incoming message from Pμ at the beginning of Round 2. Again,
this case is easy and we just need to use the everywhere local consistency
of p-Assign and the definition of ϕμ:ν (which has clauses that check that the
message that Pμ receives from P ν at the beginning of Round 2 is equal to
the one that P ν sends to Pμ at the end of Round 1, and vise versa).

Case 3. We finally consider the correctness on Pμ and P ν ’s incoming messages
from the parties other than Pμ and P ν at the beginning of Round 2. This case
is not straightforward, and we rely on that p-Assign satisfies the consistency
on the views, which is guaranteed since p-Assign is obtained from a well-
behaving prover. Let us consider, for example, Pμ’s incoming message from
P ξ (ξ �∈ {μ, ν}). Then, since the consistency on the views guarantees that
p-Assign assigns the same value in ϕμ:ν and ϕμ:ξ as Pμ’s incoming message
from P ξ, if p-Assign is correct on it in ϕμ:ξ, then p-Assign is also correct on it
in ϕμ:ν . Then, since we showed in Case 2 that p-Assign is indeed correct on
it in ϕμ:ξ, we conclude that p-Assign is correct on it in ϕμ:ν .14

By proceeding identically (and observing that, by definition, p-Assign is cor-
rect on Pμ and P ν ’s start states and incoming messages in Round 1 in every
ϕμ:ν), we conclude that p-Assign is correct on any variable, and in particular
correct on Pμ and P ν ’s final states in every ϕμ:ν .

Step 3: Obtaining soundness. On the one hand, the value that p-Assign assigns
as the output of any party Pμ is always 1 due to the everywhere local consistency
of p-Assign (recall that ϕμ:ν has a clause that checks that Pμ’s output is 1). On
the other hand, since p-Assign is correct on the output of Pμ, it is also equal to
the value that Pμ outputs in the correct views. Thus, Pμ outputs 1 in the correct
view, which means that the statement proven by the prover is true on the XOR
of the MPC inputs of the correct views. From the definition of the extractor, it
follows that the prover cannot prove false statements on the extracted value.

14 Note that we cannot use this argument if we try to reuse the analysis of Kalai
et al. [KRR14] for each ϕμ:ν individually (rather than in the round-by-round manner)
since we show the correctness in ϕμ:ν by using the correctness in ϕμ:ξ.
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More details of well-behaving provers. It remains to give an overview
of the concrete definition of well-behaving provers. As we mentioned earlier,
we define well-behaving provers so that when we convert a CNS well-behaving
prover into a parallel local assignment generator p-Assign, then p-Assign has the
aforementioned two consistency properties.

Before giving the definition of well-behaving provers, we give a few details
about the construction of KRR no-signaling PCP.

– When a PCP proof π for a 3SAT instance ϕ is created by using a satisfying
assignment x to ϕ, the PCP proof π contains an encoding of x,15 i.e., there
is a set of queries D(X) such that π|D(X) is an encoding of x.

– Furthermore, we can make sure that in our protocol, each PCP proof πμ:ν

for ϕμ:ν (where πμ:ν is created by using (viewμ, viewν)) contains encodings of
xμ
1,in, xν

1,in, view
μ, and viewν , i.e., there are sets of queries D(Xμ

1,in),D(Xν
1,in),

D(Xμ),D(Xν) such that:
• πμ:ν |D(Xμ

1,in)
and πμ:ν |D(Xν

1,in)
are encodings of xμ

1,in and xν
1,in, respectively.

• πμ:ν |D(Xμ) and πμ:ν |D(Xν) are encodings of viewμ and viewν , respectively.
(Recall that xμ

1,in:=stμ0 ‖ i-msgsμ1 and xν
1,in:=stν0 ‖ i-msgsν1 are the initial

states and dummy incoming messages that are computed in the commit
phase.)

Then, informally speaking, a CNS prover is said to be well-behaving if it
satisfies the following two consistency properties.

Consistency on D(Xμ
1,in). Once the commit phase is completed, the prover

gives the same response to a query in D(Xμ
1,in) (μ ∈ [M ]) in different invo-

cations. More concretely, for any queries {Qμ:ν
0 }μ,ν∈[M ], {Qμ:ν

1 }μ,ν∈[M ], any
α, β, γ, δ ∈ [M ] such that ∃ξ ∈ {α, β} ∩ {γ, δ}, and any q ∈ Qα:β

0 ∩ Qγ:δ
1 ∩

D(Xξ
1,in), we have π∗α:β

0 (q) = π∗γ:δ
1 (q), where π∗α:β

0 and π∗γ:δ
1 are generated

as follows.
1. (stC , com) ← 〈C.Com∗

1,R.Com1〉
2. (f0, {π∗μ:ν

0 }μ,ν∈[M ]) ← C.Prv∗
1(stC , {Qμ:ν

0 }μ,ν∈[M ])
3. (f1, {π∗μ:ν

1 }μ,ν∈[M ]) ← C.Prv∗
1(stC , {Qμ:ν

1 }μ,ν∈[M ])
Consistency on D(Xμ). The prover gives the same responses to a query in

D(Xμ) (μ ∈ [M ]) in a single invocation. More concretely, for any queries
{Qμ:ν}μ,ν∈[M ], any α, β, γ, δ ∈ [M ] such that ∃ξ ∈ {α, β} ∩ {γ, δ}, and any
q ∈ Qα:β ∩ Qγ:δ ∩ D(Xξ), we have π∗α:β(q) = π∗γ:δ(q), where π∗ is generated
as follows.
1. (stC , com) ← 〈C.Com∗

1,R.Com1〉
2. (f, {π∗μ:ν}μ,ν∈[M ]) ← C.Prv∗

1(stC , {Qμ:ν}μ,ν∈[M ])

To show that the above definition indeed implies the aforementioned two
consistency properties of p-Assign, we need to see the details of p-Assign. Specifi-
cally, we rely on that p-Assign obtains local assignments by applying a procedure
called self-correction on the cheating prover. In this overview, we do not give
15 Concretely, a low-degree extension of x.
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the details of self-correction, and we just note that p-Assign obtains local assign-
ments in the following manner: p-Assign first creates some queries Qμ:ν for each
μ, ν ∈ [M ] based on its input, next queries {Qμ:ν}μ,ν∈[M ] to the prover, and
finally obtains the local assignments based on the prover’s responses.

Now, at first sight, it seems trivial to show that the above definition of well-
behaving provers implies the two consistency properties of p-Assign. Consider,
for example, showing that the above definition implies that p-Assign has the
consistency on the initial states. Then, since p-Assign obtains local assignments
based on the prover’s responses, and well-behaving provers are guaranteed to give
unique responses to any queries on the initial states (i.e., any queries in D(Xμ

1,in)
(μ ∈ [M ])), it seems trivial to show that p-Assign makes unique assignments on
the initial states.

However, this intuition is wrong. For example, in the case of showing the con-
sistency on the initial states, the problem is that even when making assignments
on the initial states, p-Assign’s queries to the prover includes those that are not
in D(Xμ

1,in) (μ ∈ [M ]), and well-behaving provers’ responses to such queries are
not necessarily unique.

Fortunately, this problem can be solved relatively easily by using a tech-
nique in a previous work [HR18]. Specifically, by letting the verifier of KRR no-
signaling PCP do several additional tests on the prover, we can show that it suf-
fices to consider a modified version of p-Assign, which obtains local assignments
on the initial states (resp., the views) based solely on the prover’s responses to
the queries in D(Xμ

1,in) (resp., in D(Xμ)).16 On this modified version of p-Assign,
it is indeed easy to show that the two consistency properties of well-behaving
provers imply the two consistency properties of p-Assign by relying on analyses
given in [KRR14].

Towards formal proof. Finally, we discuss what modifications are needed to
turn the above proof idea into a formal proof.

First, we need to modify the extractor so that it can open the commitment
(instead of just extracting a committed value) as required in Definition 3; along
the way, we also need to define the open phase of the protocol appropriately.
Recall that in the above, the extractor uses the parallel local assignment gen-
erator p-Assign to extract a committed value. Motivated by this construction
of the extractor, we follow the following overall approach: we define the open
phase so that running p-Assign jointly with the receiver is sufficient for the com-
mitter to succeed in the open phase. To implement this approach, we rely on
that, as mentioned above, p-Assign obtains local assignments in the following
manner: p-Assign first creates some queries Qμ:ν for each μ, ν ∈ [M ] based on
its input, next queries {Qμ:ν}μ,ν∈[M ] to the prover, and finally obtains the local

16 Concretely, we use layer-parallel low-degree tests [HR18] to guarantee that the initial
states (resp., the views) that are recovered through self-correction in p-Assign do not
change when the queries are sampled from D(Xμ

1,in) (resp., from D(Xμ)) rather than
from D(X).
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assignments based on the prover’s responses. Given this structure of p-Assign,
we define the open phase as follows.

1. In the first round, the receiver computes queries as in p-Assign and sends
them to the committer.

2. In the second round, the committer gives responses to the queries.
3. Finally, the receiver computes the local assignments from the responses as in

p-Assign and then uses them to extract a committed value as in the extractor.

Then, we modify the extractor so that it simply forwards the queries from the
receiver to the cheating prover and next forwards the responses from the cheating
prover to the receiver. Since the extracted value is computed from the output
of p-Assign just as before (the only difference is that now p-Assign is executed
jointly between the extractor and the receiver), we can still prove that any CNS
well-behaving cheating prover cannot prove false statements on the extracted
value. Furthermore, we can show that the above open phase is strong enough
to guarantee a meaningful binding property. Specifically, by letting the receiver
make additional queries in the open phase,17 we can prove the binding property
against CNS well-behaving decommitters, which are defined similarly to CNS
well-behaving provers. (The proof of the binding property proceeds essentially
in the same way as we show that p-Assign satisfies the consistency on the initial
states in the proof of the soundness against well-behaving provers, where we
show that once the commit phase is completed, the assignments by p-Assign on
the MPC initial states—which define the committed value—are unique.)

Second, we need to consider the case that p-Assign can err (i.e., the every-
where local consistency does not necessarily hold with probability 1). Fortu-
nately, this case is already handled in Kalai et al. [KRR14], and we can handle it
identically. (Concretely, when showing that p-Assign is correct on every variable
in the round-by-round way, we only show that p-Assign is correct on average, i.e.,
instead of showing that p-Assign is correct on any variables that correspond to,
say, the start state and incoming message of a round, we only show that p-Assign
is correct on randomly chosen ω(log λ) such variables. It is shown in [KRR14]
that showing such average-case correctness is sufficient to prove the soundness.)

Third, we need to consider adaptive soundness, where the cheating prover
chooses the statement to prove at the last round of the prove phase. Fortunately,
adaptive soundness is already considered in previous works (e.g., [BHK17]), and
we can handle it identically.

5 Overview of Step 2 (Non-WI Scheme with Soundness
Against CNS Provers)

We give an overview of our non-WI commit-and-prove protocol 〈C2, R2〉, which
is (1 − negl)-sound against CNS provers.
17 Specifically, the receiver make queries for a low-degree test (just like the verifier of

KRR succinct argument does) so that we can reuse analyses of Kalai et al. [KRR14]
as in the proof of soundness.
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Our high-level approach is to upgrade the protocol 〈C1, R1〉 that we give in
Step 1 so that the soundness holds against any (not necessarily well-behaving)
CNS provers. Recall that, roughly speaking, an adversary is well-behaving if for
every μ ∈ [M ],

1. it does not give different responses to a query in D(Xμ
1,in) in different invoca-

tions, and
2. it does not give different responses to a query in D(Xμ) in a single invocation,

where D(Xμ
1,in) and D(Xμ) are sets of queries such that in 〈C1, R1〉, the prover

is supposed to create PCPs {πμ:ν}μ,ν∈[M ] such that πμ:ν |D(Xμ
1,in)

is an encoding
of xμ

1,in and πμ:ν |D(Xμ) is an encoding of viewμ for every ν ∈ [M ], where xμ
1,in is

the value that is fixed in the commit phase and viewμ is the view that is fixed in
the prove phase. Naturally, we enforce this behavior on the prover by relying on
collision-resistant hash functions: we require the prover to publish the roots of
the tree-hash of the encodings of {xμ

1,in}μ∈[M ] and {viewμ}μ∈[M ], and also require
it to give responses along with appropriate certificates when it is queried on these
values.

More concretely, we consider the following protocol (which is slightly over-
simplified from the actual protocol). In the following, for a hash function hf, we
denote by TreeHashhf an algorithm that computes the Merkle tree-hash of the
input.

Commit Phase
Round 1: R.Com2 sends a hash function hf ∈ H to C.Com2.
Round 2: Given (xcom, hf) as input, C.Com2 obtains {xμ

1,in}μ∈[M ] by run-
ning C.Com1(xcom), computes encodings {Xμ

1,in}μ∈[M ] of them, and then
outputs {rtμ1,in:=TreeHashhf(X

μ
1,in)}μ∈[M ] as the commitment and store

(hf, {Xμ
1,in}μ∈[M ]) as the internal state.

Prove Phase
Round 1: R.Prv.Q2 works identically with R.Prv.Q1. That is, R.Prv.Q2

obtains {Qμ,ν}μ,ν∈[M ] just like R.Prv.Q1 does, and outputs {Qμ,ν}μ,ν∈[M ]

as the query.
Round 2: Given the statement f and the query {Qμ,ν}μ,ν∈[M ] as input,

C.Prv2 does the following.
1. Obtain {viewμ}μ∈[M ] and {πμ:ν}μ,ν∈[M ] just like C.Prv1 does.
2. Compute encodings {Xμ}μ∈[M ] of {viewμ}μ∈[M ], and compute

{rtμ:=TreeHashhf(Xμ)}μ∈[M ].
3. Augment each πμ:ν as follows.

– Augment each symbol in πμ:ν |D(Xξ
1,in)

(ξ ∈ {μ, ν}) with a certifi-

cate for opening rtξ1,in to it.
– Augment each symbol in πμ:ν |D(Xξ)\D(Xξ

1,in)
(ξ ∈ {μ, ν}) with a

certificate for opening rtξ to it.
4. Output ({rtμ}μ∈[M ], {πμ:ν |Qμ:ν }μ,ν∈[M ]) as the proof.
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Verification: Given the commitment {rtμ1,in}μ∈[M ], the statement f , and the
proof ({rtμ}μ∈[M ], {π∗μ:ν}μ,ν∈[M ]) as input, R.Prv.D2 works identically
with R.Prv.D1 except that before the verification, each π∗μ:ν is “filtered”
as follows.

– Replace each symbol (x, cert) in π∗μ:ν |D(Xξ
1,in)

(ξ ∈ {μ, ν}) with x if

cert is a valid certificate for opening rtξ1,in to x, and replace it with ⊥
otherwise.

– Replace each symbol (x, cert) in π∗μ:ν |D(Xξ)\D(Xξ
1,in)

(ξ ∈ {μ, ν}) with

x if cert is a valid certificate for opening rtξ to x, and replace it with
⊥ otherwise.

We prove the soundness of 〈C2, R2〉 by relying on the soundness of
〈C1, R1〉. Specifically, for any cheating committer-prover C∗

2 = (C.Com∗
2,C.Prv∗

2)
against 〈C2, R2〉, we consider the following cheating committer-prover C∗

1 =
(C.Com∗

1,C.Prv∗
1) against 〈C1, R1〉.

– Committer. C.Com∗
1 runs (stC , com) ← 〈C.Com∗

2,R.Com2〉 internally, sends
an empty string to R.Com1 as the commitment, and stores (com, stC) as the
internal state.

– Prover. Given (com, stC) and {Qμ:ν}μ,ν∈[M ] as input, C.Prv∗
1 first

runs (f, {rtμ}μ∈[M ], {π∗μ:ν}μ,ν∈[M ]) ← C.Prv∗
2(stC , {Qμ:ν}μ,ν∈[M ]). Then,

C.Prv∗
1 filters each π∗μ:ν as in the verification of 〈C2, R2〉, and sends

(f, {π∗μ:ν}μ,ν∈[M ]) to R.Prv1 as the proof.

It is straightforward to show that (1) C∗
1 is successful if C∗

2 is successful and (2)
C∗

1 is well-behaving CNS. (The latter follows from the the binding property of
TreeHashhf .)

6 Overview of Subsequent Steps of Proof of Theorem 1

In Step 3, we upgrade the soundness to the one with negligible soundness error.
Fortunately, this type of soundness amplification is already studied by Kalai et
al. [KRR14] as mentioned in Sect. 3, and it suffices to apply their soundness
amplification on the protocol 〈C2, R2〉 that we obtained in Step 2. Concretely,
in this step, we just borrow a soundness amplification technique from [KRR14,
BHK17], which amplifies soundness by letting the verifier use a smaller threshold
parameter for the PCP decision algorithm (i.e., letting the verifier tolerate a
smaller number of failures on the tests that it applies on the prover).

In Step 4, we upgrade the soundness to the one against any (not necessarily
CNS) adversaries. Again, this type of soundness amplification is already studied
by Kalai et al. [KRR14] as mentioned in Sect. 3, and it suffices to apply their
soundness amplification on the protocol 〈C3, R3〉 that we obtained in Step 3.
Concretely, in this step, we just borrow a transformation from [KRR14], which
enforces CNS behavior on the committer by encrypting the verifier queries by
PIR. (Intuitively, encrypting the verifier queries by PIR is helpful to enforce



558 S. Kiyoshima

CNS behavior since it forces the prover to answer each query independently of
the other queries.)

In Step 5, we add the WI property while tolerating that the soundness error
increases to a constant. Toward this end, we augment the protocol 〈C4, R4〉 that
we obtained in Step 4 with commitment schemes and OT by using these two
primitives as in the non-succinct protocol that we sketched in Sect. 1.2. The
soundness and WI of the resultant protocol 〈C5, R5〉 can be shown similarly to
those of the non-succinct protocol in Sect. 1.2. That is, the soundness follows
from the security of OT and the soundness of 〈C4, R4〉,18 and the WI property
follows from the 2-privacy of 〈C4, R4〉, which roughly guarantees that the verifier
does not learn any secret information if it only obtains one of the M2 KRR no-
signaling PCP strings. (The 2-privacy of 〈C4, R4〉, in turn, follows immediately
from the 2-privacy of the underlying MPC protocol Π.)

A On Verification Time

The verification of our protocol is not succinct since we use a simpler version
of KRR succinct argument where the verifier naively evaluates a low-degree
extension (LDE) of the indicator function of a 3CNF formula whose size is poly-
nomially related to the complexity of the statement. In Kalai et al. [KRR14] and
subsequent works [BHK17,HR18], the verification is made succinct by observing
that when the statement to be proven satisfies some conditions, the evaluation
of the LDE can be either recursively delegated to the prover succinctly or locally
performed by the verifier efficiently. In our protocol, KRR succinct argument is
used for proving statements that are related to the next-message function of the
underlying perfect 2-privacy MPC protocol (cf. Sect. 1.2 and Sect. 4). Thus, if we
can show that the above-mentioned conditions are satisfied for a specific perfect
2-privacy MPC protocol, the verification of our protocol can be made succinct.

B On Definition of Commit-and-prove Protocols

B.1 Differences from Definition in Khurana et al. [KOS18]

Our definition of commit-and-prove protocols in Sect. 2.2 has several differences
from the definition in Khurana et al. [KOS18]. First, our definition has several
syntactical differences.

– Instead of thinking the prove phase as a part of the commit phase, we separate
the prove phase from the commit phase.

– We focus on the case that each of the prove phase and the open phase consists
of two rounds.

Next, our definition is stronger than the definition of Khurana et al. [KOS18] in
the following points.
18 Formally, as in the case of the non-succinct protocol in Sect. 1.2, complexity lever-

aging is required.
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– We explicitly define the soundness and witness indistinguishability in the
delayed-input setting, where the statement to be proven is chosen at the last
round of the prove phase.

– In the definition of the soundness, we require the extractor to decommit the
commitment to a value on which any committer cannot prove false statements.
(In the definition in [KOS18], the extractor just outputs such a value without
decommitment, with the guarantee that any committer cannot decommit the
commitment to a value other than the extracted one.)
We think that requiring the extractor to decommit the commitment is impor-
tant, as otherwise the definition would not prevent an attack where the com-
mitter gives an accepting proof on an invalid commitment (i.e., a commitment
that cannot be opened to any value).19 (This is because even if such an attack
is possible, we can still show that any committer cannot decommit the com-
mitment to a value other than the extracted one, since an invalid commitment
cannot be opened to any value.) We remark that such an attack is possible if
a commit-and-prove protocol is naively executed in parallel multiple times.

Finally, our definition is weaker than the definition of Khurana et al. [KOS18]
in the following points.

– In the definitions of the binding and the soundness, the extractor succeeds
only on an overwhelming fraction of the executions of the commit phase,
rather than on any execution of the commit phase.

– In the definition of the soundness, the extractor is allowed to depend on the
success probability of the cheating committer.

B.2 Rationale Behind Our Definition

Since our definition of commit-and-prove protocols in Sect. 2.2 might look too
cumbersome, we explain the rationale behind it.

First, binding and witness-indistinguishability are defined naturally, and the
only complication is that we allow the open phase to be interactive in the def-
inition of binding. To guarantee a stronger notion of binding, our definition
considers an adversary that obtains two sets of receiver decommitment queries
simultaneously (rather than obtain each of them separately).

Next, soundness is defined similarly to proof-of-knowledge of interactive
proofs [GMR89]. A complication is that we define it so that it guarantees the
adaptive delayed-input property, i.e., it holds against an adversary that chooses
the statement to prove at the last round of the prove phase.20 To guarantee proof-
of-knowledge with the adaptive delayed-input property, our definition requires

19 We remark that the schemes by Khurana et al. [KOS18] are designed to prevent such
an attack. What we claim is that the definition by Khurana et al. [KOS18] does not
prevent such an attack.

20 The adaptive delayed-input property is required to, e.g., upgrade our WI commit-
and-prove protocol to a ZK one by using the transformation of Khurana et al.
[KOS18].
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that if a cheating prover convinces the verifier for a commitment com with suffi-
ciently high probability, then there exists a value x∗ such that (1) the extractor
can decommit com to x∗ and (2) the cheating prover cannot prove false state-
ments about x∗. (We remark that the extractor is required to succeed in the
decommitment of each bit of x∗ with overwhelming probability so that we can
obtain the whole x∗ by repeatedly using the extractor.)
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