
Non-malleable Secret Sharing Against
Bounded Joint-Tampering Attacks in the

Plain Model

Gianluca Brian1(B), Antonio Faonio2, Maciej Obremski3, Mark Simkin4,
and Daniele Venturi1

1 Sapienza University of Rome, Rome, Italy
brian@di.uniroma1.it

2 IMDEA Software Institute, Madrid, Spain
3 National University of Singapore, Singapore, Singapore

4 Aarhus University, Aarhus, Denmark

Abstract. Secret sharing enables a dealer to split a secret into a set of
shares, in such a way that certain authorized subsets of share holders can
reconstruct the secret, whereas all unauthorized subsets cannot. Non-
malleable secret sharing (Goyal and Kumar, STOC 2018) additionally
requires that, even if the shares have been tampered with, the recon-
structed secret is either the original or a completely unrelated one.

In this work, we construct non-malleable secret sharing tolerating p-
time joint-tampering attacks in the plain model (in the computational
setting), where the latter means that, for any p > 0 fixed a priori, the
attacker can tamper with the same target secret sharing up to p times.
In particular, assuming one-to-one one-way functions, we obtain:

– A secret sharing scheme for threshold access structures which toler-
ates joint p-time tampering with subsets of the shares of maximal
size (i.e., matching the privacy threshold of the scheme). This holds
in a model where the attacker commits to a partition of the shares
into non-overlapping subsets, and keeps tampering jointly with the
shares within such a partition (so-called selective partitioning).

– A secret sharing scheme for general access structures which tolerates
joint p-time tampering with subsets of the shares of size O(

√
log n),

where n is the number of parties. This holds in a stronger model
where the attacker is allowed to adaptively change the partition

A. Faonio—Supported by the Spanish Government under projects SCUM (ref.
RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURITAS (ref.
RED2018-102321-T), by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339).
M. Obremski—Supported by MOE2019-T2-1-145 Foundations of quantum-safe
cryptography.
M. Simkin—Supported by the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No 669255 (MPCPRO), grant agreement No 803096 (SPEC), Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC), and the Concordium Block-
hain Research Center.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 127–155, 2020.
https://doi.org/10.1007/978-3-030-56877-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_5

128 G. Brian et al.

within each tampering query, under the restriction that once a subset
of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries
(so-called semi-adaptive partitioning).

At the heart of our result for selective partitioning lies a new technique
showing that every one-time statistically non-malleable secret sharing
against joint tampering is in fact leakage-resilient non-malleable (i.e., the
attacker can leak jointly from the shares prior to tampering). We believe
this may be of independent interest, and in fact we show it implies lower
bounds on the share size and randomness complexity of statistically non-
malleable secret sharing against independent tampering.

Keywords: Secret sharing · Non-malleability · Joint tampering

1 Introduction

In the past 40 years, secret sharing [9,32] became one of the most fundamental
cryptographic primitives. Secret sharing schemes allow a trusted dealer to split
a message m into shares s1, . . . , sn and distribute them among n participants,
such that only certain authorized subsets of share holders are allowed to recover
m. The collection A of authorized subsets is called the access structure. The
most basic security guarantee is that any unauthorized subset outside A collec-
tively has no information about the shared message. Shamir [32] and Blakley [9]
showed how to construct secret sharing schemes with information-theoretic secu-
rity, and Krawczyk [25] presented the first computationally-secure construction
with improved efficiency parameters.

Non-malleable Secret Sharing. A long line of research [2,8,11,12,14,21,23,24,26,
31,33] has focused on different settings with active adversaries that were allowed
to tamper with the shares in one or another way. In verifiable secret sharing [31]
the dealer is considered to be untrusted and the share holders want to ensure
they hold shares of a consistent secret. In robust secret sharing [12] some parties
may act maliciously and try to prevent the correct reconstruction of the shared
secret by providing incorrect shares. It is well known that robust secret sharing
is impossible when more than half of the parties are malicious.

A recent line of works considers an adversary that has some form of re-
stricted access to all shares. In non-malleable secret sharing [23] the adversary
can partition the shares in disjoint sets and can then independently tamper
with each set of shares. Security guarantees that whatever is reconstructed
from the tampered shares is either the original secret, or a completely unre-
lated value. Most previous works have focused on the setting of indepen-
dent tampering [2,8,11,21,23,24,26,33], where the adversary is only allowed to
tamper with each share independently. Only a few papers [11,14,23,24] have
considered the stronger setting where the adversary is allowed to tamper with
subsets of shares jointly.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 129

Continuous Non-malleability. The first notions of non-malleability only focused
on security against a single round of tampering. A natural extension of this
setting is to consider adversaries that may perform several rounds of tamper-
ing attacks on a secret sharing scheme. Badrinarayanan and Srinivasan [8] and
Aggarwal et al. [2] considered p-time tampering attacks in the information-
theoretic setting, where p must be a-priori bounded. The works of Faonio and
Venturi [21] and Brian, Faonio and Venturi [11] considered continuous, i.e., poly-
many tampering attacks in the computational setting. It is well known that
cryptographic assumptions are inherent in the latter case [8,21,22].

An important limitation of all works mentioned above is that, with the excep-
tion of [11], they only consider the setting of independent tampering. Brian
Faonio, and Venturi [11] achieve continuous non-malleability against joint tam-
pering, where each tampering function can tamper with O(log n)-large sets of
shares assuming a trusted setup in the form of a common reference string. This
leads to the following question:

Can we obtain continuously non-malleable secret sharing against joint
tampering in the plain model?

1.1 Our Contributions

In this work, we make progress towards answering the above question. Our
main contribution is a general framework for reducing computational p-time
non-malleability against joint tampering to statistical one-time non-malleability
against joint tampering. Our framework encompasses the following models:

– Selective partitioning. Here, the adversary has to initially fix any k-sized
partition1 of the n shares, at the beginning of the experiment. Afterwards, the
adversary can tamper p times with the shares within each subset in a joint
manner. We call this notion k-joint p-time non-malleability under selective
partitioning.

– Semi-adaptive partitioning. In this setting, the adversary can adaptively
choose different k-sized partitions for each tampering query. However, once
a subset of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries. We call
this notion k-joint p-time non-malleability under semi-adaptive partitioning.

Combining known constructions of one-time statistically non-malleable secret
sharing schemes against joint tampering [14,23,24] with a new secret sharing
scheme that we present in this work, we obtain the following result:

Theorem 1 (Main Theorem, Informal). Assuming the existence of one-to-
one one-way functions, there exist:

1 This a sequence of non-overlapping subsets B1, . . . , Bt covering [n], such that each
Bi has size at most k.

130 G. Brian et al.

(i) A τ -out-of-n secret sharing scheme satisfying k-joint p-time non-malleabil-
ity under selective partitioning,2 for any τ ≤ n, k ≤ τ − 1, and p > 0.

(ii) An (n, τ)-ramp3 secret sharing scheme with binary shares satisfying k-joint
p-time non-malleability under selective partitioning, for τ = n − nβ, k ≤
τ − 1, β < 1, and p ∈ O(

√
n).

(iii) A secret sharing scheme satisfying k-joint p-time non-malleability under
semi-adaptive partitioning, for k ∈ O(

√
log n) and p > 0, and for any

access structure that can be described by a polynomial-size monotone span
program for which authorized sets have size greater than k.

1.2 Technical Overview

Our initial observation is that a slight variant of a transformation by Ostrovsky
et al. [30] allows to turn a bounded leakage-resilient, statistically one-time non-
malleable secret sharing Σ into a bounded-time non-malleable secret sharing Σ∗

against joint tampering. Bounded leakage resilience here means that, prior to
tampering, the attacker may also repeatedly leak information jointly from the
shares of Σ, as long as the overall leakage is bounded.

In the setting of joint tampering under selective partitioning, the leakage
resilience property of Σ has to hold w.r.t. the same partition used for tampering.
For joint tampering under semi-adaptive partitioning, we need Σ to be leakage-
resilient under a semi-adaptive choice of the partitions too. A nice feature of this
transformation is that it only requires perfectly binding commitments, which
can be built from injective one-way functions. Moreover, it preserves the access
structure of the underlying secret sharing scheme Σ.

Given the above result, we can focus on the simpler task of constructing
bounded leakage-resilient, statistically one-time non-malleable secret sharing,
instead of directly attempting to construct their multi-time counterparts. We
show different ways of doing that for both settings of selective and semi-adaptive
partitioning.

Selective Partitioning. First, we show that every statistically one-time non-
malleable secret sharing scheme Σ is also resilient to bounded leakage under
selective partitioning. Let � be an upper bound on the total bit-length of the
leakage over all shares. We use an argument reminiscent to standard complexity
leveraging to prove that every one-time non-malleable secret sharing scheme with
statistical security ε ∈ [0, 1) is also �-bounded leakage-resilient one-time non-
malleable under selective partitioning with statistical security ε/2�. The proof
roughly works as follows. Given an unbounded attacker A breaking the leakage-
resilient one-time non-malleability of Σ, we construct an unbounded attacker Â
against one-time non-malleability of Σ (without leakage). The challenge is how
2 Here, we inherit a few restrictions from [23]. Namely, the attacker is allowed to

tamper jointly using a partition of a minimal reconstruction set in subsets of differ-
ent sizes. We can remove these restrictions relying on the scheme from [24], which
however only works for the n-out-of-n access structure.

3 This means privacy holds with threshold τ , but all of the n shares are required to
reconstruct the message.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 131

Â can answer the leakage queries done by A. Our strategy is to simply guess
the overall leakage Λ by sampling it uniformly at random, and use this guess to
answer all of A’s leakage queries.

The problem with this approach is that, whenever our guess was incorrect,
the attacker A may notice that it is being used in a simulation and start behaving
arbitrarily. We solve this issue with the help of Â’s final tampering query. Recall
that in the model of selective partitioning, all leakage queries and the tamper-
ing query, act on the same arbitrary but fixed subsets B1, . . . ,Bt of a k-sized
partition of the shares. Hence, when A outputs its tampering query (f1, . . . , ft),
the reduction Â defines a modified tampering query (f̂1, . . . , f̂t) that first checks
whether the guessed leakage from each subset Bi was correct; if not, the tam-
pering function sets4 the modified shares within Bi to ⊥, else it acts identically
to fi. This strategy ensures that our reduction either performs a correct simula-
tion or destroys the secret. In turn, destroying the secret whenever we guessed
incorrectly implies that the success probability of Â is exactly that of A times
the probability of guessing the leakage correctly, which is 2−�.

By plugging the schemes from [23, Thm. 2], [24, Thm. 6], and [14, Thm. 3],
together with our refined analysis of the transformation by Ostrovsky et al. [30],
the above insights directly imply items i and ii of Theorem 1.

Semi-adaptive Partitioning. Unfortunately, the argument for showing that one-
time non-malleability implies bounded leakage resilience breaks in the setting of
adaptive (or even semi-adaptive) partitioning. Intuitively, the problem is that
the adversary can leak jointly from adaptively chosen partitions, and thus it is
unclear how the reduction can check whether the simulated leakage was correct
using a single tampering query.

Hence, we take a different approach. We directly construct a bounded leakage-
resilient, statistically one-time non-malleable secret sharing scheme for general
access structures. Our construction Σ combines a 2-out-of-2 non-malleable secret
sharing scheme Σ2 with two auxiliary leakage-resilient secret sharing schemes Σ0

and Σ1 realizing different access structures. When taking Σ0 to be the secret
sharing scheme from [26, Thm. 1], our construction achieves k-joint bounded
leakage-resilient statistical one-time non-malleability under semi-adaptive par-
titioning for k ∈ O(

√
log n). This implies item iii of Theorem 1. We refer the

reader directly to Sect. 5 for a thorough description of our new secret sharing
scheme and its security analysis.

Lower Bounds. Our complexity leveraging argument implies that every statisti-
cally one-time non-malleable secret sharing scheme against independent tamper-
ing with the shares is also statistically bounded leakage resilient against inde-
pendent leakage (and no tampering).

By invoking a recent result of Nielsen and Simkin [29], we immediately obtain
lower bounds on the share size and randomness complexity of any statistically
one-time non-malleable secret sharing scheme against independent tampering.

4 We assume that the reconstruction algorithm outputs ⊥ whenever one of the input
shares is set to ⊥. As we will see later, this is without loss of generality.

132 G. Brian et al.

1.3 Related Works

Non-malleable secret sharing is intimately related to non-malleable codes [19].
The difference between the two lies in the privacy property: While any non-
malleable code in the split-state model [1,3,5–7,13,15–17,19,20,22,27,28,30] is
also a 2-out-of-2 secret sharing [17], for any n ≥ 3 there are n-split-state non-
malleable codes that are not private.

Continuously non-malleable codes in the n-split-state model are currently
known for n = 8 [4] (with statistical security), and for n = 2 [16,20,22,30] (with
computational security).

Non-malleable secret sharing schemes have useful cryptographic applications,
such as non-malleable message transmission [23] and continuously non-malleable
threshold signatures [2,21].

1.4 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, we recall a few standard
definitions. In Sect. 3, we define our model of k-joint non-malleability under
selective and semi-adaptive partitioning.

In Sect. 4 and Sect. 5, we describe our constructions of bounded leakage-
resilient statistically one-time non-malleable secret sharing schemes under selec-
tive and semi-adaptive partitioning. The lower bounds for non-malleable secret
sharing, and the compiler for achieving p-time non-malleability against joint
tampering are presented in Sect. 6. Finally, in Sect. 7, we conclude the paper
with a list of open problems for further research.

2 Preliminaries

2.1 Standard Notation

For a string x ∈ {0, 1}∗, we denote its length by |x|; if X is a set, |X | represents
the number of elements in X . We denote by [n] the set {1, . . . , n}. For a set of
indices I = (i1, . . . , it) and a vector x = (x1, . . . , xn), we write xI to denote the
vector (xi1 , . . . , xit

). When x is chosen randomly in X , we write x ←$ X . When
A is a randomized algorithm, we write y ←$ A(x) to denote a run of A on input
x (and implicit random coins r) and output y; the value y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm
A is probabilistic polynomial-time (PPT for short) if A is randomized and for
any input x, r ∈ {0, 1}∗, the computation of A(x; r) terminates in a polynomial
number of steps (in the size of the input).

Negligible Functions. We denote with λ ∈ N the security parameter. A function
p is polynomial (in the security parameter), denoted p ∈ poly (λ), if p(λ) ∈
O(λc) for some constant c > 0. A function ν : N → [0, 1] is negligible (in the
security parameter) if it vanishes faster than the inverse of any polynomial in λ,
i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 133

negl(λ) to denote that ν(λ) is negligible. Unless stated otherwise, throughout
the paper, we implicitly assume that the security parameter is given as input (in
unary) to all algorithms.

Random Variables. For a random variable X, we write P[X = x] for the proba-
bility that X takes on a particular value x ∈ X , with X being the set where X
is defined. The statistical distance between two random variables X and Y over
the same set X is defined as

Δ(X,Y) :=
1
2

∑

x∈X
|P[X = x] − P[Y = x]| .

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to
denote that they are identically distributed, X

s≈ Y to denote that they are
statistically close, i.e. Δ(Xλ,Yλ) ∈ negl(λ), and X

c≈ Y to denote that they are
computationally indistinguishable, i.e. for all PPT distinguishers D:

|P [D(Xλ) = 1] − P [D(Yλ) = 1]| ∈ negl(λ) .

Sometimes we explicitly denote by X
s≈ε Y the fact that Δ(Xλ,Yλ) ≤ ε for

a parameter ε = ε(λ). We also extend the notion of computational indistin-
guishability to the case of interactive experiments (a.k.a. games) featuring an
adversary A. In particular, let GA(λ) be the random variable corresponding to
the output of A at the end of the experiment, where wlog. we may assume A
outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write
{GA(λ, 0)}λ∈N

c≈ {GA(λ, 1)}λ∈N as a shorthand for

|P [GA(λ, 0) = 1] − P [GA(λ, 1) = 1]| ∈ negl(λ) .

The above naturally generalizes to statistical distance, which we denote by
Δ(GA(λ, 0),GA(λ, 1)), in case of unbounded adversaries.

We recall a lemma from Dziembowski and Pietrzak [18]:

Lemma 1. Let X and Y be two independent random variables, and Oleak(·, ·)
be an oracle that upon input arbitrary functions (g0, g1) returns (g0(X), g1(Y)).
Then, for any adversary A outputting Z ←$ AOleak(·,·), it holds that the random
variables X|Z and Y|Z are independent.

2.2 Secret Sharing Schemes

An n-party secret sharing scheme Σ consists of polynomial-time algorithms
(Share,Rec) specified as follows. The randomized sharing algorithm Share takes
a message m ∈ M as input and outputs n shares s1, . . . , sn, where each si ∈ Si.
The deterministic algorithm Rec takes some number of shares as input and out-
puts a value in M ∪ {⊥}. We define μ := log |M| and σi := log |Si| respectively,
to be the bit length of the message and of the ith share.

Which subsets of shares are authorized to reconstruct the secret and which
are not is defined via an access structure, which is the set of all authorized
subsets.

134 G. Brian et al.

Definition 1 (Access structure). We say that A is an access structure for n
parties if A is a monotone class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2,
then I2 ∈ A. We call authorized or qualified any set I ∈ A, and unauthorized
or unqualified any other set. We say that an authorized set I ∈ A is minimal if
any proper subset of I is unauthorized, i.e., if U � I, then U /∈ A.

Intuitively, a perfectly secure secret sharing scheme must be such that all
qualified subsets of players can efficiently reconstruct the secret, whereas all
unqualified subsets have no information (possibly in a computational sense)
about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N and A be an access struc-
ture for n parties. We say that Σ = (Share,Rec) is a secret sharing scheme real-
izing access structure A with message space M and share space S = S1× . . .×Sn

if it is an n-party secret sharing with the following properties.

(i) Correctness: For all λ ∈ N, all messages m ∈ M and all authorized subsets
I ∈ A, we have that Rec((Share(m))I) = m with overwhelming probability
over the randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A, all pairs of messages m0,m1 ∈ M
and all unauthorized subsets U /∈ A, we have that

{(Share(1λ,m0))U}λ∈N

c≈ {(Share(1λ,m1))U}λ∈N.

If the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) privacy.

2.3 Non-interactive Commitments

A non-interactive commitment scheme Commit is a randomized algorithm taking
as input a message m ∈ M and outputting a value c = Commit(m; r) called
commitment, using random coins r ∈ R. The pair (m, r) is called the opening.

Intuitively, a secure commitment satisfies two properties called binding and
hiding. The first property says that it is hard to open a commitment in two
different ways. The second property says that a commitment hides the underlying
message. The formal definition follows.

Definition 3 (Binding). We say that a non-interactive commitment scheme
Commit is computationally binding if for all PPT adversaries A, all messages
m ∈ M, and all random coins r ∈ R, the following probability is negligible:

P [m′ = m ∧ Commit(m′; r′) = Commit(m; r) : (m′, r′) ←$ A(m, r)] .

If the above holds even in the case of unbounded adversaries, we say that Commit
is statistically binding. Finally, if the above probability is exactly 0 for all adver-
saries (i.e., each commitment can be opened to at most a single message), then
we say that Commit is perfectly binding.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 135

Definition 4 (Hiding). We say that a non-interactive commitment scheme
Commit is computationally hiding if, for all m0,m1 ∈ M, it holds that

{
Commit(1λ;m0)

}
λ∈N

c≈
{
Commit(1λ;m1)

}
λ∈N

.

In case the above ensembles are statistically close (resp. identically distributed),
we say that Commit is statistically (resp. perfectly) hiding.

3 Our Leakage and Tampering Model

In this section we define various notions of non-malleability against joint tam-
pering and leakage for secret sharing. Very roughly, in our model the attacker is
allowed to partition the set of share holders into t (non-overlapping) blocks with
size at most k, covering the entire set [n]. This is formalized through the notion
of a k-sized partition.

Definition 5 (k-sized partition). Let n, k, t ∈ N. We call B = (B1, . . . ,Bt) a
k-sized partition of [n] when: (i)

⋃t
i=1 Bi = [n]; (ii) ∀i1, i2 ∈ [t] such that i1 = i2,

Bi1 ∩ Bi2 = ∅; (iii) ∀i ∈ [t], |Bi| ≤ k.

Let B = (B1, . . . ,Bt) be a k-sized partition of [n]. To define non-malleability,
we consider an adversary A interacting with a target secret sharing s =
(s1, . . . , sn) via the following queries:

– Leakage queries. For each i ∈ [t], the attacker can leak jointly from the
shares sBi

. This can be done repeatedly and in an adaptive5 fashion, as long
as the total number of bits that the adversary leaks from each share does not
exceed � ∈ N.

– Tampering queries. For each i ∈ [t], the attacker can tamper jointly with
the shares sBi

. Each such query yields mauled shares (s̃1, . . . , s̃n), for which
the adversary is allowed to see the corresponding reconstructed message w.r.t.
a reconstruction set T ∈ A of his choice. This can be done for at most p ∈ N

times, and in an adaptive fashion.

Depending on the partition B being fixed, or chosen adaptively with each leak-
age/tampering query, we obtain two different flavors of non-malleability, as
defined in the following subsections.

3.1 Selective Partitioning

Here, we restrict the adversary to jointly leak from and tamper with subsets of
shares belonging to a fixed partition of [n].

5 This means that the choice of the next leakage query depends on the overall leakage
so far.

136 G. Brian et al.

Definition 6 (Selective bounded-leakage and tampering admissible
adversary). Let n, k, t, �, p ∈ N, and fix an arbitrary message space M, sharing
space S = S1×· · ·×Sn, and access structure A for n parties. We say that a (pos-
sibly unbounded) adversary A is selective k-joint �-bounded leakage p-tampering
admissible (selective (k, �, p)-BLTA for short) if, for every fixed k-sized partition
(B1, . . . ,Bt) of [n], A satisfies the following conditions:

– A outputs a sequence of poly-many leakage queries (g(q)1 , . . . , g
(q)
t), such that

for all q ∈ poly(λ) and all i ∈ [t],

g
(q)
i : ×

j∈Bi

Sj → {0, 1}�
(q)
i ,

where �
(q)
i is the length of the output Λ

(q)
i of g

(q)
i . The only restriction is that

|Λ| ≤ �, where Λ is the string containing the total leakage performed (over all
queries).

– A outputs a sequence of tampering queries (T (q), (f (q)
1 , . . . , f

(q)
t)), such that,

for all q ∈ [p], and for all i ∈ [t], it holds that

f
(q)
i : ×

j∈Bi

Sj → ×
j∈Bi

Sj and T (q) ∩ Bi = ∅,

and moreover T (q) ∈ A is a minimal authorized subset.
– All queries performed by A are chosen adaptively, i.e. each query may depend

on the information obtained from all the previous queries.
– If p > 0, the last query performed by A is a tampering query.

Note that A can choose a different reconstruction set T (q) with each tam-
pering query, in a fully adaptive manner. This feature is known as adaptive
reconstruction [21]. However, we consider the following two restrictions (that
were not present in previous works): (i) Each set T (q) must be minimal and
contain at least one mauled share from each subset Bi; (ii) The last query asked
by A is a tampering query. Looking ahead, these technical conditions are needed
for the complexity leveraging argument used in Theorem3. Note that the above
restrictions are still meaningful, as they allow, e.g., to capture the setting in
which the attacker first leaks from all the shares and then tampers with the
shares in a minimal authorized subset.

3.2 Semi-adaptive Partitioning

Next, we generalize the above definition to the stronger setting in which the
adversary is allowed to change the k-sized partition with each leakage and tam-
pering query. Here, we do not consider the restriction (i) mentioned above as it
is not needed for the analysis of our secret sharing scheme in Sect. 5; yet we still
consider the restriction (ii), and we will need to restrict the way in which the
attacker specifies the partitions corresponding to each leakage and tampering
query. For this reason, we refer to our model as semi-adaptive partitioning.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 137

Definition 7 (Semi-adaptive bounded-leakage and tampering admissi-
ble adversary). Let n, k, �, p ∈ N and M,S,A as in Definition 6. We say that
a (possibly unbounded) adversary A is semi-adaptive k-joint �-bounded leakage
p-tampering admissible (semi-adaptive (k, �, p)-BLTA for short) if it satisfies the
following conditions:

– A outputs a sequence of poly-many leakage queries (B(q), (g(q)1 , . . . , g
(q)

t(q))), cho-
sen adaptively, such that, for all q ∈ poly(λ), and for all i ∈ [t(q)], it holds
that B(q) = (B(q)

1 , . . . ,B(q)

t(q)) is a k-sized partition of [n] and

g
(q)
i : ×

j∈B(q)
i

Sj → {0, 1}�
(q)
i ,

where �
(q)
i is the length of the output. The only restriction is that |Λ| ≤ �,

where Λ = (Λ(1), Λ(2), . . .) is the total leakage (over all queries).
– A outputs a sequence of p tampering queries (B(q), T (q), (f (q)

1 , . . . , f
(q)
t)), cho-

sen adaptively, such that, for all q ∈ [p], and for all i ∈ [t(q)], it holds that
B(q) is a k-sized partition of [n] and

f
(q)
i : ×

j∈B(q)
i

Sj → ×
j∈B(q)

i

Sj .

– All queries performed by A are chosen adaptively, i.e. each query may depend
on the information obtained from all the previous queries.

– If p > 0, the last query performed by A is a tampering query.
– Given a tampering query (B, T , f), let T = {β1, . . . , βτ} for τ ∈ N. We write

ξ(i) for the index such that βi ∈ Bξ(i); namely, the i-th share used in the
reconstruction is tampered by the ξ(i)-th tampering function. Then:
(i) For all leakage queries (B, g) and all tampering queries (B′, T ′, f ′), where

B = (B1, . . . ,Bt) and B′ = (B′
1, . . . ,B′

t′), the following holds: for all
indices i ∈ [t], either there exists j ∈ T ′ such that Bi ⊆ B′

ξ(j), or for
all j ∈ T ′ we have Bi ∩ B′

ξ(j) = ∅.
(ii) For any pair of tampering queries (B′, T ′, f ′) and (B′′, T ′′, f ′′), where

B′ = {B′
1, . . . ,B′

t′} and B′′ = {B′′
1 , . . . ,B′′

t′′}, the following holds: for all
i ∈ T ′, either there exists j ∈ T ′′ such that B′

ξ(i) ⊆ B′′
ξ(j), or for all j ∈ T ′′

we have B′
ξ(i) ∩ B′′

ξ(j) = ∅.

Intuitively, condition (i) means that whenever the attacker leaks jointly from
the shares within a subset Bi, then for any tampering query the adversary must
either tamper jointly with the shares within Bi, or do not modify those shares at
all. Condition (ii) is the same translated to the partitions corresponding to dif-
ferent tampering queries. Looking ahead, condition (i) is needed for the proof in
Sect. 5.3, whereas condition (ii) is needed for the proof in Sect. 6.2. Note that the
above restrictions are still meaningful, as they allow, e.g., to capture the setting

138 G. Brian et al.

JSTamperB,m0,m1
Σ,A (λ, b):

s := (s1, . . . , sn) ←$ Share(mb)
stop ← false
Return AOnmss(s,B,·,·),Oleak(s,B,·)(1λ)

JATamperm0,m1
Σ,A (λ, b):

s := (s1, . . . , sn) ←$ Share(mb)
stop ← false
Return AOnmss(s,·,·,·),Oleak(s,·,·)(1λ)

Oracle Oleak(s, B, (g1, . . . , gt)):
Return g1(sB1), . . . , gt(sBt)

Oracle Onmss(s, B, T , (f1, . . . , ft)):
If stop = true

Return ⊥
Else

∀i ∈ [t] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(s̃T)
If m̃ ∈ {m0, m1}

Return �
If m̃ = ⊥

Return ⊥
stop ← true

Else return m̃

Fig. 1. Experiments defining selective (JSTamper) and adaptive (JATamper) joint
leakage-resilient (continuously) non-malleable secret sharing. The oracle Onmss is implic-
itly parameterized by the flag stop.

in which the attacker defines two non-overlapping6 subsets of [n] and then per-
forms joint leakage under adaptive partitioning within the first subset and joint
leakage/tampering under selective partitioning within the second subset.

3.3 The Definition

Very roughly, leakage-resilient non-malleability states that no admissible adver-
sary, as defined above, can distinguish whether it is interacting with a secret
sharing of m0 or of m1.

Definition 8 (Leakage-resilient non-malleability). Let n, k, �, p ∈ N and
ε ∈ [0, 1] be parameters, and A be an access structure for n parties. We say that
Σ = (Share,Rec) is a k-joint �-bounded leakage-resilient p-time ε-non-malleable
secret sharing scheme realizing A, shortened (k, �, p, ε)-BLR-NMSS, if it is an
n-party secret sharing scheme realizing A, and additionally, for all pairs of mes-
sages m0,m1 ∈ M, we have one of the following:

– For all selective (k, �, p)-BLTA adversaries A, and for all k-sized partitions B
of [n],

{
JSTamperB,m0,m1

Σ,A (λ, 0)
}

λ∈N

s≈ε

{
JSTamperB,m0,m1

Σ,A (λ, 1)
}

λ∈N

. (1)

In this case, we speak of (k, �, p, ε)-BLR-NMSS under selective partitioning.
– For all semi-adaptive (k, �, p)-BLTA adversaries A,

{
JATamperm0,m1

Σ,A (λ, 0)
}

λ∈N

s≈ε

{
JATamperm0,m1

Σ,A (λ, 1)
}

λ∈N

. (2)

6 In fact, the two subsets do not need to be fixed a priori.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 139

In this case, we speak of (k, �, p, ε)-BLR-NMSS under semi-adaptive parti-
tioning.

Experiments JSTamperB,m0,m1
Σ,A (λ, b) and JATamperm0,m1

Σ,A (λ, b), for b ∈
{0, 1}, are depicted in Fig. 1.

In case there exists ε = ε(λ) ∈ negl(λ) such that indistinguishability still
holds computationally in the above definitions for any p = p(λ) ∈ poly(λ), and
any PPT adversaries A, we call Σ bounded leakage-resilient continuously non-
malleable, shortened (k, �)-BLR-CNMSS, under selective/semi-adaptive parti-
tioning.

Non-malleable Secret Sharing. When no leakage is allowed (i.e., � = 0), we
obtain the notion of non-malleable secret sharing as a special case. In particular,
an adversary is k-joint p-time tampering admissible, shortened (k, p)-TA, if it is
(k, 0, p)-BLTA. Furthermore, we say that Σ is a k-joint p-time ε-non-malleable
secret sharing, shortened (k, p, ε)-NMSS, if Σ is a (k, 0, p, ε)-BLR-NMSS scheme.

Leakage-Resilient Secret Sharing. When no tampering is allowed (i.e., p = 0),
we obtain the notion of leakage-resilient secret sharing as a special case. In
particular, an adversary is k-joint �-bounded leakage admissible, shortened (k, �)-
BLA, if it is (k, �, 0)-BLTA. Furthermore, we say that Σ is a k-joint �-bounded
ε-leakage-resilient secret sharing, shortened (k, �, ε)-BLRSS, if Σ is a (k, �, 0, ε)-
BLR-NMSS scheme.

Finally, we denote by JSLeakB,m0,m1
Σ,A (λ, b) and JALeakm0,m1

Σ,A (λ, b) the
experiments in Definition 8 defining leakage resilience against selective and semi-
adaptive partitioning respectively. However, note that when no tampering hap-
pens the conditions (i) and (ii) of Definition 7 are irrelevant, and thus we simply
speak of (k, �, ε)-BLRSS under adaptive partitioning.

Augmented Leakage Resilience. We also define a seemingly stronger variant of
leakage-resilient secret sharing, in which A is allowed to obtain the shares within
a subset of the partition B (in the case of selective partitioning, or any unau-
thorized subset of at most k shares in the case of adaptive partitioning) at the
end of the experiment. In particular, in the case of selective partitioning, an
augmented admissible adversary is an attacker A+ = (A+

1 ,A+
2) such that:

– A+
1 is an admissible adversary in the sense of Definition 6, the only difference

being that A+
1 outputs a tuple (α, i∗), where α is an auxiliary state, and

i∗ ∈ [t];
– A+

2 takes as input α and all the shares sBi∗ , and outputs a decision bit.

In case of adaptive partitioning, the definition changes as follows: the adversary
A+
1 is admissible in the sense of Definition 7 and outputs an unauthorized subset

U /∈ A of size at most k instead of the index i∗, and A+
2 takes as input the shares

sU instead of the shares sBi∗ .
This flavor of security is called augmented leakage resilience. The theorem

below, which was established by [11,26] for the case of independent leakage,

140 G. Brian et al.

shows that any joint LRSS is also an augmented LRSS at the cost of an extra
bit of leakage.

Theorem 2. Let Σ be a (k, � + 1, ε)-BLRSS realizing access structure A under
selective/adaptive partitioning. Then, Σ is an augmented (k, �, ε)-BLRSS real-
izing A under selective/adaptive partitioning.

Proof. By reduction to non-augmented leakage resilience. Let A+ = (A+
1 ,A+

2) be
a (k, �, ε)-BLA adversary violating augmented leakage-resilience; we construct
an adversary A breaking the non-augmented variant of leakage resilience. Fix
m0,m1 ∈ M and a k-sized partition B = (B1, . . . ,Bt). Attacker A works as
follows.

– Run A+
1 and, upon input a leakage query (g1, . . . , gt), forward the same query

to the target leakage oracle and return the answer to A+
1 .

– Let (α, i∗) be the final output of A+
1 . Define the leakage function ĝ

α,A+
2

i∗ which
hard-wires α and a description of A+

2 , takes as input the shares sBi∗ and
returns the decision bit b′ ←$ A+

2 (α, sBi∗).

– Forward (ε, . . . , ε, ĝα,A+
2

i∗ , ε, . . . , ε) to the target leakage oracle, obtaining a bit
b′.

– Output b′.

The statement follows by observing that A’s simulation to A+’s leakage queries
is perfect, thus A and A+ have the same advantage, and moreover A leaks a total
of at most � + 1 bits. ��

4 Selective Partitioning

In this section, we construct bounded leakage-resilient, statistically one-time
non-malleable secret sharing under selective partitioning. We achieve this in two
steps. First, in Sect. 4.1, we prove that every statistically one-time non-malleable
secret sharing is in fact bounded leakage-resilient, statistically one-time non-
malleable under selective partitioning at the price of a security loss exponential
in the size of the leakage. Then, in Sect. 4.2, we provide concrete instantiations
using known results from the literature.

4.1 Non-malleability Implies Bounded Leakage Resilience

Theorem 3. Let Σ = (Share,Rec) be a (k, 1, ε/2�)-NMSS realizing A. Then, Σ
is also a (k, �, 1, ε)-BLR-NMSS realizing A under selective partitioning.

Proof. By contradiction, assume that there exist a pair of messages m0,m1 ∈ M,
a k-partition B = (B1, . . . ,Bt) of [n], and a (k, �, 1)-BLTA unbounded adversary
A such that

∣∣∣P
[
JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]

− P

[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ > ε.

Consider the following unbounded reduction Â trying to break (k, 0, 1, ε/2�)-non-
malleability using the same partition B, and the same messages m0,m1.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 141

1. Run A(1λ).
2. Upon input the q-th leakage query g(q) = (g(q)1 , . . . , g

(q)
t), generate a uniformly

random string Λ(q) = (Λ(q)
1 , . . . , Λ

(q)
t) compatible with the range of g(q), and

output Λ(q) to A.
3. Upon input the final tampering query f = (f1, . . . , ft), construct the following

tampering function f̂ = (f̂1, . . . , f̂t):
– The function hard-wires (a description of) all the leakage functions g(q),

the tampering query f , and the guess on the leakage Λ = Λ(1)||Λ(2)|| · · · .
– Upon input the shares (sj)j∈Bi

, the function f̂i checks that the guess on
the leakage was correct, i.e. g

(q)
i ((sj)j∈Bi

) = Λ
(q)
i for all q. If the guess

was correct, compute and output fi((sj)j∈Bi
); else, output ⊥.

4. Send f̂ to the tampering oracle and pass the answer m̃ ∈ M ∪ {�,⊥} to A.
5. Output the same guessing bit as A.

For the analysis, we now compute the distinguishing advantage of Â. In par-
ticular, call Missb the event in which the guess on the leakage was wrong in
experiment JSTamperB,m0,m1

Σ,A (λ, b), i.e. there exists i ∈ [t] such that f̂i outputs
⊥ in step 3, and call Hitb its complementary event. We notice that the probabil-
ity of Hit0 is equal to the probability of Hit1, since the strings Λ(q) are sampled
uniformly at random:

P[Hitb] =
∑

Λ∈{0,1}�

P[U� = Λ ∧ g(Sb) = Λ] = 2−�
∑

Λ∈{0,1}�

P[g(Sb) = Λ] = 2−�,

where Sb is the random variable corresponding to Share(mb), U� is the uniform
distribution over {0, 1}�, and g is the concatenation of all the leakage functions.
Then, we can write:

∣∣∣P
[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

]
− P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

]∣∣∣

=
∣∣∣P [Hit0] P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0
]

(3)

− P [Hit1] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1
]

+ P [Miss0] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Miss0
]

− P [Miss1] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Miss1
]∣∣∣

= 2−�
∣∣∣P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0
]

(4)

− P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1
]∣∣∣

= 2−�
∣∣∣P

[
JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]

(5)

−P

[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ >

ε

2�
, (6)

In the above derivation, Eq. (3) follows from the law of total probability, Eq. (4)
comes from the fact that, when Miss happens, the view of A (i.e. the leakage

142 G. Brian et al.

Λ and the output of the tampering query) is independent7 of the target secret
sharing, and thus its distinguishing advantage is zero, and Eq. (5) follows because
P[Hit] = 2−� and moreover, when Hit happens, the view of A is perfectly
simulated and thus Â has the same distinguishing advantage of A, which is at
least ε by assumption.

Therefore, Â has a distinguishing advantage of at least ε/2�. Finally, note
that Â performs no leakage and uses only one tampering query, and thus Â is
(k, 1)-TA. The lemma follows. ��

4.2 Instantiations

Using known constructions of one-time non-malleable secret sharing schemes
against joint tampering, we obtain the following:

Corollary 1. For every λ, �, n ≥ 0, and every k, τ ≥ 0 such that k < τ ≤
n, there exists a τ -out-of-n secret sharing Σ that is a (k, �, 1, 2−λ)-BLR-NMSS
under selective partitioning.

Proof. Follows by combining Theorem 3 with the secret sharing scheme8 of [23,
Thm. 4], using security parameter λ′ + � and choosing λ ≥ (λ′ + �)Ω(1) − � in
order to obtain

ε = 2� · 2−(λ′+�)Ω(1) ≤ 2−λ.

��
Corollary 2. For every �, n ≥ 0, any β < 1, and every k, τ ≥ 0 such that k <

τ ≤ n, there exists an (n, τ)-ramp secret sharing Σ that is a (k, �, 1, 2� ·2−nΩ(1)
)-

BLR-NMSS under selective partitioning with binary shares.

Proof. Follows by combining Theorem 3 with the secret sharing scheme of [14,
Thm. 4.1].

5 Semi-adaptive Partitioning

As mentioned in the introduction, the proof of Theorem3 breaks in the setting of
semi-adaptive partitioning. To overcome this issue, in Sect. 5.1, we give a direct
construction of a bounded leakage-resilient, one-time statistically non-malleable
secret sharing (for general access structures) under semi-adaptive partitioning.
We explain the main intuition behind our design in Sect. 5.2, and formally prove
security in Sect. 5.3. Finally, in Sect. 5.4, we explain how to instantiate our con-
struction using known results from the literature.
7 Here is where we use the restriction that the reconstruction set T must be minimal

and contain at least one share from each subset Bi; otherwise, we cannot argue that
the output of the tampering query is ⊥, and thus independent of the target.

8 The construction in [23, Thm. 4] actually only achieves security against joint tam-
pering within a partition B of the reconstruction set T (rather than the entire set
[n]). Accordingly, in this case we can only tolerate joint leakage from the shares
within the same partition B.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 143

5.1 Our New Secret Sharing Scheme

Let Σ0 be a secret sharing realizing access structure A, let Σ1 be a k1-out-of-n
secret sharing, and let Σ2 be a 2-out-of-2 secret sharing. Consider the following
scheme Σ = (Share,Rec):

– Algorithm Share: Upon input m, first compute (s0, s1) ←$ Share2(m),
(s0,1, . . . , s0,n) ←$ Share0(s0), and (s1,1, . . . , s1,n) ←$ Share1(s1). Then set
si := (s0,i, s1,i) for all i ∈ [n], and output (s1, . . . , sn).

– Algorithm Rec: Upon input (si)i∈I , parse si = (s0,i, s1,i) and I =
{i1, . . . , i|I|}, and define I|k1

:= {i1, . . . , ik1}; compute s1 = Rec1((s1,i)i∈I|k1
)

and s0 = Rec0((s0,i)i∈I), and finally output m′ = Rec2((s0, s1)).

With the above defined scheme, we achieve the following:

Theorem 4. Let n, k(λ), �(λ), σ0(λ) ∈ N and ε0, ε1, ε2 ∈ [0, 1] be parameters,
and set k1 :=

√
k, �0 := � + 1 and �1 := � + n · σ0. Let A be an arbitrary access

structure for n parties, where for any I ∈ A we have |I| > k1. Assume that:

1. Σ0 is a (k, �0, ε0)-BLRSS realizing A under adaptive partitioning, with share
space such that log |S0,i| ≤ σ0 (for any i ∈ [n]);

2. Σ1 is a (k1 −1, �1, ε1)-BLRSS realizing the k1-out-of-n threshold access struc-
ture under adaptive partitioning;

3. Σ2 is a one-time ε2-non-malleable 2-out-of-2 secret sharing (i.e. a (1, 1, ε2)-
NMSS).

Then, the above defined Σ is a (k1 − 1, �, 1, 2(ε0 + ε1)+ ε2)-BLR-NMSS realizing
A under semi-adaptive partitioning.

5.2 Proof Overview

In order to prove Theorem 4, we first make some considerations on the tampering
query (T ,B, f). In particular, we construct two disjoint sets T ∗

0 and T ∗
1 that are

the union of subsets from the partition B, in such a way that (i) T ∗
0 ∩T contains

at least k1 elements (so that it can be used as a reconstruction set for Rec1);
and (ii) each subset Bi of the partition B intersects at most one of T ∗

0 , T ∗
1 (so

that both leakage and tampering queries can be computed on T ∗
0 and on T ∗

1

independently). Hence, we define four hybrid experiments as described below.

First Hybrid: In the first hybrid experiment, we change how the tampering
query is answered. Namely, after the last leakage query, we replace all the left
shares (s0,β)β∈T ∗

1
with new shares (s∗

0,β)β∈T ∗
1

that are valid shares of s0 and
consistent with the leakage obtained by the adversary and with the shares
(s0,β)β∈T ∗

0
. Here, we note that due to the fact that we only consider semi-

adaptive partitioning,9 the shares (s0,β)β∈T ∗
1

and (s1,β)β∈T ∗
0

are independent

9 We thank Ashutosh Kumar for pointing out to us that independence given the
leakage does not necessarily hold in the case of fully adaptive (rather than semi-
adaptive) partitioning.

144 G. Brian et al.

even given the leakage. In particular, the above shares are independent before
the leakage occurs, and furthermore condition (i) in Definition 7 ensures that
the adversary never leaks jointly from shares in T ∗

0 and in T ∗
1 . Thus, since the

old and the new shares are sampled from the same distribution, this change
does not affect the view of the adversary and does not modify its advantage.

Second Hybrid: In the second hybrid experiment, we change the distribution
of the left shares. Namely, we discard the original ones and we replace them
with left shares of some unrelated message ŝ0, where (ŝ0, ŝ1) ←$ Share2(0). In
order to prove that this hybrid experiment is ε0-close to the previous one, we
construct an admissible reduction to leakage resilience of Σ0, thus proving
that, if some admissible adversary is able to notice the difference between the
old and the new experiment with advantage more than ε0, then our reduction
can distinguish between a secret sharing of s0 and a secret sharing of ŝ0 with
exactly the same advantage.
The key idea here is to forward leakage queries to the target oracle and,
once the adversary outputs its tampering query, obtain all the shares in T ∗

0

from the challenger, using the augmented property ensured by Theorem2;
the reduction remains admissible because Σ0 has security against adaptive
k-partitioning and |T ∗

0 | ≤ k. After receiving such shares, the reduction can
sample the shares (s∗

0,β)T ∗
1

as in the first hybrid experiment and compute the
tampering on both s0 (using the shares in T ∗

0 and the sampled shares in T ∗
1)

and s1 (only using the shares in T ∗
0), which allows to simulate the tampering

query.
Third Hybrid: In the third hybrid experiment, we change how the tamper-

ing query is answered. Similarly to the modification introduced in the first
hybrid experiment, after the last leakage query, we replace all the right shares
(s1,β)β∈T ∗

0
with new shares (s∗

1,β)β∈T ∗
0

that are valid shares of s1 and con-
sistent with the leakage obtained by the adversary. However, we now further
require that this change does not affect the outcome of the tampering query on
the left shares; in particular, if the tampering function applied to (ŝ0,β , s1,β)
leads to (s̃0,β , ∗), the same tampering function applied to (ŝ0,β , s∗

1,β) must
lead to (s̃0,β , ∗). This is required in order to keep consistency with the modi-
fications introduced in the second hybrid experiment. As before, since the old
and the new shares are sampled from the same distribution, this change does
not modify the advantage of the adversary.

Fourth Hybrid: In the fourth hybrid experiment, we change the distribution of
the right shares. Similarly to the modification introduced in the third hybrid
experiment, we discard the original shares and replace them with the right
shares of the previously computed unrelated message, i.e. ŝ1. In order to prove
that this hybrid experiment is ε1-close to the previous one, we construct an
admissible reduction to leakage resilience of Σ1.
The key idea here is to simulate the tampering query with a leakage query
that yields the result of the tampering on all the left shares (s̃0,β)β∈T ∗ ,
where T ∗ = T ∗

0 ∪ T ∗
1 . This is allowed because of the restriction on the

shares of Σ0 being at most σ0 bits long, so that the total performed leak-
age is bounded by � + nσ0. In particular, after sampling the fake shares

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 145

(ŝ0,1, . . . , ŝ0,n), forwarding the leakage queries to the target oracle and receiv-
ing the tampering query, the reduction samples the shares (s∗

0,β)β∈T ∗
1

as in
the second hybrid experiment and hard-wires them, along with the shares
(ŝ0,1, . . . , ŝ0,n), inside a leakage function that computes (s̃0,β , s̃1,β)β∈T ∗ and
outputs (s̃0,β)β∈T ∗ . After receiving the mauled shares, the reduction samples
the shares (s∗

1,β)β∈T ∗
0

as in the third hybrid and computes the correspond-
ing tampered shares (s̃1,β)β∈T ∗

0
. Given the mauled shares (s̃0,β)β∈T ∗ and

(s̃1,β)β∈T ∗
0
, the reduction can then simulate the tampering query correctly.

Since the above defined hybrid experiments are all statistically close, it only
remains to show that no adversary can distinguish between the last hybrid exper-
iment with bit b = 0 and the same experiment with b = 1 with an advantage
more than ε2, thus proving the security of our scheme. Here, we once again con-
struct a reduction, this time to one-time ε2-non-malleability, that achieves the
same advantage of an adversary distinguishing between the two experiments.

The key idea is to use s0 to sample the shares (s∗
0,β)β∈T ∗

1
and s1 to sam-

ple the shares (s∗
1,β)β∈T ∗

0
. In particular, all the missing shares needed for the

computation are the one sampled from (ŝ0, ŝ1) and, since T ∗
0 ∩ T ∗

1 = ∅, there
is no overlap and the tampering can be split between two functions f0, f1 that
hard-wire the sampled values. These two functions take as input s0 and s1,
respectively, and can thus compute the mauled values s̃0 and s̃1, which in turn
allows the reduction to simulate the tampering query.

5.3 Security Analysis

Before proceeding with the analysis, we introduce some useful notation. We
will define a sequence of hybrid experiments Hi(λ, b) for i ∈ N and b ∈ {0, 1},
starting with H0(λ, b) which is identical to the JATamperΣ,A(λ, b) experiment.
Recall that, after the leakage phase, the adversary sends a single tampering
query (T ,B, f).

– Let τ ∈ N and T = {β1, . . . , βτ}, and write ξ(i) for the index such that
βi ∈ Bξ(i) (i.e., the i-th share of the reconstruction is tampered by the ξ(i)-th
tampering function).

– We define some subsets starting from T . Call

T ∗
0 =

⋃

β∈T|k1

Bξ(β) and T0 = T ∗
0 ∩ T .

Then, use the above to define

T1 = T \ T0 and T ∗
1 =

⋃

β∈T1

Bξ(β).

and let T ∗ = T ∗
0 ∪ T ∗

1 .

146 G. Brian et al.

Note that, with the above notation, we can write:
⋃

β∈T|k1

Bξ(β) =
⋃

β∈T0

Bξ(β).

Moreover, T0 and T1 are defined in such a way that |T0| ≥ k1 and, if Bi ∩ T = ∅,
then either Bi ∩ T0 = ∅ or Bi ∩ T1 = ∅, but not both. In this way, we also obtain
that T ∗

0 ∩ T ∗
1 = ∅.

Finally recall that the adversary sends leakage queries (B(1), g(1)), . . . ,
(B(q), g(q)), for q ∈ poly (λ), and by condition (i) in the definition of semi-
adaptive admissibility (cf. Definition 7) we have that for all B∗ ∈

⋃
i∈[q] B(i)

either (1) ∃j ∈ T : B∗ ⊆ Bξ(j), or (2) ∀j ∈ T : B∗ ∩ Bξ(j) = ∅.

Hybrid 1. Let H1(λ, b) be the same as H0(λ, b) except for the shares of s0
being re-sampled at the end of the leakage phase. Namely, in H1(λ, b) we sample
(s∗

0,β)β∈T ∗
1

such that (s0,β)β∈T ∗
0
, (s∗

0,β)β∈T ∗
1

are valid shares of s0 and consistent
with the leakage. Then, we answer to A’s queries as follows:

– upon receiving a leakage query, use (s0,1, s1,1), . . . , (s0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (s0,β , s1,β)β∈T ∗
0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 2. For b ∈ {0, 1}, Δ(H0(λ, b),H1(λ, b)) = 0.

Proof. Let (S0,β)β∈T ∗
1

and (S∗
0,β)β∈T ∗

1
be the random variables for the values

(s0,β)β∈T ∗
1

and (s∗
0,β)β∈T ∗

1
in experiments H0 and H1. More in details, the ran-

dom variable (S∗
0,β)β∈T ∗

1
comes from the distribution of the shares (s0,β)β∈T ∗

1

conditioned on the fixed values (s0,β)β∈T ∗
0

and the overall leakage Λ. We claim
that (S∗

0,β)β∈T ∗
1

and (S1,β)β∈T ∗
0

are independent conditioned on the leakage Λ.
This is because the random variables (S0,β)β∈T ∗

1
and (S1,β)β∈T ∗

0
are independent

in isolation, and, by condition (i) in the definition of semi-adaptive admissibil-
ity, none of the leakage functions leaks simultaneously from a share in T ∗

0 and
a share in T ∗

1 . The latter holds as otherwise there would exist B∗ ∈
⋃

i∈[q] B(i)

such that T ∗
1 ∩ B∗ = ∅ and T ∗

0 ∩ B∗ = ∅, and therefore: (1) ∀j ∈ T : B∗
� Bξ(j),

and (2) ∃j ∈ T : B∗ ∩ Bξ(j) = ∅. Finally, by Lemma1, we can conclude that the
two random variables are independent even conditioned on the leakage.

For any string s̄, let Bs̄
0 and Bs̄

1 be, respectively, the event that (S0,β)β∈T ∗
1

= s̄
and (S∗

0,β)β∈T ∗
1

= s̄. Then:

P [H0(λ, b) = 1] − P [H1(λ, b) = 1]

=
∑

s̄

P
[
Bs̄

0

]
P

[
H0(λ, b)=1

∣∣Bs̄
0

]
−

∑

s̄

P
[
Bs̄

1

]
P

[
H1(λ, b)=1

∣∣Bs̄
1

]

=
∑

s̄

P
[
Bs̄

0

] (
P

[
H0(λ, b)=1

∣∣Bs̄
0

]
− P

[
H1(λ, b)=1

∣∣Bs̄
1

])
(7)

= 0, (8)

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 147

where Eq. (7) holds because of (S∗
0,β)β∈T ∗

1
is re-sampled from the distribution

of the (s0,β)β∈T ∗
1

conditioned on the measured leakage Λ and fixed (s0,β)β∈T ∗
0

and moreover it is independent of (s1,β)β∈T ∗
0

thus is distributed exactly as the
conditional distribution of the (S0,β)β∈T ∗

1
. The Eq. (8) holds because, once fixed

the value of s̄, if both Bs̄
0 and Bs̄

1 happen, then (S0,β)β∈T ∗
1

= s̄ = (S∗
0,β)β∈T ∗

1

and the two hybrids are the same. ��

Hybrid 2. Let H2(λ, b) be the same as H1(λ, b) except for the leakage being
performed on fake shares of s0. Namely, compute (ŝ0, ŝ1) ←$ Share2(0), let ŝi =
(ŝ0,i, s1,i) where (ŝ0,1, . . . , ŝ0,n) ←$ Share0(ŝ0), and sample the shares (s∗

0,β)β∈T ∗
1

of H1 such that (ŝ0,β)β∈T ∗
0
, (s∗

0,β)β∈T ∗
1

are valid shares of s0 and consistent with
the leakage. Then:

– upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s1,β)β∈T ∗
0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 3. For b ∈ {0, 1}, Δ((H1(λ, b),H2(λ, b))) ≤ ε0(λ).

Proof. By reduction to leakage resilience of Σ0. Suppose towards contradiction
that there exist b ∈ {0, 1}, messages m0,m1, and an adversary A able to tell
apart H1(λ, b) and H2(λ, b) with advantage more than ε0(λ). Let (s0, s1) and
(ŝ0, ŝ1) be, respectively, a secret sharing of mb and of the all-zero string under
Σ2. Consider the following reduction trying to distinguish a secret sharing of
s0 and a secret sharing of ŝ0 under Σ0, where we call starget0 the target secret
sharing in the leakage oracle.

Adversary ÂOleak((s
target
0,i)i∈[n],·,·)(1λ):

1. Sample (s1,1, . . . , s1,n) ←$ Share1(s1) and run the experiment as in H1

with the adversary A; upon receiving each leakage function, hard-code
into it the shares of s1 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query. Obtain from the
challenger the shares (starget0,β)β∈T ∗

0
(using the augmented property from

Theorem 2).
3. For all β ∈ T0, compute (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((s

target
0,j , s1,j)j∈Bξ(β))

and compute s̃1 = Rec1((s̃1,β)β∈T|k1
).

4. Sample (s∗
0,β)β∈T ∗

1
as described in H2 and compute s̃0 as follows: for

all β ∈ T1, let (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((s∗
0,j , s1,j)j∈Bξ(β)) and s̃0 =

Rec0((s̃0,β)β∈T).
5. Compute the value m̃ = Rec2(s̃0, s̃1). In case m̃ ∈ {m0,m1} return �

to A, and else return m̃.
6. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction
perfectly simulates H1 when (starget0,i)i∈[n] is a secret sharing of s0 and perfectly
simulates H2 when (starget0,i)i∈[n] is a secret sharing of ŝ0. Moreover, the leakage

148 G. Brian et al.

requested by A is forwarded to the leakage oracle of Â and perfectly simulated
by it. Finally, the reduction gets in full (starget0,β)β∈T ∗

0
, which allows it to compute

s̃1, and computes s̃0 by sampling the values (s∗
0,β)β∈T ∗

1
as in H1.

Let us now analyze the admissibility of Â. The only leakage performed by
Â is the one requested by A, and augmented leakage resilience can be obtained
with 1 extra bit of leakage by Theorem2. Finally, since |T ∗

0 | ≤ k1(k1 − 1) ≤ k,
it follows that if A is (k1 − 1, �, 1)-BLTA, Â is (k, � + 1)-BLA. ��

Hybrid 3. Let H3(λ, b) be the same as H2(λ, b) except for the shares of s1
being re-sampled at the end of the leakage phase. Namely, in H3(λ, b) we sample
(s∗

1,β)β∈T ∗
0

such that (1) the shares (s1,β)β∈T ∗
0

and (s∗
1,β)β∈T ∗

0
agree with the

same leakage and the same reconstructed secret s1, and (2) for all β ∈ T0,
applying the tampering function fξ(β) to (ŝ0,j , s

∗
1,j)j∈Bξ(β) or to (ŝ0,j , s1,j)j∈Bξ(β)

leads to the same values (s̃0,j)j∈Bξ(β) . Then, we answer to A’s queries as follows:

– upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s∗
1,β)β∈T ∗

0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 4. For b ∈ {0, 1}, Δ(H2(λ, b),H3(λ, b)) = 0.

Proof. The proof is similar to that of Lemma 2, and thus omitted.

Hybrid 4. Let H4(λ, b) be the same as H3(λ, b) except for the leakage being
performed on fake shares of s1. Namely, let (ŝ1,i)i∈[n] ←$ Share1(ŝ1), where ŝ1
comes from Share2(0) as in H2. Then:

– upon receiving a leakage query, use (ŝ0,1, ŝ1,1), . . . , (ŝ0,n, ŝ1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s∗
1,β)β∈T ∗

0
, (s∗

0,β , ŝ1,β)β∈T ∗
1

to
compute the answer.

Lemma 5. For b ∈ {0, 1}, Δ(H3(λ, b),H4(λ, b)) ≤ ε1(λ).

Proof. By reduction to the leakage resilience of Σ1. Suppose towards contradic-
tion that there exist b ∈ {0, 1}, messages m0,m1, and an adversary A able to tell
apart H3(λ, b) and H4(λ, b) with advantage more than ε1(λ). Let (s0, s1) and
(ŝ0, ŝ1) be, respectively, a secret sharing of mb and of the all-zero string under
Σ2. Consider the following reduction trying to distinguish a secret sharing of
s1 and a secret sharing of ŝ1 under Σ1, where we call starget1 the target secret
sharing in the leakage oracle.

Adversary ÂOleak((s
target
1,i)i∈[n],·,·)(1λ):

1. Sample (ŝ0,1, . . . , ŝ0,n) ←$ Share0(ŝ0) and run the experiment as in H3

with the adversary A; upon receiving each leakage function, hard-code
into it the shares of ŝ0 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query (T ,B, f).

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 149

3. Sample (s∗
0,β)β∈T ∗

1
as in H2. In particular, recall that we can sample

these share as a function of just the shares (s0,β)β∈T ∗
0

and the leakage.
Then, set

s′
0,β :=

{
ŝ0,β if β ∈ T ∗

0 ,

s∗
0,β if β ∈ T ∗

1 .

Note that this is well defined since T ∗
0 ∩ T ∗

1 = ∅.
4. For all i ∈ [t], construct the leakage function gi that, given as input

(starget1,β)β∈Bi
, computes (s̃0,β , s̃1,β)β∈Bi

= fj((s′
0,β , starget1,β)β∈Bi

) and out-
puts (s̃0,β)β∈Bi

. Send (B, (g1, . . . , gt)) to the leakage oracle obtaining
values (s̃0,β)β∈T ∗ .

5. Sample the values (s∗
1,β)β∈T ∗

0
as in H3 using (s̃0,β)β∈T ∗ and the leak-

age.
6. For all j ∈ T0, compute (s̃0,β , s̃1,β)β∈Bξ(j) = fj((s′

0,β , s∗
1,β)β∈Bξ(j));

then, compute s0 = Rec0((s̃0,β)β∈T) and s1 = Rec1((s̃1,β)β∈T|k1
) and

let m̃ = Rec2(s0, s1). In case m̃ ∈ {m0,m1} return � to A, and else
return m̃ to A.

7. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction
perfectly simulates H3 when (starget1,i)i∈[n] is a secret sharing of s1 and perfectly
simulates H4 when (starget1,i)i∈[n] is a secret sharing of ŝ1. Moreover, the leakage
requested by the adversary A is forwarded to the leakage oracle of Â and perfectly
simulated by it. Finally, the reduction obtains all the shares (s̃0,β)β∈T ∗ , and thus
it is able to both compute s̃0 and sample the values (s∗

1,β)β∈T ∗
0
.

Let us now analyze the admissibility of Â. The only leakage performed by Â
is the one requested by A in step 1 plus the one needed in order to get the values
(s̃0,β)β∈T ∗ in step 4; summing up, the overall leakage performed by Â is:

� +
∑

β∈T ∗
log |S0,β | ≤ � +

∑

i∈[n]

log |S0,i| ≤ � + nσ0,

where the last inequality follows by the fact that log |S0,i| ≤ σ0 for all i ∈ [n].
Therefore, we can conclude that Â is (k1 − 1, � + nσ0)-BLA. ��

Final Step. Finally, we show:

Lemma 6. Δ(H4(λ, 0),H4(λ, 1)) ≤ ε2(λ).

Proof. By reduction to non-malleability of Σ2. Suppose by contradiction that
there exist messages m0,m1 and an adversary A telling apart H4(λ, 0) and
H4(λ, 1) with advantage more than ε2(λ). Fix values (ŝi)i∈[n] = ((ŝ0,i, ŝ1,i)i∈[n])
and (s0, s1) being either a (2-out-of-2) secret sharing of m0 or of m1. Consider
the following reduction:

Adversary ÂOnmss((s
target
0 ,starget

1),·)(1λ):

150 G. Brian et al.

1. Run the experiment as in H4 with the adversary A; upon receiving
each leakage function, answer using the values (ŝi)i∈[n].

2. Upon input the tampering query (T ,B, f), construct the following two
tampering functions:

– Function f0, upon input s0, samples (s∗
0,β)β∈T ∗

1
as in H2; notice

that the reduction knows all the information needed to re-
sample the shares, as in particular it samples (s0,β)β∈[n] and
simulates the leakage. Then, f0 computes (s̃0,j , s̃1,j)j∈Bξ(β) =
fξ(β)((ŝ0,j , ŝ1,j)j∈Bξ(β)) for all β ∈ T0 and (s̃0,j , s̃1,j)j∈Bξ(β) =
fξ(β)((s∗

0,j , ŝ1,j)j∈Bξ(β)) for all β ∈ T1 and outputs s̃0 =
Rec0((s̃0,β)β∈T).

– Function f1, upon input s1, samples (s∗
1,β)β∈T ∗

0
as in H3. Then, f1

computes (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((ŝ0,j , s
∗
1,j)j∈Bξ(β)) for all β ∈ T0

and outputs s̃1 = Rec1((s̃1,β)β∈T).
3. Send (f0, f1) to the tampering oracle, receiving an answer m̃.
4. Return m̃ to A and output the same as A.

For the analysis, note that the reduction is perfect. In particular, shares
(s∗

0,β)β∈T ∗
1

and (s∗
1,β)β∈T ∗

0
are computed using s0 and s1 respectively; more-

over, both s̃0 and s̃1 are computed as in experiment H4 and thus the tampering
query is perfectly simulated. Finally, the leakage is computed using the fake
shares (ŝi)i∈[n] as in H4 and thus, once again, perfectly simulated. The lemma
follows.

Proof (Theorem 4). Follows by the above lemmas and the triangular inequality:

Δ(H0(λ, 0),H0(λ, 1))

≤
∑

b∈{0,1}

∑

i∈[4]

Δ(Hi−1(λ, b),Hi(λ, b)) + Δ(H4(λ, 0),H4(λ, 1))

≤ 2 (Δ(H1(λ, b),H2(λ, b)) + Δ(H3(λ, b),H4(λ, b))) + Δ(H4(λ, 0),H4(λ, 1))
≤ 2(ε0 + ε1) + ε2.

��

5.4 Instantiation

Using a previous construction of bounded leakage-resilient secret sharing scheme
against joint leakage under adaptive partitioning, we obtain the following:

Corollary 3. For every �, n, λ ≥ 0, every k ∈ O(
√

log n), and every access
structure A over n parties that can be described by a polynomial-size monotone
span program for which authorized sets have size greater than k, there exists a
(k, �, 1, 2−Ω(λ/ log(λ)))-BLR-NMSS with message length Ω(λ/ log(λ)) realizing A
under semi-adaptive partitioning.

Proof. By Theorem 4, we need to instantiate Σ0, Σ1, and Σ2. Using [26, Thm.
1] and [26, Cor. 2], we can take ε0 = ε1 = 2−Ω(λ/ log(λ)), k ∈ O(log n), and
thus k1 ∈ O(

√
log n), σ0 = poly (λ) and any �0, �1 > 0. As for Σ2, we can

take the split-state non-malleable code in [27, Thm. 1.12], which achieves error
2−Ω(λ/ log(λ)). ��

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 151

6 Applications

6.1 Lower Bounds for Non-malleable Secret Sharing

Combining our result from Theorem3 with the lower bound of Nielsen and
Simkin [29], we obtain a lower bound on the share size and randomness com-
plexity of non-malleable secret sharing schemes. In particular, we obtain the
following:

Corollary 4. Any τ -out-of-n (1, 1, ε)-NMSS must satisfy

σ ≥ (log(1/ε) − 1)(1 − τ/n)
τ̂

,

where τ̂ is the number of shares needed to reconstruct the full vector of shares
and σ is the bit-length of each share.

Observe that τ̂ is a simplified notion of entropy. If τ = τ̂ , then any authorized
set can reconstruct all remaining shares, meaning that those shares have no
entropy left.

6.2 Bounded-Time Non-malleability

Here, we revisit the compiler from Ostrovsky et al. [30] in the setting of non-
malleable secret sharing against joint tampering.

The basic idea is as follows. First, we commit to the message m using random
coins r, thus obtaining a cryptographic commitment c. Then, we secret share the
string m||r using an auxiliary secret sharing scheme Σ, thus obtaining shares
s1, . . . , sn. The final share of the i-th party is set to be s∗

i = (c, si). Given
an authorized set I, the reconstruction first checks that all commitments in
s∗

I are equal, and then uses sI to recover m||r, and verifies consistency of the
commitments. If any of these checks fails, it outputs ⊥; else, it returns m.

The original analysis by Ostrovsky et al. shows that if Σ is a 2-out-of-2 secret
sharing that is bounded leakage-resilient, statistically one-time non-malleable,
and further satisfies additional non-standard properties, then Σ∗ is continuously
non-malleable. In a follow up work, Brian et al. [11] proved that the additional
properties on Σ can be avoided if one assumes that Σ satisfies a stronger form
of leakage resilience known as noisy leakage resilience, and further extended the
original analysis to any value n ≥ 2 and for arbitrary access structures.

Both the proofs in [11,30] are for the setting of independent tampering. The
theorem below says that the same construction works also in the case of joint p-
time tampering under selective/semi-adaptive partitioning as long as Σ tolerates
joint bounded leakage resilience, where there is a natural trade off between the
leakage bound and the number of tampering queries. The main idea behind the
proof is to reduce the security of Σ∗ to that of Σ, where the bounded leakage
is used to simulate multiple tampering queries. The main difference with the
original proof is that we need a small leakage for each tampering query, and
thus the analysis only works in case the number of tampering queries is a priori

152 G. Brian et al.

Let Commit be a non-interactive commitment scheme with message space M, random-
ness space R and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret
sharing scheme realizing access structure A with message space M×R and share space
S = S1 × . . .×Sn. Define the following secret sharing scheme Σ∗ = (Share∗,Rec∗) with
message space M and share space S∗ = S∗

1 × . . . × S∗
n, where, for each i ∈ [n], we have

S∗
i = C × Si

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins
r ←$ R and compute c = Commit(m; r) and (s1, . . . , sn) ←$ Share(m||r). Return
the shares s∗ = (s∗

1, . . . , s
∗
n) where, for each i ∈ [n], s∗

i = (c, si).
Reconstruction algorithm Rec∗: Upon input shares (s∗

i)i∈I , parse s∗
i = (ci, si) for

each i ∈ I. Hence, proceed as follows.
1. If ∃i1, i2 ∈ I for which ci1 �= ci2 , return ⊥; else, let the input shares be

s∗
i = (c, si).

2. Run m||r = Rec((si)i∈I); if the outcome equals ⊥, return ⊥.
3. If c = Commit(m; r), return m; else, return ⊥.

Fig. 2. Compiler for obtaining bounded-time non-malleability against joint tampering.

bounded. Moreover, in the case of semi-adaptive partitioning, we need to make
sure that the leakage performed by the reduction does not violate condition (i)
in the definition of semi-adaptive admissibility (cf. Definition 7); intuitively, the
latter holds thanks to the fact that the tampering queries chosen by the attacker
must satisfy condition (ii) in Definition 7. We refer to the full version of the paper
for the details [10].

Theorem 5. Let n ∈ N and let A be an arbitrary access structure for n parties
without singletons. Assume that:

1. Commit is a perfectly binding and computationally hiding non-interactive com-
mitment;

2. Σ is a n-party k-joint �-bounded leakage-resilient one-time non-malleable
secret sharing scheme realizing access structure A against joint semi-adaptive
(resp., selective) partitioning with information-theoretic security and with
message space M such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 2 is a n-party k-joint p-
time non-malleable secret sharing scheme realizing access structure A against
joint semi-adaptive (resp., selective) partitioning with computational security,
as long as � = p · (γ + n) + 1, where γ = log |C| is the size of a commitment.

7 Conclusions

We presented new constructions of non-malleable secret sharing schemes against
joint tampering with the shares, both in the setting of selective and adaptive
partitioning.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 153

Our constructions for selective partitioning are for threshold access structures
and tolerate joint tampering with maximal subsets of unauthorized parties, i.e.,
of size equal to the privacy threshold. Our construction for adaptive partitioning
is for general access structures, but tolerates joint tampering with much smaller
subsets of size k ∈ O(

√
log n) (where n is the number of parties) and under some

restrictions on the way the partitions are determined by the attacker. Removing
the latter limitation is an intriguing open question.

The above results hold for any a priori fixed bound p > 0 on the number
of tampering queries, and under computational assumptions. We leave it as an
open problem to design continuously non-malleable (i.e., for p = p(λ) being an
arbitrary polynomial in the security parameter) secret sharing schemes tolerating
joint tampering under selective/adaptive partitioning.

Another interesting question would be to improve the rate, i.e., the ratio
between message size and maximal size of a share, for non-malleable secret shar-
ing against joint tampering. Note that, in the computational setting, it is always
possible to boost the rate as follows: First, share the secret key κ ∈ {0, 1}λ

of an authenticated symmetric encryption using a secret sharing scheme with
poor rate, obtaining shares s1, . . . , sn; hence, encrypt the message m using κ,
obtaining a ciphertext c, and define the final i-th share to be s∗

i = (c, si). Such a
rate-optimizing compiler was originally analyzed in the setting of non-malleable
codes [1,16,19], and more recently in the setting of non-malleable secret sharing
against independent tampering [21]. While this transformation may be proven
secure even in the setting of joint tampering with the shares, it yields a rate
asymptotically approaching one, which is still far from the optimal share size of
O(μ/n) [25] (where μ is the message size).

Acknowledgments. We thank Ashutosh Kumar for clarifications on the tampering
model in [23] and for pointing out an issue in a previous version of the proof of Theo-
rem 4 (leading to the restriction of semi-adaptive partitioning).

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 18

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
459–468. ACM Press, June 2015

4. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Contin-
uous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 531–561. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 18

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-17653-2_18

154 G. Brian et al.

5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 17

6. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
319–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 10

7. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state
model. Cryptology ePrint Archive, Report 2019/1299 (2019). https://eprint.iacr.
org/2019/1299

8. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 20

9. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, vol. 48, pp. 313–317 (1979)

10. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret
sharing against bounded joint-tampering attacks in the plain model. Cryptology
ePrint Archive, Report 2020/725 (2020). https://eprint.iacr.org/2020/725

11. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing for
general access structures. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 211–232. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 8

12. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 10

13. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 285–298. ACM Press, June 2016

14. Chattopadhyay, E., Li, X.: Non-malleable extractors and codes for composition of
tampering, interleaved tampering and more. Cryptology ePrint Archive, Report
2018/1069 (2018). https://eprint.iacr.org/2018/1069

15. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

16. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 2019. LNCS, vol. 11464, pp. 3–23. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21568-2 1

17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 14

18. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th FOCS,
pp. 227–237. IEEE Computer Society Press, October 2007

19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010

20. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0 7

https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-319-70503-3_10
https://eprint.iacr.org/2019/1299
https://eprint.iacr.org/2019/1299
https://doi.org/10.1007/978-3-030-17653-2_20
https://eprint.iacr.org/2020/725
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/3-540-48285-7_10
https://eprint.iacr.org/2018/1069
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 155

21. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 448–479.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

22. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

23. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) 50th ACM STOC, pp. 685–698. ACM Press, June 2018

24. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

25. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

26. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: Zuckerman, D. (ed.) 60th FOCS, pp. 636–660. IEEE Computer Society
Press, November 2019

27. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC,
pp. 1144–1156. ACM Press, June 2017

28. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

29. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
556–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

30. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 608–639.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

31. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

32. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

33. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693,
pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-
7 17

https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-030-45721-1_20
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1007/978-3-030-26951-7_17
https://doi.org/10.1007/978-3-030-26951-7_17

	Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks in the Plain Model
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Works
	1.4 Paper Organization

	2 Preliminaries
	2.1 Standard Notation
	2.2 Secret Sharing Schemes
	2.3 Non-interactive Commitments

	3 Our Leakage and Tampering Model
	3.1 Selective Partitioning
	3.2 Semi-adaptive Partitioning
	3.3 The Definition

	4 Selective Partitioning
	4.1 Non-malleability Implies Bounded Leakage Resilience
	4.2 Instantiations

	5 Semi-adaptive Partitioning
	5.1 Our New Secret Sharing Scheme
	5.2 Proof Overview
	5.3 Security Analysis
	5.4 Instantiation

	6 Applications
	6.1 Lower Bounds for Non-malleable Secret Sharing
	6.2 Bounded-Time Non-malleability

	7 Conclusions
	References

