
Efficient Pseudorandom Correlation Generators
from Ring-LPN

Elette Boyle1(B), Geoffroy Couteau2(B), Niv Gilboa3(B), Yuval Ishai4(B),
Lisa Kohl4(B), and Peter Scholl5(B)

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu
2 IRIF, Paris, France
couteau@irif.fr

3 Ben-Gurion University of the Negev, Beersheba, Israel
gilboan@bgu.ac.il

4 Technion, Haifa, Israel
{yuvali,lisa.kohl}@cs.technion.ac.il
5 Aarhus University, Aarhus, Denmark

peter.scholl@cs.au.dk

Abstract. Secure multiparty computation can often utilize a trusted
source of correlated randomness to achieve better efficiency. A recent line
of work, initiated by Boyle et al. (CCS 2018, Crypto 2019), showed how
useful forms of correlated randomness can be generated using a cheap,
one-time interaction, followed by only “silent” local computation. This is
achieved via a pseudorandom correlation generator (PCG), a determinis-
tic function that stretches short correlated seeds into long instances of a
target correlation. Previous works constructed concretely efficient PCGs
for simple but useful correlations, including random oblivious transfer
and vector-OLE, together with efficient protocols to distribute the PCG
seed generation. Most of these constructions were based on variants of
the Learning Parity with Noise (LPN) assumption. PCGs for other use-
ful correlations had poor asymptotic and concrete efficiency.

In this work, we design a new class of efficient PCGs based on different
flavors of the ring-LPN assumption. Our new PCGs can generate OLE
correlations, authenticated multiplication triples, matrix product corre-
lations, and other types of useful correlations over large fields. These
PCGs are more efficient by orders of magnitude than the previous con-
structions and can be used to improve the preprocessing phase of many
existing MPC protocols.

1 Introduction

Correlated secret randomness is a commonly used resource for secure multi-
party computation (MPC) protocols. Indeed, simple kinds of correlations
enable lightweight MPC protocols even when there is no honest majority. For
instance, an oblivious transfer (OT) correlation supports MPC for Boolean

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12171, pp. 387–416, 2020.
https://doi.org/10.1007/978-3-030-56880-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56880-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-56880-1_14

388 E. Boyle et al.

circuits [29,35,40,46], while oblivious linear-function evaluation1 (OLE), an
arithmetic variant of OT, supports MPC for arithmetic circuits [36,45]. Other
useful types of correlations include multiplication triples [4] and truth-table cor-
relations [21,23,33]. Finally, authenticated multiplication triples serve as a pow-
erful resource for achieving security against malicious parties [6,25].

A common paradigm in modern MPC protocols is to utilize the above kinds
of correlations in the following way. In a preprocessing phase, before the inputs
are known, the parties use an offline protocol to generate many instances of the
correlation. These instances are then consumed by an online protocol to securely
compute a function of the secret inputs. This approach is appealing because of
the high efficiency of the online protocol. Indeed, with the above simple corre-
lations, the online communication and computation costs are comparable to the
size of the circuit being evaluated. The price one pays for the fast online proto-
col is a much slower and higher-bandwidth offline protocol. Even simple types
of correlated randomness are expensive to generate in a secure way. This high
cost becomes even higher when aiming for security against malicious parties.

Recently, a promising approach for instantiating the preprocessing phase of
MPC protocols was suggested in [9,11], relying on a new primitive called a pseu-
dorandom correlation generator (PCG). Consider a target two-party correlation
C, typically consisting of many independent instances of a simple correlation as
above. A PCG for C consists of two algorithms: Gen(1λ), which given a security
parameter λ generates a pair of short, correlated seeds (k0, k1), and Expand(kσ),
which deterministically stretches a seed kσ to a long output Rσ. The intuitive
security requirement is that the joint outputs (R0, R1) of the above process can-
not be distinguished from C not only by an outsider, but also by an insider who
learns one of the two seeds. PCGs naturally lead to protocols with an appealing
silent preprocessing feature, by breaking the offline phase into two parts:
1. Setup. The parties run a secure protocol to distribute the seed generation of

Gen. Since Gen has low computational cost and short outputs, this protocol
only involves a small amount of communication, much smaller than the output
of C. Each party stores its own short seed kσ for later use.

2. Silent expansion. Shortly before the online phase, the parties use Expand
to generate long pseudorandom correlated strings (R0, R1) to be used by
the online protocol. This part is referred to as silent, since it involves no
communication.

Beyond the potential improvement in the total offline communication and
computation, this blueprint has two additional advantages. First, it can sub-
stantially reduce the storage cost of correlated randomness by enabling efficient
compression. Indeed, the parties can afford to generate and store many corre-
lated seeds, possibly with different sets of parties, and expand them just before
they are needed. Second, the cost of protecting the offline protocol against mali-
cious parties is “amortized away,” since it is only the small setup part that needs
to be protected. A malicious execution of Expand is harmless.
1 An OLE correlation over a finite field F is a two-party correlation (r0, r1) where

r0 = (a, b) is uniform over F
2 and r1 = (x, ax + b) for x ∈R F.

Efficient Pseudorandom Correlation Generators from Ring-LPN 389

The work of Boyle et al. [11] constructed efficient PCGs for several kinds of
useful correlations based on different assumptions that include variants of Learn-
ing Parity with Noise (LPN) [8] and Learning With Errors (LWE) [47]. While the
LPN-based PCG for OT from [11] has very good concrete efficiency, making it a
practically appealing approach for generating many OTs [10], this is not the case
for other useful correlations such as OLE or authenticated multiplication triples.
For these correlations, two different constructions were proposed in [10]. Both
are “practically feasible” but quite inefficient. In the first construction, based on
homomorphic secret sharing from ring-LWE [12,14,16,18], the seed expansion
can be at most quadratic due to the use of a pseudorandom generator with alge-
braic degree 2. In concrete terms, the seeds are several GBs long and can only
be expanded by around 6x, giving far too much overhead for most applications.
Their second construction is based directly on LPN, and has computational cost
of at least Ω(N2) for output length N , which is impractical for large N .

1.1 Our Contributions

In this work, we present efficient new PCG constructions for several widely used
correlations for which previous techniques had poor concrete efficiency.

Silent OLE and silent triple generation. Our main construction gives the
first concretely efficient PCG for OLE over big finite fields F. This PCG is based
on a variant of the ring-LPN assumption over F, makes a black-box use of F, and
has poly(λ) · logN seed size and poly(λ) ·Õ(N) computational cost for expanding
the seeds into N instances of OLE. This PCG gives both an asymptotic and
concrete improvement over the LPN-based construction from [11].

We also show how to modify our PCG for OLE to produce multiplication
triples and authenticated triples, used in maliciously secure MPC protocols like
SPDZ [25]. This incurs an extra overhead of only around a factor of two in seed
size, seed generation, and silent expansion time. Finally, we extend the main
construction to other types of useful correlations, including matrix products and
circuit-dependent correlations.

Technically, one of our main innovations here is showing how to avoid the
Ω(N2) blowup from the previous LPN-based PCG for OLE from [11]. Our
method of doing this requires switching from unstructured LPN to ring-LPN
over a certain kind of polynomial rings. This is analogous to early fully ho-
momorphic encryption schemes, where switching from a construction based on
LWE [19] to one based on ring-LWE [20] reduced the ciphertext expansion in
multiplication from quadratic to linear. A key difference between LWE-based
constructions and LPN-based constructions over a big field F is the noise dis-
tribution: Gaussian in the former and low Hamming weight noise in the latter.
With LPN-style noise distribution more care is needed, and some natural PCG
candidates based on Reed-Solomon codes can be broken using algebraic decoding
techniques.

Concrete efficiency. Our PCGs have attractive concrete efficiency features. To
give a couple of data points, in the case of OLE the parties can store a pair of

390 E. Boyle et al.

seeds of size 1.25MB each, and expand them on demand to produce over a mil-
lion OLEs (of size 32MB, 26x larger than the seeds) in Zq, where q is the product
of two 62-bit primes,2 with 128-bit security. When running on a single core of
a modern laptop, we estimate this takes under 10 s, resulting in a through-
put of over 100 thousand OLEs per second. To produce authenticated triples
instead of OLE, the expansion cost roughly doubles, giving 50 thousand triples
per second, while the seed size increases to 2.6MB. For comparison, estimates
from [11] for their PCG for producing authenticated triples gave a throughput
of up to 7 thousand per second, but this was only possible when generating
an enormous batch of 17GB worth of triples, with 3GB seeds. See below for
comparison with non-silent correlation generation techniques.

Efficient setup protocols. Recall that to avoid a trusted setup, one typi-
cally needs a setup protocol to securely distribute the PCG seed generation. We
present concretely efficient setup protocols for OLE and authenticated triples,
with both semi-honest and malicious security. The protocols make black-box use
of lightweight cryptographic primitives, as well as of generic MPC protocols for
performing binary and arithmetic computations on secret-shared values.

In practice, our PCGs and setup protocols can be used in a bootstrapping
mode, where a portion of the PCG outputs are reserved to be used as correlated
randomness for the setup procedure of the next PCG seeds. This means that
the vast majority of the setup cost is amortized away over multiple instances.
Concretely, we estimate that when bootstrapped in this way, the setup phase
for a PCG of one million authenticated triples requires only around 4.2MB of
communication per party, to produce 32MB worth of triples. The initial setup
protocol for the first PCG (before bootstrapping can take place) requires around
25000 authenticated triples, plus some additional correlated randomness (OT
and VOLE). This should be feasible to produce in under a minute (although
with high communication cost) using standard protocols such as MASCOT [38]
or Overdrive [39], and previous PCG protocols for OT and VOLE with malicious
security [10].

Compared with non-silent secure correlation generation protocols, we expect
the overall computational cost of our approach to be comparable with state-of-
the-art protocols based on homomorphic encryption [31,37,39], but with much
lower communication costs. For instance, in the case of authenticated multi-
plication triples, the Overdrive protocol [39] can produce around 30 thousand
triples per second with malicious security. This is similar to our PCG expansion
phase (modulo different hardware, environment, and so on), with the significant
difference that Overdrive requires almost 2GB of communication to produce
the triples. In comparison, our amortized 4.2MB communication complexity is
over two orders of magnitude smaller, with the additional benefit that our short
correlated seeds can be easily stored for on-demand silent expansion.

2 Our construction works in any sufficiently large finite field, or modulus that is a
product of primes via the CRT. We estimated costs with a product of two primes
due to better software support.

Efficient Pseudorandom Correlation Generators from Ring-LPN 391

Extension to other correlations and multiple parties. Beyond multipli-
cation triples, it can be useful to have more general “degree-two” correlations,
such as inner-product triples, matrix-multiplication triples, or circuit-dependent
multiplication triples [5,17,21]. We use our PCG for OLE to obtain PCGs for
these kinds of correlations, by exploiting a special “programmability” feature
that enables reusing the same PCG output in multiple instances [11]. This gives
us a way to produce many independent instances of any degree-two correlation
(a vast generalization of OLE and multiplication triples), with seed size that
grows sublinearly with the total number of instances. Useful special cases include
the types of correlations mentioned above. This construction has a bigger over-
head than our PCG for OLE, and in practice seems mainly suited for small
correlations such as low-dimensional matrix products. However, these can still
be useful in larger computations which involve a lot of linear algebra or other
repeated sub-computations.

We can also use same programmability feature of our 2-party PCGs to ex-
tend them to the multi-party setting. This yields practical multi-party PCGs for
multiplication triples that enable an online passively-secure MPC protocol for
arithmetic circuits whose cost scales linearly (rather than quadratically) with the
number of parties. This transformation to the multi-party case, which originates
from [11], does not scale well to correlations with degree higher than 2. As a re-
sult, we do not get a multi-party PCG for authenticated triples (a degree-three
correlation) with the same level of efficiency.

Security of ring-LPN. Our constructions rely on variants of the ring-LPN
assumption [32] over non-binary fields. Binary ring-LPN is a fairly standard as-
sumption that withstood a significant amount of cryptanalysis. However, since
we also use relatively unexplored variants over different rings, we give a thor-
ough survey of known attacks, and analyze the best strategies that apply to our
setting. We find that there are only one or two additional attack possibilities
from the additional structure we introduce, and these are easily countered with
a small increase in the number of errors.

More precisely, settling for a PCG that generates a single OLE instance
over a large ring of degree-N polynomials, our construction can be based on a
conservative variant of ring-LPN where the modulus is irreducible. A big ring-
OLE correlation can then be converted into N independent instances of standard
OLE by communicating O(N) field elements. For generating silent OLE over Fp,
we instead rely on a variant of ring-LPN where the modulus splits completely into
N linear factors. In practice, this requires using larger parameters and increases
the cost of our protocols by around a factor of two, compared with irreducible
ring-LPN.

1.2 Technical Overview

Construction from [11]. Before describing our PCG for OLE, it is instructive
to recall the PCG for general degree-two correlations by Boyle et al. [11], based

392 E. Boyle et al.

on LPN. The goal is to build a PCG for the correlation which gives each party a
random vector xi, together with an additive secret share of the tensor product
x0 ⊗ x1. They used the dual form of LPN over a ring Zp, which states that the
distribution

{
H,H · e

∣∣∣H $← Z
m×n
p , e $← Z

n
p s.t. wt(e) = t

}

is computationally indistinguishable from uniform, where e is a sparse random
vector with only t non-zero coordinates, for some t � n, and m < n.

The idea of the construction is that the setup algorithm gives each party a
random sparse e0 or e1, and computes the tensor product e0 ⊗ e1, which has at
most t2 non-zero coordinates. This product is then distributed to the parties via
function secret sharing (FSS), by generating a pair of FSS keys for the function
that outputs each entry of the product on its respective inputs from 1 to n2.
This function can be written as a sum of t2 point functions, allowing practical
FSS schemes based on distributed point functions [13,15,28]. Note that unlike
the case of PCGs for OT or Vector-OLE [10,48], here we cannot replace FSS by
the simpler punctured PRF primitive.

Given shares of e0 ⊗ e1 and either e0 or e1, the parties expand these using
LPN, computing:

x0 = H · e0, x1 = H · e1, z = (H · e0) ⊗ (H · e1) = (H ⊗ H) · (e0 ⊗ e1)

where xi is computed by party Pi, while z is computed in secret-shared form,
using the shares of e0 ⊗ e1 and the formula on the right-hand side.

Notice that both x0 and x1 are pseudorandom under LPN, which gives the
desired correlation.

Optimizations and additional applications. Boyle et al. state the computational
complexity of the above as O(n4) operations, due to the tensor product of H with
itself. We observe that the value of (H · e0)⊗ (H · e1) can be read directly from
H · (e0 · eᵀ

1) · Hᵀ, which requires much less computation and can be made even
more efficient if H is a structured matrix, reducing the computational complexity
to Õ(n2). We also describe two variants of the PCG which allow producing large
matrix multiplication correlations with different parameter tradeoffs. As these
are much less practical than our main constructions, we refer the interested
reader to the full version for details.

An efficient PCG for OLE. The problem with the above construction is that
it produces an entire tensor product correlation, which inherently requires Ω(n2)
computation. Even if we only want to compute the diagonal entries of the tensor
product output (that is, n OLEs), we do not see a way to do this any more
efficiently.

Instead, we propose to replace the tensor product with a polynomial product.
Let Rp = Zp[X]/(F (X)) for some degree N polynomial F (X), and let e, f be
two sparse polynomials in Rp. For a random polynomial a ∈ Rp, the pair

Efficient Pseudorandom Correlation Generators from Ring-LPN 393

(a, a · e + f mod F (X))

is pseudorandom under the ring-LPN assumption [32].
Now, given two pairs of sparse polynomials (e0, e1) and (f0, f1), each product

ei · fj (without reduction modulo F) has degree < 2N and only t2 non-zero
coefficients. These can again be distributed to two parties using FSS, but this
time the expanded FSS outputs can be computed in linear time in N , instead
of quadratic, since the domain size of the function being shared is only 2N .

Given shares of ei · fj , similarly to the LPN case, the parties compute
expanded outputs by defining

x0 = a · e0 + f0, x1 = a · e1 + f1, z = ((1, a) ⊗ (1, a)) · ((e0, f0) ⊗ (e1, f1))

The main difference here is that each tensor product is only of length 2, and
can be computed in Õ(N) time using fast polynomial multiplication algorithms.

This gives a PCG that compresses a single OLE over the ring Rp. To obtain
a PCG for OLE over Zp, we again take inspiration from the fully homomorphic
encryption literature, by using ciphertext-packing techniques [49]. We can care-
fully choose p and F (X) such that F (X) splits into N distinct, linear factors
modulo p. Then Rp is isomorphic to N copies of Zp, and we can immediately
convert a random OLE over Rp into N random OLEs over Zp. This works par-
ticularly well with cyclotomic rings as used in ring-LWE [43], where we can e.g.
use N a power of two and easily exploit FFTs for polynomial arithmetic.

Extending to authenticated multiplication triples. We show that our con-
struction extends from OLE to authenticated multiplication triples, as used
in the SPDZ protocol for maliciously secure MPC [22,25]. This follows from
a simple trick, where we modify the FSS scheme to additionally multiply its
outputs by a random MAC key α ∈ Zp. Since this preserves sparsity of the
underlying shared vector, it adds only at most a factor of two overhead on top
of the basic scheme.

Distributed setup. We focus on the case of OLE correlations over Rp (the
setup for authenticated triples is very similar). Recall that the seed of the PCG
for OLE consists of t-sparse degree-N “error” polynomials e0, e1 and f0, f1, and
FSS keys for secret-shares of the products ei ·fj , each represented as a coefficient
vector via the sum of t2 point functions fα,β : [2N] → Zp. Each point function
corresponds to a single monomial product from ei and fj . The index α ∈ [2N]
of the nonzero position is the sum of the corresponding nonzero indices, and the
payload β ∈ Zp is the product of the corresponding payloads in ei and fj .

In the semi-honest setting, secure computation of this PCG generation pro-
cedure can be attained directly, using generic 2-PC for simple operations on the
α and β values, as well as black-box use of a protocol for secure computation of
FSS key generation, such as the efficient protocol of Doerner and shelat [27].

394 E. Boyle et al.

For the malicious setting, we would wish to mimic the same protocol struc-
ture with underlying 2-PC components replaced with maliciously secure coun-
terparts. The simple 2-PCs on α, β can be converted to malicious security with
relatively minor overhead. The problem is the FSS key generation, for which
efficient maliciously secure protocols currently do not exist. Generic 2-PC of
the FSS key generation functionality would require expensive secure evaluations
of crytographic pseudorandom generators (PRG). The semi-honest protocol of
[27] is black-box in a PRG; but, precisely this fact makes it difficult to ensure
consistency between different steps in the face of a malicious party.

Note that this is similar to the problem that Boyle et al. faced in [10] for silent
OT generation, but their setting was conceptually simpler: There, one party al-
ways knew the position α of the non-zero value of the distributed point function
(indeed, for their purpose the simpler building block of a puncturable pseudo-
random function sufficed). Further, they did not have to assume any correlation
between path values, whereas in our setting we require that the parties behave
consistently regarding the path positions and payloads across several instances.

In this work we show how to extend the approach of [10] to the context of
distributed point functions, further addressing the mentioned issues.

Our protocol realizes a PCG-type functionality for a scaled unit vector3 with
leakage: Given authenticated values for the location of the non-zero position
α ∈ [0..N) and the non-zero payload β ∈ Zp, the functionality allows a corrupt
party to choose its output vector y ∈ Z

N
p and delivers to the honest party

the correct corresponding output y − (0, . . . , β, . . . , 0), where β is in the α-th
position. The leakage on α can be captured by allowing the adversary a predicate
guess on α.4 In the setting of noise generation for (ring-)LPN, as is the case
for our PCG constructions (and likely future constructions), such leakage is
tolerable as, intuitively, this can be accounted for by slightly increasing the noise
rate. Indeed, we prove that this functionality suffices to implement a protocol
securely realizing PCG functionalities, such as the corruptible functionality for
OLE and authenticated multiplication triples, based on a variant of the ring-LPN
assumption that allows small amount of leakage (only 1 bit on average).

Extensions. A downside of the above construction, compared with the one from
LPN, is that it is restricted to multiplication triples or OLE. It can be useful to
obtain other degree-two correlations such as matrix multiplication triples, which
allow multiplying two secret matrices with only O(n2) communication, instead of
O(n3) from naively using individual triples. Another technique is preprocessing
multiplications in a way that depends on the structure of the circuit, which allows
reducing the online cost of 2-PC down to communicating just one field element

3 Note that this corresponds to a distributed point function where we do not require
the key setup on its own to be secure, but only require the protocol to securely
implement the FSS functionality including expansion, as this suffices for using PCGs
in the context of secure computation (see also [10]).

4 In fact, the leakage can be characterized by predicates corresponding to bit-matching
with wildcards.

Efficient Pseudorandom Correlation Generators from Ring-LPN 395

per party, instead of two from multiplication triples [4,5,23]. This type of circuit-
dependent preprocessing can also be expressed as a degree two correlation.

Our PCG for OLE satisfies a useful “programmability” feature, introduced
by Boyle et al. [11], allowing certain parts of the PCG output to be reused
across multiple instances. This is simply due to the fact that we can reuse the
polynomials e0, e1 or f0, f1 in the PCG, without harming security. This allows
us to extend the PCG to build more general correlations, by using multiple
programmed instances to perform every multiplication in the general correlation.

We in fact present a more general construction, which, loosely speaking,
achieves the following. Given a programmable PCG for some bilinear correlation
g, let f be another bilinear correlation that is computable using linear combi-
nations of outputs of g applied to its input. Then, we can construct a PCG for
f using several copies of the PCG for g, where the number of instances is given
by the complexity of f written as a function of g. This gives a general way of
combining PCGs to obtain correlations of increasing complexity, while allowing
for different complexity tradeoffs by varying the “base” bilinear correlation f .

Multi-party PCGs. As discussed earlier, the programmability feature also imme-
diately allows us to extend our PCGs for OLE and degree-two correlations to
the multi-party setting, using the construction from [11]. This does not apply to
the PCG for authenticated multiplication triples; in the full version, we sketch
a possible alternative solution based on three-party distributed point functions,
but these are much less efficient than the two-party setting.

Security analysis of ring-LPN. We use the ring Rp = Zp[X]/F (X), for some
degree N polynomial F (X). There are two main ring-LPN variants we consider,
depending on how the parameters are instantiated. The more conservative is
when F (X) is either irreducible in Rp (hence, Rp is isomorphic to a finite field),
or at least when F (X) has only very few low-degree factors, so Rp has a large
subring that is a field. This type of instantiation is similar to previous recom-
mendations for ring-LPN [30,32] and post-quantum encryption schemes from
quasi-cyclic codes [44]. The best known attacks are to solve the underlying syn-
drome decoding problem, and the additional ring structure does not seem to
give much advantage. One exception is when a very large number of samples are
available, when the ring structure can in some cases be exploited [7]. This does
not apply to our setting, however, since our constructions only rely on ring-LPN
with one sample5.

The second variant, which is needed for silent OLE in Fp, is when F (X)
splits modulo p into many distinct factors of low degree. Here, the main attack
vector that needs to be considered is that if fi is some degree-d factor of F (X),
then reducing a ring-LPN instance modulo fi gives a new instance in smaller
dimension d, albeit with a different noise distribution. The best case for the
adversary is when fi is of the form Xd+ci, when this reduction does not increase
the Hamming weight of the noise (although, the corresponding error rate goes

5 Or, two samples if security is based on ring-LPN with a uniform (not sparse) secret.

396 E. Boyle et al.

up). If such sparse factors exist, then, we must also ensure that the underlying
ring-LPN instance in dimension d, with new noise weight, is hard to solve.

One way to counter this attack is to choose F (X) to be a product of N
random linear factors, ensuring that any factors of F an adversary can find are
likely to be very dense. However, to improve computational efficiency, it is better
to use a cyclotomic polynomial such as F (X) = XN+1 with N a power of two, as
is common in the ring-LWE setting. In this case, there are many sparse factors of
the form X2i

+ ci which can be exploited, and we must take these into account
when choosing parameters. The main advantage of performing this reduction
is the vector operations in attacks such as information-set decoding become
cheaper, since they are all in a smaller dimension. This only has a small overall
effect on attack complexity, though, since these algorithms are all exponential
in the noise weight. Therefore, to counter the attack, it suffices to ensure there
are enough noisy coordinates in a reduced instance, which requires only a small
increase in noise weight.

Note that for p = 2, this strategy was also considered in Lapin [32], and it
was later shown that an optimized version of this over F2 reduces security of
some Lapin parameter sets by ≈ 10 bits [30]. Our analysis over Fp is roughly
consistent with this.

2 Preliminaries

Notation. We let λ denote a security parameter, and use the standard defi-
nitions of negligible functions, computational indistinguishability (with respect
to nonuniform distinguishers), and pseudorandom generators. We use [0..n) to
denote the index set {0, · · · , n − 1}, as well as [0..n] = {0, . . . , n} and [n] =
{1, . . . , n}.

Vectors, outer sum and outer product. We use column vectors by default.
For two vectors u = (u1, . . . , ut),v = (v1, . . . , vt) ∈ Rt, for some ring R, we write
u � v to mean the outer sum given by the length t2 vector (ui + vj)i∈[t],j∈[t].
Similarly, we define the flattened outer product (or tensor product) to be u⊗v =
(ui · vj)i∈[t],j∈[t], that is, the vector (v1·u, . . . , vn·u). We denote the inner product
of two vectors by 〈u,v〉.

PCG and FSS. We refer to the full version for formal definitions of a pseudoran-
dom correlation generator (PCG), function secret sharing (FSS) and the special
case of distributed point function. Here we will use an FSS scheme SPFSS for
secret-sharing a sum of point functions fS,y defined as follows. For a sequence of
inputs S = (s1, . . . , st) ∈ [n]t and outputs y = (y1, . . . , yt), the function fS,y(x)
returns the sum of the point functions fsi,yi

(x), where the latter returns yi if
x = si and 0 otherwise. For better readability, when generating keys for a scheme
SPFSS = (SPFSS.Gen,SPFSS.Eval), we write SPFSS.Gen(1λ, S,y), instead of ex-
plicitly writing fS,y. To construct SPFSS for a sum of t point functions, we can

Efficient Pseudorandom Correlation Generators from Ring-LPN 397

simply take t distributed point functions and sum up their outputs. Alterna-
tively, more efficient constructions with optimized full-domain evaluation can be
obtained using (randomized) batch codes [9,48].

3 Ring-LPN Assumption

In this section, we recall the ring-LPN assumption, which was first introduced
in [32] to build efficient authentication protocols. Since then, it has received some
attention from the cryptography community [7,24,30,42], due to its appealing
combination of LPN-like structure, compact parameters, and short runtimes.
Below, we also provide a definition of module-LPN, which generalizes ring-LPN
in the same way that the more well-known module-LWE generalizes ring-LWE.

3.1 Ring-LPN

Definition 1 (Ring-LPN). Let R = Zp[X]/(F (X)) for some prime p and
degree-N polynomial F (X) ∈ Z[X], and let m, t ∈ N. Let HWt be the distribution
over Rp that is obtained via sampling t noise positions A ← [0..N)t as well as t

payloads b ← Z
t
p uniformly at random, and outputting e(X) :=

∑t−1
j=0 b[j]·XA[j].

The R-LPNp,m,t problem is hard if for any PPT adversary A, it holds that
∣∣∣Pr[A((a(i), a(i) · e + f (i))mi=1) = 1] − Pr[A((a(i), u(i))mi=1) = 1]

∣∣∣ ≤ negl(λ)

where the probabilities are taken over a(1), . . . , a(m), u(1), . . . , u(m) ← Rp, e,
f (1), . . . , f (m) ← HWt and the randomness of A.

Remark 2. Note that sampling t noise positions individually can lead to colli-
sions, and thus negatively affect the entropy introduced by the payloads. The
reason we decided in favor of this definition is that this entropy loss is minor
in the regime of parameters we care about—as for t � N the probability of
collisions is very small—and this choice helps to simplify the analysis.

Note that our restriction to Zp with p prime as the underlying field is only
for simplicity; in fact, R-LPN can be defined equivalently over any other field, or
even over rings (e.g. Z2k or Zpq for primes p, q); these alternative choices are not
known to introduce any significant weakness or structural difference compared
to the version over Zp.

In this work, we will also use a natural generalization of R-LPN, where we
replace a(i) ·e by the inner product 〈a(i), e〉 between length-(c−1) vectors over R,
for some constant c. We call this module-LPN, analagously to module-LWE. This
will allow for more efficient instantiations, as according to our security analysis
it will be enough to choose the total number of noise positions w = c · t = O(λ),
and therefore increasing c allows to choose a smaller t.

398 E. Boyle et al.

Definition 3 (Module-LPN). Let R = Zp[X]/(F (X)) for some prime p and
degree-N polynomial F (X) ∈ Z[X], and let c,m, t ∈ N with c ≥ 2. Let HWt be
the distribution of uniformly random polynomials in Rp with exactly t non-zero
coefficients. The Rc-LPNp,m,t problem is hard if for any PPT adversary A, it
holds that

∣∣∣Pr[A((a(i), 〈a(i), e〉 + f (i))mi=1) = 1] − Pr[A((a(i), u(i))mi=1) = 1]
∣∣∣ ≤ negl(λ)

where the probabilities are taken over a(1), . . . ,a(m) ← Rc−1
p , u(1), · · · , u(m) ←

Rp e ← HWc−1
t , f (1), . . . , f (m) ← HWt, and the randomness of A.

Equivalence to module-LPN with uniform secret. We observe that, by
the same argument as for standard LWE [2], the R-LPN (resp. module-LPN)
problem with a secret chosen from the error distribution is at least as hard
as the corresponding R-LPN (resp. module-LPN) problem where the secret is
chosen uniformly at random, if the adversary is given one additional sample. For
a proof we refer to the full version.

Lemma 4. For any c ≥ 2, let Rc-uLPNp,m,t denote the variant of Rc-LPN where
the secret e is sampled uniformly at random. Then, for m ≥ c, Rc-uLPNp,m,t is
at least as hard as Rc-LPNp,m−c,t.

Relation to syndrome decoding. In our constructions, we typically consider
module-LPN with a single sample (m = 1). To simplify notation and emphasize
that the secret comes from the error distribution, we often combine the two into
a single vector, writing

{
(a, 〈a, e〉)

∣∣∣a = (1,a′),a′ $← Rc−1
p , e $← HWc

t

}
.

This formulation of module-LPN is equivalent to a variant of the syndrome
decoding problem in random polynomial codes. To see this, let Mi be the N ×N
matrix over Zp representing multiplication with the fixed element a′

i ∈ Rp, for
i = 1 to c − 1. Define the matrix

H = [IdN ||M1|| · · · ||Mc−1].

H is a parity-check matrix in systematic form for a polynomial code defined
by the random elements a′

i ∈ Rp. Module-LPN can be seen as a decisional version
of syndrome decoding for this code, where we assume that He is pseudorandom
for an error vector e = (e1, . . . , ec) with a regular structure, where each of the
length-N blocks ei have exactly t non-zero entries. The code has length N · c
and dimension N · (c − 1); the rate of the code is therefore (c − 1)/c. With
this formulation, c can be viewed as the compression factor of the linear map
e → H ·e. Therefore, we generally refer to c as the syndrome compression factor.

Efficient Pseudorandom Correlation Generators from Ring-LPN 399

3.2 Choice of the Polynomial F

The ring-LPN assumption (and more generally, the module-LPN assumption)
is dependent of the choice of the underlying polynomial F . We discuss possible
choices for the polynomial F , and their implications for the security of ring-
LPN/module-LPN over the corresponding ring R.

Irreducible F (X). The most conservative instantiation is when F (X) is irre-
ducible over Zp, and so Rp is a field. In this setting, no attacks are known that
perform significantly better than for standard LPN.

Reducible F (X). We also consider when F (X) is reducible over Zp, and splits
into several distinct factors. Here we have a few different instantiations.

Cyclotomic F (X). Let F (X) be the m-th cyclotomic polynomial of degree
N = φ(m). Then, F (X) splits modulo p into N/d distinct factors fi, where each
fi is of degree d, and d is the smallest integer satisfying pd = 1 mod m. We are
particularly interested in the following cases.

– Two-power N . Let N be a power of two and p a large prime such that
p = 1 mod (2N) (here, m = 2N). Then F (X) splits completely into N linear
factors modulo p, so Rp is isomomorphic to Z

N
p .

– p = 2. Here, each degree-d subring Zp[X]/(fi(X)) is isomorphic to the finite
field F2d , hence Rp

∼= F
N/d

2d .

Random factors. A more conservative option is to choose an F (X) that splits
completely into d distinct, random factors. For instance, for a large prime p we
can pick (distinct) random elements α1, . . . , αN ← Zp and let

F (X) =
N∏

i=1

(X − αi)

Just as with the two-power cyclotomic case, Rp is isomorphic to Z
N
p . Now,

however, the problem may be harder since we are avoiding the structure given by
roots of unity. On the other hand, the isomorphism is more expensive to compute
as we can no longer use the FFT, and polynomial interpolation algorithms cost
O(N log2 N) instead of O(N logN).

4 PCGs for OLE and Authenticated Triples

In this section, we construct PCGs for OLE and authenticated multiplication
triples, based on the Rc-LPN assumption. The constructions can achieve an
arbitrary (a priori bounded) polynomial stretch, that is, the seed size scales
logarithmically with the output length.

400 E. Boyle et al.

Fig. 1. PCG for OLE over the ring Rp, based on ring-LPN

4.1 PCG for OLE over Rp

We build a PCG for producing a single OLE over the ring Rp. When Rp splits
appropriately, as described in Sect. 3, this can be locally transformed into a PCG
for a large batch of OLEs or authenticated triples over a finite field Fpd or Fp.
The OLE correlation over Rp outputs a single sample from the distribution

{
(x0, z0), (x1, z1)

∣∣∣x0, x1, z0
$← Rp, z1 = x0 · x1 − z0

}

This is equivalent to a simple bilinear correlation for multiplication in Rp.
Below is an informal presentation of the construction, which is described

formally in Fig. 1.
The high-level idea is to first give each of the two parties a random vector e0

or e1 ∈ Rc
p, consisting of sparse polynomials, together with a random, additive

secret sharing of the tensor product e0 ⊗ e1 over Rp.

Efficient Pseudorandom Correlation Generators from Ring-LPN 401

We view e0, e1 as Rc-LPN error vectors (whose first entry is implicitly the
Rc-LPN secret), which will be expanded to produce outputs xσ = 〈a, eσ〉 by each
party Pσ for a random, public a = (1, â). This defines two Rc-LPN instances
with independent secrets but the same a value, which are pseudorandom by a
standard reduction to Rc-LPN with a single sample. To obtain shares of x0 · x1,
observe that when a is fixed, this is a degree 2 function in (e0, e1), so can be
computed locally by the parties given their shares of e0 ⊗ e1.

The only part that remains, then, is to distribute shares of this tensor prod-
uct. Recall that each entry of eσ is a polynomial of degree less than N with
at most t non-zero coordinates. We write these coefficients as a set of indices
A ∈ [0..N)t and corresponding non-zero values b ∈ Z

t
p. Taking two such sparse

polynomials (A,b) and (A′,b′), notice that the product of the two polynomials
is given by
⎛
⎝ ∑

i∈[0..t)

b[i] · XA[i]

⎞
⎠ ·

⎛
⎝ ∑

j∈[0..t)

b′[j] · XA′[j]

⎞
⎠ =

∑
i,j∈[0..t)

b[i] · b′[j] · XA[i]+A′[j]

We can therefore express the coefficient vector of the product as a sum of
t2 point functions, where the (i, j)-th point function evaluates to b[i] · b′[j] at
input A[i] + A′[j], and zero elsewhere. This means the parties can distribute
this product using a function secret sharing scheme SPFSS for sums of point
functions. Each SPFSS takes a set of t2 points and associated vector of values,
and produces two keys that represent shares of the underlying sum of point
functions. If each party locally evaluates its key at every point in the domain,
then it obtains a pseudorandom secret-sharing of the entire sparse polynomial.

There are c2 polynomials in the tensor product, so overall we need c2

instances of SPFSS, where each SPFSS uses t2 point functions. Instantiating this
naively using t2 distributed point functions, we get a seed size of Õ(λ(ct)2 logN)
bits. Note that to achieve exponential security against the best known attacks
on Rc-LPN, it is enough to choose ct = O(λ). By increasing N , we can therefore
obtain an arbitrary polynomial stretch for the PCG, where the stretch is defined
as the ratio of its output length to the seed size.

More concretely, we have the following theorem. For a proof we refer to the
full version.

Theorem 5. Suppose that SPFSS is a secure FSS scheme, and the Rc-LPNp,1,t

assumption (Definition 3) holds. Then the construction in Fig. 1 is a secure PCG
for OLE over Rp.

When instantiating SPFSS using DPFs from a PRG : {0, 1}λ → {0, 1}2λ+2,
we have:

– Each party’s seed has size at most (ct)2 · ((logN + 1) · (λ + 2) + λ + log p) +
ct(logN + log p) bits.

– The computation of Expand can be done with at most (4+2(log p)/λ�)N(ct)2

PRG operations, and O(c2N logN) operations in Zp.

402 E. Boyle et al.

We remark that assuming Rc-LPN holds for regular error distributions, the
seed size can be reduced to (ct)2 · ((logN − log t + 1) · (λ + 2) + λ + log p) +
ct(logN + log p) bits, and the number of PRG calls in Expand down to (4 +
2(log p)/λ�)Nc2t. Furthermore, implementing SPFSS using batch codes reduces
the number of PRG calls to O(Nc2).

Obtaining OLEs over Fp . As mentioned previously, when R and p are chosen
appropriately, an OLE over Rp is locally equivalent to N OLEs over Fp or Fpd .
Hence, this PCG immediately implies PCGs over Fpd , with the same seed size
and complexity.

If we want to rely on the (apparently) more conservative version of Rc-LPN,
where F (X) is irreducible in Zp[X], the parties can still use our PCG over Rp to
obtain OLEs over Zp, but this requires O(N) interaction. To do this, the parties
each sample random polynomials a, b ∈ Zp[X], each of degree < N/2. They then
use the OLE over Rp to multiply a and b, which can be done by sending N
elements of Zp.6 This gives shares of c = ab in Rp, which equals ab over Zp[X],
since no overflow occurs modulo F (X) (which has degree N). Each party then
locally computes evaluations of its shares of a, b and c at N/2 fixed, distinct,
non-zero points, which gives N/2 secret-shared products over Zp (this can be
done as long as p > N/2).

Optimizations. We now discuss a few optimizations which apply to the basic
scheme.

Optimizing the MPFSS evaluation. Naively, the computational cost of the FSS
full-domain evaluation is O((ct)2N) PRG operations. Using a regular error dis-
tribution, we can bring this down to O(c2tN) (see below). With batch codes [34]
or randomized batch codes [48], the full evaluation cost can be brought down to
O(c2N) operations. However, if the seed generation phase has to be created by
a secure distributed protocol, this may introduce further complexity.

Using regular errors. Suppose two sparse polynomials e0, e1 ∈ ZN
p are regular,

that is eb = (eb,1, . . . , eb,t), where each eb,j ∈ Z
N/t
p has weight 1, and defines a

coefficient in the range [(j − 1) · (N/t), j · (N/t) − 1]. Each pair (e0,i, e1,j) gives
rise to an index in [(i + j − 2) · (N/t), (i + j) · (N/t) − 2], so the product of two
regular error polynomials can be represented by a t2-point SPFSS of domain size
2N/t. This leads to a total expansion cost of O(c2tN) PRG operations.

Extension to higher degree correlations. We can naturally extend this
construction from OLE over Rp to general degree-D correlations (over Rp), for
any constant D, by sharing D-way products of sparse polynomials instead of just
pairwise products. However, this comes at a high cost: the seed size increases to
O((ct)D logNλ), and the computational cost becomes Õ((ct)D · N).

6 This can be reduced to N/2, by defining a, b to be the first N/2 coefficients of
the polynomials x0, x1 produced by the OLE, so that only the second half of the
coefficients need to be sent in the multiplication protocol.

Efficient Pseudorandom Correlation Generators from Ring-LPN 403

4.2 Authenticated Multiplication Triples

We now show how to modify the PCG for OLE to produce authenticated multi-
plication triples, which are often used in maliciously secure MPC protocols such
as the BDOZ [6] and SPDZ [22,25] line of work. Note that although OLE can be
used to build authenticated triples in a black-box way, doing this requires several
OLEs and some interaction, for every triple. Our PCG avoids this interaction,
with only a small overhead on top of the previous construction: the seeds are less
than 2x larger, while the expansion phase has around twice the computational
cost.

Secret-sharing with MACs. We use authenticated secret-sharing based on SPDZ
MACs between n parties, where a secret-sharing of x ∈ Zp is defined as:

�x� = (αi, xi,mx,i)ni=1 such that
∑

i

xi = x,
∑

i

mx,i = x ·
∑

i

αi

Note that the MAC key shares αi are fixed for every shared x. The MAC
shares mx,i are used to prevent a sharing from being opened incorrectly, via
a MAC check procedure from [22]. An authenticated multiplication triple is a
tuple of random sharings (�x�, �y�, �z�), where x, y

$← Zp and z = x ·y. Our PCG
outputs a single multiplication triple over the ring Rp, for n = 2 parties, together
with additive shares of the MAC key α ∈ Zp. When using the fully-reducible
variant of ring-LPN, this is equivalent to N triples over Fpd (where for suitably
chosen p we can have d = 1).

PCG construction. The construction is remarkably simple. Recall that our pre-
vious construction for OLE uses FSS keys which are expanded into shares of
sparse polynomials ui,j = ei · ej ∈ Zp[X]. The FSS payload was defined by some
(column) vector v ∈ Z

t2

p , which defines the t2 values of the non-zero coefficients
in ui,j . We can modify this to produce authenticated OLE by extending the FSS
range from Zp to Z

2
p, and letting the payload be v · (1, α) ∈ Z

2N×2
p , for a ran-

dom α ∈ Zp. Evaluating the FSS keys at some input k now produces shares of
(v[k], α ·v[k]). Hence, these can be used to obtain authenticated shares of x0 ·x1,
as well as the OLE.

To extend the above to authenticated triples, the seed generation phase
will now produce three sets of FSS keys. The first two sets, (Ki

x,0,K
i
x,1) and

(Ki
y,0,K

i
y,1), are used to compress shares of the 2c sparse polynomials defined

by (Ai
0,b

i
0) and (Ai

1,b
i
1). These have sparsity t, so can be compressed using t-

point SPFSS, and are later expanded to produce shares and MAC shares for Rp

elements x and y. The third set, (Ki
z,0,K

i
z,1), compresses pairwise products of

the previous sparse polynomials, so each of these can be defined using t2-point
SPFSS, as in the previous construction. This gives the shares and MAC shares
for the product term z = x · y. For the full protocol description we refer to the
full version of this paper.

We omit the proof of the following theorem, which is very similar to that of
Theorem 5. Recall that to achieve exponential security against the best known

404 E. Boyle et al.

attacks on Rc-LPN, it is enough to choose ct = O(λ), therefore choosing a larger
c allows to decrease the size of t. For more details on concrete parameter choices
we refer to Sect. 7.

Theorem 6. Suppose that the Rc-LPNp,1,t assumption holds and given a PRG
PRG : {0, 1}λ → {0, 1}2λ+2. Then there exists a secure PCG for two-party
authenticated multiplication triples over Rp with the following complexities:

– Each party’s seed has size at most 2(2ct+ (ct)2) · ((logN + 1) · (λ + 2) + λ+
log p) + log p bits.

– The computation of Expand can be done with at most (8 + 4(log p)/λ�)
N(2ct + (ct)2) PRG operations, and O(c2N logN) operations in Zp.

5 Distributed Setup Protocols

Up to this point, exposition has focused on how to obtain and use pseudoran-
dom correlation generators (PCG), abstracted in an idealized model where the
short PCG seeds are sampled by a third-party trusted dealer. In this section, we
address solutions for parties to jointly generate the desired PCG correlations,
via secure distributed setup protocols.

In Sect. 5.1, we show how to securely realize (against a semi-honest adver-
sary) the randomized functionality FOLE-Setup that executes the seed generation
for our PCG construction PCGOLE constructed in Sect. 4, and outputs the cor-
responding PCG seeds to each party. This can in turn be used to realize a
functionality for the secure generation of OLE correlations, by having the par-
ties simply expand their received PCG seeds locally. Our protocol to implement
FOLE-Setup makes black-box use of sub-protocols for simple secure computations
over Zp and {0, 1}�, and for secure computation of DPF key generation where
the position and payload values are held secret shared across the two parties. In
particular, the latter can be implemented with the efficient DPF key generation
protocol of Doerner and shelat [27].

In the full version, for the malicious case we present a protocol securely
realizing the randomized functionality Fmal-OLE, in which a corrupt adversary
can choose his output (xσ, zσ) ∈ R2

p and the honest party receives a random
consistent value (x1−σ, z1−σ), i.e. for which z0+z1 = x0 ·x1 (or the parties receive
a random sample from the correlation given honest behavior; see the full version
for details). As discussed in [11], such a protocol can directly serve as a substitute
for ideal OLE correlations in a wide range of higher-level applications, already
proven to remain secure given this functionality. Further, we give a protocol
realizing an analogous functionality for authenticated multiplication triples in
the malicious model at little extra cost. Achieving security in the malicious

Efficient Pseudorandom Correlation Generators from Ring-LPN 405

setting poses further challenges, including managing potential leakage on the
secret noise positions from the [27] protocol in the face of malicious behavior,
while simultaneously enforcing consistency.

For a detailed listing of efficiency of our protocols we refer to the full version.
For an overview of concrete efficiency we refer to Table 2 in Sect. 7.

5.1 Semi-honest Distributed Setup

We present a protocol for securely executing the seed-generation functionality
respective to our PCG construction PCGOLE from Sect. 4. For a description of
the functionality FOLE-Setup we refer to the full version.

Recall that in the PCGOLE.Gen procedure (see Fig. 1), each party receives a
succinct description (Ai

σ,bi
σ)i∈[0..c) of t-sparse “noise vectors” e0σ, . . . , ec−1

σ each
of length N , as well as a collection of (ct)2 distributed point function (DPF) keys
as a compact representation of all possible products ei

0 · ej
1. A secure distributed

realization of this procedure can then be achieved given access to two secure
sub-protocols:

– Secure computation of DPF key generation for a “path” α and “payload” β
held secret shared across the parties. Concretely, this can be instantiated
by the DPF-generation protocol of Doerner and shelat [27], given bitwise
additive shares of the path α ∈ Z2N and Zp-additive shares of the nonzero
payload β. For the functionality FDPF and a high-level description of the
protocol by Doerner and shelat [27], we refer to the full version of this paper.

– Generic secure computation of simple computations over Z2 or Zp, used to
securely compute secret shares of the products (bi

0[k] · bj
1[l]) over Zp, and

shares of the Zp-sums (Ai
0[k] + Aj

1[l]) ∈ [0..2N − 1). Note that the latter
computation is nontrivial, as the parties must hold bitwise additive shares
of (Ai

0[k] + Aj
1[l]) for the [27] protocol, but the sum itself is with respect to

ZN . This “grade school addition” over bits can be implemented via a binary
circuit for integer addition with logN AND gates, similar to previous (e.g.,
garbled circuit based [41]) protocols. For more details on the functionality
F2-PC, an implementation of F2-PC and efficiency considerations we refer to
the full version.

The protocol ΠOLE for securely realizing FOLE-Setup in the (F2-PC,FDPF)-hybrid
model is given in Fig. 2.

Theorem 7. Assuming hardness of Rc-LPNp,1,t, the protocol ΠOLE-Setup (Fig. 2)
securely realizes the OLE generation functionality FOLE-Setup with security against
semi-honest adversaries in the (F2-PC,FDPF)-hybrid model.

Proof. Observe that the protocol ΠOLE-Setup is directly a secure evaluation of
the computation steps of FOLE-Setup (see description of PCGOLE.Gen as given
in Fig. 1 within Sect. 4), with the exception that the FSS key generation

406 E. Boyle et al.

Fig. 2. Distributed setup of OLE seeds in (F2-PC, FDPF)-hybrid model, against semi-
honest adversaries. �x�2, �x�p denote additive shares of bit-strings or Zp elements.

for the sum of point functions SPFSS.Gen(1λ, Ai
0 � Aj

1,b
i
0 ⊗ bj

1) is instantiated
directly by the DPF key generation for every individual nonzero component. As
this is a valid instantiation of SPFSS, the claim holds.

6 Extensions and Applications

In this section we extend our PCG for OLE in several directions. First, we build
PCGs for inner product correlations from OLE over Rp, with the advantage
that we do not need to rely on the full reducibility of F (X), and can also obtain
correlations over F2. Secondly, we present a method for building PCGs for general
bilinear correlations, such as matrix multiplication, in a black-box way from our
previous PCG. Finally, we show that all of these PCGs for degree two correlations
can be extended in a natural way to the multi-party setting.

Efficient Pseudorandom Correlation Generators from Ring-LPN 407

6.1 Bilinear Correlations

The class of bilinear correlations we consider is as follows.

Definition 8 (Simple Bilinear Correlation). Let G1,G2,GT be Abelian
groups and e : G1 × G2 → GT be a bilinear map. We define the simple bilinear
correlation for e by the distribution Ce over (G1 × GT) × (G2 × GT) of the form

Ce = {((r0, s0), (r1, s1)) | r0 ← G1, r1 ← G2, s0 ← GT , s1 = e(r0, r1) − s0} .

We denote by Cn
e the correlation that outputs n independent samples from Ce.

This covers several common correlations like OT and OLE, for example, OLE
over a ring R can be obtained with G1 = G2 = GT = (R,+) and e(x, y) = x · y.
Also, note that two independent bilinear correlations can be locally converted
to produce an additively secret-shared instance of the correlation—for example,
two OLEs are locally equivalent to one multiplication triple.

6.2 Inner Product Correlations

An inner product correlation is a simple bilinear correlation with the inner prod-
uct map over Fp. These can be used to compute inner products in an MPC
online phase, in a similar way to using multiplication triples. Inner products are
common in tasks involving linear algebra, like privately evaluating or training
machine learning models such as SVMs and neural networks, and a single inner
product can also be used to measure the similarity between two input vectors.

We remark that given n random OLEs in Fp, it is easy to locally convert
these into an length-n inner product correlation, so we can build a PCG for
inner products of any length using a PCG for OLE. However, the constructions
in this section do not rely on the fully-reducible ring-LPN assumption that is
needed for OLE in Fp; instead, we use the ring-OLE construction from Fig. 1
over more conservative rings, which do not split completely into linear factors.

For the proof of the following lemma, we refer to our full version.

Lemma 9. Let Rp = Zp[X]/(F (X)), where F (X) is a degree-N polynomial
with non-zero constant coefficient. Then, a single OLE over Rp can be locally
converted into an inner product correlation over F

N
p .

Note that, for the special case of F (X) = Xn + 1, the vector Ma[0] can be
computed as (a0,−an−1, . . . ,−a1), without any modular reductions.

Corollary 10 (Large inner product from irreducible ring-LPN). Sup-
pose the R-LPNp,1,t assumption holds for R = Zp[X]/(F (X)), where F (X) is
degree N and irreducible over Zp. Then there is a PCG for the length-N inner
product correlation, where the seeds have size O(λt2 logN) bits, and the com-
putational complexity of the Expand operation is Õ(N) operations in Zp, plus
O(t2N) PRG operations.

408 E. Boyle et al.

Corollary 11 (Small inner products from reducible ring-LPN). Suppose
the R-LPNp,1,t assumption holds for R = Zp[X]/(F (X)), where F (X) is degree
N and splits into N/d distinct factors of degree d. Then there is a PCG for
producing N/d instances of length-d inner product correlations, with the same
seed size and complexity as above.

The latter construction has two benefits over naively using OLE over Fp

to generate an inner product. Firstly, OLE in Fp requires that R splits fully
into linear factors, whereas for inner products the factors can be degree-d (and
irreducible), which is a much more conservative assumption; in particular, the
dimension-reduction attack we consider in the full version is less effective. Sec-
ondly, we can also use this to generate inner products over small fields such as
F2, whereas we cannot efficiently obtain OLEs over F2 with our present con-
structions.

6.3 Bilinear Correlations from Programmable PCG for OLE

We can build a PCG to create a large batch of samples from any simple bilinear
correlation, using the PCG for OLE from Sect. 4. To do this, we exploit the fact
that this PCG is programmable, which, roughly speaking, means that one party
can “reuse” its input a or b in several instances of the PCG, while maintaining
security. Boyle et al. [11] previously used this property to construct multi-party
PCGs from several instances of programmable two-party PCGs; unlike their
work, we exploit the property for a different purpose in the two-party setting.

In the full version, we recall the definition of programmability, and show that
our PCG for OLE satisfies this definition.

Below we describe the main result, and some applications.

Decomposition of bilinear maps. Let f : G1 ×G2 → GT and g : Gu
1 ×G

v
2 →

G
w
T be bilinear maps. We will consider ways of computing g that are restricted

to a fixed number of calls to f on the components of the inputs to g, followed
by linear combinations in GT of the results of the f evaluations.

Definition 12 (Simple f-decomposition). Let G1,G2,GT be additive abelian
groups, viewed as Z-modules. Let f : G1 × G2 → GT and g : Gu

1 × G
v
2 → G

w
T

be non-degenerate bilinear maps. We say that g has a simple f-decomposition if
there exist γ ∈ N, W ∈ Z

w×γ and αi ∈ [u], βi ∈ [v], for i ∈ [γ], such that for all
x = (x1, . . . , xu) ∈ G

u
1 and y = (y1, . . . , yv) ∈ G

v
2, it holds that

g(x, y) = W ·

⎛
⎜⎝

f(xα1 , yβ1)
...

f(xαγ
, yβγ

)

⎞
⎟⎠

We say that the f -complexity of this decomposition of g is given by nf (g) := γ.

Efficient Pseudorandom Correlation Generators from Ring-LPN 409

Note that if G1,G2,GT are all a (commutative) ring R and f is multiplication
in R, then any g has a simple f -decomposition of complexity u · v. However, it
can still be useful to find a different f that achieves lower complexity.

We now show that any map g with a simple f -decomposition can be used to
construct a PCG for the simple bilinear correlation Cg, given a programmable
PCG for Cf .

For the construction and its security proof we refer to the full version. There,
we further show that the new PCG also satisfies the programmability property.

Theorem 13. Let f and g be bilinear maps as above, and suppose that g has
a simple f-decomposition with f-complexity nf (g). Furthermore, let PCGf =
(PCGf .Gen,PCGf .Expand) be a programmable PCG for Cn

f . Then there exists a
PCG PCGg = (PCGg.Gen,PCGg.Expand) for Cn

g , with the following properties:

– PCGg.Gen runs nf (g) executions of PCGf .Gen, and its key sizes are nf (g)
times that of PCGf .

– PCGg.Expand runs nf (g) executions of PCGf .Expand, and n evaluations of
the linear map W from the f-decomposition of g.

6.4 Applications

In the following we will give a brief overview of applications of the general bilinear
construction. For a more detailed discussion we refer to the full version.

Matrix multiplication triples. Multiplication of n1 × n2 and n2 × n3 matri-
ces is easily decomposed as a sequence of n1 · n3 inner products of length n2,
where each inner product is taken from a consecutive portion of the two inputs.
Therefore, the matrix multiplication map g has a linear f -decomposition with
f -complexity n1 · n3.

This results in a matrix multiplication triple with seed size around n1 · n3

times larger than the PCG seed for OLE, which will likely be practical for small-
to-medium matrices. Note that using a programmable PCG for OLE directly to
build matrix multiplications would require n1 ·n2 ·n3 instances of the base PCG,
giving a much worse expansion factor.

Circuit-dependent MPC preprocessing. Circuit-dependent preprocessing
is a variation on the standard multiplication triples technique, which is based
on Beaver’s circuit randomization technique [4] and extended in more recent
works [5,23]. The idea is to preprocess multiplications in a way that depends on
the structure of the circuit, and leads to an online phase that requires just one
opening per multiplication gate, instead of two when using multiplication triples.

With the PCG for general bilinear correlations, we can generate circuit-
dependent preprocessing for a large batch of identical circuits. This can be useful,
for instance, when executing the same function many times on different inputs,
or when a larger computation contains many small, repeated instances of a par-
ticular sub-circuit. For more details we refer to the full version.

410 E. Boyle et al.

Multi-party PCGs for bilinear correlations. In [11] [Theorem 41], Boyle
et al. showed that any two-party, programmable PCG for a simple bilinear cor-
relation can be used to build a multi-party PCG for an additively secret-shared
version of the same correlation.

Using that the PCG for bilinear correlations from Theorem13 is programmable
and the results of the previous section, we obtain N -party PCGs for (unauthenti-
cated) multiplication triples, matrix triples and circuit-dependent preprocessing
over Zp based on ring-LPN, for any polynomial number of parties N . Each party’s
seed contains 2(N −1) seeds of the underlying two-party PCG, plus N −1 seeds for
a PRG. The expansion procedure of the PCG consists of expanding the 2(N − 1)
PCG seeds, as well as the PRG seeds.

7 Efficiency Analysis

In the full version, we provide a detailed security analysis of the flavors of the
R-LPN assumption which we use. In this section, based on our security analysis,
we discuss concrete choices of parameters for which the corresponding ring-LPN
problems are secure against the attacks we considered, and analyse the concrete
efficiency of our PCGs. In all instances, we assume the noise vectors to have
a regular structure (as was done e.g. in [9–11]), since this does not introduce
any known weakness, but significantly increases the efficiency of Expand. For
large fields, we focus on the statistical decoding and information set decoding
(ISD) families of attacks (the latter being always at least as efficient as the
Gaussian elimination attack), combined with the speedup obtained with the
DOOM attack against quasi-cyclic codes. For statistical decoding, we compute
our estimations with a conservative lower bound of n · (cN/(N −1))w arithmetic
operations. For ISD, we used LEDA’s public domain software implementation of
an automated procedure for the design of tight and optimal sets of parameters,
developed in the context of the LEDA candidate [3] for the NIST post-quantum
competition7. This software takes as input the parameters (dimension, number
of sample, number of noisy coordinates, block-size of the quasi-cyclic matrices) of
the instance, and outputs the complexity of attacking the instance with several
ISD variants.

Theoretical Analysis for Reducible Ring-LPN. We consider a field F = Zp

of size |F| ≈ 2128. As in our applications, we focus on the case where there is a
factor fi of degree n = N/k, for some k, which has sparsity 1, such as when N is
a power of two and F (X) = XN + 1 splits completely into N linear factors
modulo p. From the analysis in the full version, we can reduce an instance
modulo a 1-sparse factor fi of degree n = 2i, reducing the expected number
of noisy coordinates to

wi = w − cn + (c(n − 1) + w) ·
(
1 − 1

n

)w/c−1

,

7 https://github.com/LEDAcrypt/LEDAtools.

https://github.com/LEDAcrypt/LEDAtools

Efficient Pseudorandom Correlation Generators from Ring-LPN 411

the dimension to ni = (c−1) ·2i, and the number of samples to qi = c ·2i. In our
experiments, we found that the optimal behavior for the adversary was always to
pick the smallest i such that the new weight wi of the noise is not higher than the
dimension ni (such that the reduced instance is still uniquely decodable and is
not statistically close to random). For security parameter λ = 80 (resp. λ = 128),
the smallest such i is i = 6 (resp. i = 7). In Table 1, we provide various choices
of parameters (λ,N, c, w) such that the best attack on any reduced instance
requires at least 2λ multiplications over a field F of size |F| ≈ 2128. The table
also presents the concrete seed sizes and computational requirements for our
PCG for OLE, based on Theorem 5 (and with optimizations due to the regular
error distribution).

Our conservative estimates of the running time of the statistical decoding
attack have better asymptotic complexity than the ISD attacks, according to
our analysis in the full version; and indeed, we found statistical decoding to
always give the best available attack. Given that statistical decoding should
not generally perform better than ISD [26], this suggests that our estimation of
the cost of statistical decoding might be overly conservative, meaning that our
parameters are slightly pessimistic.

Estimated Runtimes for OLE and Triple Generation. We estimate the
computational cost of expanding a PCG seed to produce N = 220 OLEs over
Zp, using our PCG over a ring Rp which splits fully into linear factors. The main
costs in the expansion step are the DPF full-domain evaluations, and polyno-
mial operations over Rp. We separately benchmarked these using the DPF code
from [10], and NFLLib [1] for polynomial arithmetic with a 124-bit modulus p,
which is a product of two 62-bit primes (such that Rp splits completely into
linear factors, by the CRT). We also estimated the communication complexity
required to distribute the PCG seeds with active security, based on the analysis
provided in the full version.

The results are in Table 2 for OLE, and Table 3 for authenticated triples.
Note that compared with Table 1, the noise weight w has been rounded so it
is divisible by c, so that t = w/c is an integer. We see that as the module-
LPN compression parameter c increases, the polynomial arithmetic gets more
expensive, while the DPF cost first decreases at c = 4, and then goes back up
at c = 8. This is because the DPF complexity scales with c2t, so doubling c
only reduces its cost if t can be reduced by more than a factor of 4. The best
choice for speed seems to be c = 4, where we are able to silently expand over 100
thousand OLEs per second at the 128-bit security level, with a seed size of around
1MB. When generating authenticated triples instead of OLEs, the seed size and
runtimes increase by roughly a factor of two, while the setup communication
cost is only slightly larger.

412 E. Boyle et al.

Table 1. Concrete parameters and seed size (per party, counted as equivalent number
of field elements) for our PCG for OLE over Rp = Zp[X]/F (X), where p = 1 mod
2N , log p ≈ 128 and F = XN + 1 is the 2N -th cyclotomic polynomial which fully
splits over Zp, for various λ, N , syndrome compression factor c, and number of noisy
coordinates w. ‘Stretch’, computed as 2N/(seed size), is the ratio between storing a full
random OLE (i.e., 2N field elements) and the smaller PCG seed. Parameters are chosen
such that the best-known distinguishing attacks, over any instance reduced modulo
a sparse factor of F , require T field multiplications over Zp to have distinguishing
advantage T/2λ. This setting is useful for generating batches of N OLE correlations
or authenticated triples over Zp, or small inner-product correlations (Sect. 6.2). When
using a smaller field F

′, the bit-length of the seed stays roughly the same but increases
by a factor of ≈ log2 |F|/ log2 |F′| in field elements, the stretch decreases by the same
factor, (e.g. about a factor 2 when using F with log2 |F′| ≈ 64), and all other entries
remain the same.

λ N c w (i, wi) Seed size Stretch # R-mults #PRG calls

80 220 2 97 (6, 74) 217.4 12 4 229.6

80 220 4 40 (6, 37) 215.0 65 16 229.3

80 220 8 26 (6, 25) 213.9 139 64 229.7

128 220 2 152 (7, 121) 218.6 5 4 230.2

128 220 4 64 (7, 60) 216.3 27 16 230.0

128 220 8 41 (7, 40) 215.1 59 64 230.4

80 225 2 97 (6, 74) 217.7 306 4 234.6

80 225 4 40 (6, 37) 215.3 1654 16 234.3

80 225 8 26 (6, 25) 214.2 3623 64 234.7

128 225 2 152 (7, 121) 219.0 130 4 235.2

128 225 4 64 (7, 60) 216.6 673 16 235.0

128 225 8 41 (7, 40) 215.4 1513 64 235.4

Table 2. Estimated costs for our PCG for producing N = 220 OLEs in Zp, with
log p ≈ 124. Setup comm. measures the per-party communication required to setup
the PCG seeds with active security (ignoring costs for correlated randomness that can
come from a previous PCG).

λ c w Seed size (MB) Setup comm. (MB) Runtimes for Expand (s)
R-mult (s) DPF eval. (s) Total (s)

80 2 96 2.69 7.43 0.4 9.8 10.2
80 4 40 0.52 1.41 1.4 7.5 8.9
80 8 32 0.35 0.94 5.3 9.3 14.6

128 2 152 6.37 17.77 0.4 12.6 13.0
128 4 64 1.26 3.45 1.4 8.6 10.0
128 8 40 0.55 1.47 5.3 14.4 19.7

Efficient Pseudorandom Correlation Generators from Ring-LPN 413

Table 3. Estimated costs for our PCG for producing N = 220 authenticated triples
in Zp, with log p ≈ 124. Setup comm. measures the per-party communication required
to setup the PCG seeds with active security (ignoring costs for correlated randomness
that can come from a previous PCG).

λ c w Seed size (MB) Setup comm. (MB) Runtimes for Expand (s)
R-mult (s) DPF eval. (s) Total (s)

80 2 96 5.49 9.07 0.8 19.6 20.4
80 4 40 1.09 1.74 2.8 15.0 17.8
80 8 32 0.74 1.16 10.6 18.6 29.2

128 2 152 12.91 21.73 0.8 25.2 26.0
128 4 64 2.60 4.22 2.8 17.2 20.0
128 8 40 1.14 1.80 10.6 28.8 39.4

Acknowledgements. We would like to thank Vadim Lyubashevsky, Chris Peikert,
Ronny Roth and Jean-Pierre Tillich for helpful discussions and pointers.

E. Boyle, N. Gilboa, and Y. Ishai, and L. Kohl supported by ERC Project NTSC
(742754). E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award
FA9550-17-1-0069. G. Couteau supported by ERC Project PREP-CRYPTO (724307).
N. Gilboa additionally supported by ISF grant 1638/15, ERC grant 876110, and a
grant by the BGU Cyber Center. Y. Ishai additionally supported by NSF-BSF grant
2015782, BSF grant 2018393, and a grant from the Ministry of Science and Technology,
Israel and Department of Science and Technology, Government of India. Work of L.
Kohl was done in part while at Karlsruhe Institute of Technology, supported by ERC
Project PREP-CRYPTO (724307) and DFG grant HO 4534/2-2. P. Scholl supported
by the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC)
and an Aarhus University Research Foundation starting grant.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8_20

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_35

3. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: Design of LEDAkem
and LEDApkc instances with tight parameters and bounded decryption failure rate
(2019). https://www.ledacrypt.org/archives/official_comment.pdf

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-642-03356-8_35
https://www.ledacrypt.org/archives/official_comment.pdf
https://doi.org/10.1007/3-540-46766-1_34

414 E. Boyle et al.

5. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online SPDZ!
improving SPDZ using function dependent preprocessing. In: Deng, R.H.,
Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464,
pp. 530–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-
2_26

6. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4_11

7. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36140-1_10

8. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_24

9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018, pp. 896–912. ACM Press (2018)

10. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM CCS 2019, pp. 291–308. ACM Press (2019)

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: ACM CCS 2017, pp. 2105–2122. ACM
Press (2017)

13. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6_12

14. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_19

15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: ACM CCS 2016, pp. 1292–1303. ACM Press (2016)

16. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6_6

17. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function
secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14

18. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1

19. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-36140-1_10
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1007/978-3-030-17656-3_1

Efficient Pseudorandom Correlation Generators from Ring-LPN 415

20. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9_29

21. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3_17

22. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

23. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7_6

24. Damgård, I., Park, S.: How practical is public-key encryption based on LPN and
ring-LPN? Cryptology ePrint Archive, Report 2012/699 (2012). http://eprint.iacr.
org/2012/699

25. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

26. Debris-Alazard, T., Tillich, J.P.: Statistical decoding. In: 2017 IEEE International
Symposium on Information Theory (ISIT), pp. 1798–1802. IEEE (2017)

27. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM CCS
2017, pp. 523–535. ACM Press (2017)

28. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

30. Guo, Q., Johansson, T., Löndahl, C.: A new algorithm for solving ring-LPN with
a reducible polynomial. IEEE Trans. Inf. Theory 61(11), 6204–6212 (2015)

31. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
lightweight secure arithmetic computation. In: ACM CCS 2019, pp. 327–344. ACM
Press (2019)

32. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34047-5_20

33. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2_34

34. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: Babai, L. (ed.) 36th ACM STOC, pp. 262–271. ACM Press, June 2004

35. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-63688-7_6
http://eprint.iacr.org/2012/699
http://eprint.iacr.org/2012/699
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-85174-5_32

416 E. Boyle et al.

36. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

37. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX 2018, pp. 1651–1669
(2018)

38. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS 2016, pp. 830–842. ACM Press
(2016)

39. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

40. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

41. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6_1

42. Lipmaa, H., Pavlyk, K.: Analysis and implementation of an efficient ring-LPN
based commitment scheme. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS,
vol. 9476, pp. 160–175. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26823-1_12

43. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

44. Melchor, C.A., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Efficient encryp-
tion from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–3943
(2018). https://doi.org/10.1109/TIT.2018.2804444

45. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC, pp. 245–254. ACM Press, May 1999

46. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_40

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

48. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
improved constructions and implementation. In: ACM CCS 2019, pp. 1055–1072.
ACM Press (2019)

49. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-319-26823-1_12
https://doi.org/10.1007/978-3-319-26823-1_12
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1109/TIT.2018.2804444
https://doi.org/10.1007/978-3-642-32009-5_40

	EfficientPseudorandomCorrelationGenerators from Ring-LPN
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	3 Ring-LPN Assumption
	3.1 Ring-LPN
	3.2 Choice of the Polynomial F

	4 PCGs for OLE and Authenticated Triples
	4.1 PCG for OLE over Rp
	4.2 Authenticated Multiplication Triples

	5 Distributed Setup Protocols
	5.1 Semi-honest Distributed Setup

	6 Extensions and Applications
	6.1 Bilinear Correlations
	6.2 Inner Product Correlations
	6.3 Bilinear Correlations from Programmable PCG for OLE
	6.4 Applications

	7 Efficiency Analysis
	References

