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Abstract. We revisit recent works by Don, Fehr, Majenz and Schaffner
and by Liu and Zhandry on the security of the Fiat-Shamir (FS) transfor-
mation of Σ-protocols in the quantum random oracle model (QROM).
Two natural questions that arise in this context are: (1) whether the
results extend to the FS transformation of multi-round interactive proofs,
and (2) whether Don et al.’s O(q2) loss in security is optimal.

Firstly, we answer question (1) in the affirmative. As a byproduct of
solving a technical difficulty in proving this result, we slightly improve
the result of Don et al., equipping it with a cleaner bound and an even
simpler proof. We apply our result to digital signature schemes showing
that it can be used to prove strong security for schemes like MQDSS in
the QROM. As another application we prove QROM-security of a non-
interactive OR proof by Liu, Wei and Wong.

As for question (2), we show via a Grover-search based attack that Don
et al.’s quadratic security loss for the FS transformation of Σ-protocols
is optimal up to a small constant factor. This extends to our new multi-
round result, proving it tight up to a factor depending on the number of
rounds only, i.e. is constant for constant-round interactive proofs.

1 Introduction

Reprogramming the Quantum Random Oracle. We reconsider the recent
work of Don, Fehr, Majenz and Schaffner [9] on the quantum random oracle
model (QROM). On a technical level, they showed how to reprogram the QROM
adaptively at one input. More precisely, for any oracle quantum algorithm AH ,
making q calls to a random oracle H and outputting a pair (x, z) so that some
predicate V (x,H(x), z) is satisfied, they showed existence of a “simulator” S that
mimics the random oracle, extracts x from AH by measuring one of the oracle
queries to H, and then reprograms H(x) to a given value Θ so that z output by
AH now satisfies V (x,Θ, z), except with a multiplicative O(q2) loss in probability
(plus a negligible additive loss). We emphasize that the challenging aspect of this
problem is that AH ’s queries to H may be in quantum superposition, and thus
measuring such a query disturbs the state and thus the behavior of AH . Still,
Don et al. managed to control this disturbance sufficiently. In independent work
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and using very different techniques, Liu and Zhandry [13] showed a similar kind
of result, but with a O(q9) loss.

As an immediate application of this technique, it is then concluded that the
Fiat-Shamir (FS) transformation of a Σ-protocol is as secure (in the QROM) as
the original Σ-protocol (in the standard model), up to a O(q2) loss, i.e., any of the
typically considered security notions is preserved under the FS transformation,
even in the quantum setting. In combination with prior work on simulating
signature queries [11,18], security (in the QROM) of FS signatures that arise
from ordinary Σ-protocols then follows as a corollary.

Given important examples of multi-round public-coin interactive proofs, used
in, e.g., MQDSS [5] and for Bulletproofs [4]1, a natural question that arises
is whether these techniques and results extend to the reprogrammability of
the QROM at multiple inputs and the security of the FS transformation (in
the QROM) of multi-round public-coin interactive proofs. Another question is
whether the O(q2) loss (for the original Σ-protocols) is optimal, or whether one
might hope for a linear loss as in the classical case.

In this work, we provide answers to both these natural questions—and more.

A technical hurdle for generalizing[9] to multi-round Fiat-Shamir. To
start with, we observe that the naive approach of applying the original result
of [9] inductively to reprogram multiple inputs one by one does not work . This
is due to a subtle technical issue that has to do with the precise statement of
the original result. In more detail, the statement involves an additive error term
εx ≥ 0 that depends on the choice of the point x, which is (adaptively) chosen to
be the input on which the random oracle (RO) is reprogrammed. The guarantee
provided by [9] is that this error term stays negligible even when summed over
all x’s, i.e.,

∑
x εx = negl. The formulation of the result for individual x’s with

control over
∑

x εx is important for the later applications to the FS transforma-
tion. However, when applying the result twice in a row, with the goal being to
reprogram the RO at two inputs x1, x2, then we end up with two error terms εx1

and εx1
x2

(with the second one depending on x1), where the first one stays negli-
gible when summed over x1 and the second one stays negligible when summed
over x2 (for any x1); but it is unclear that the sum εx1,x2 := εx1 + εx1

x2
stays

negligible when summed over x1 and x2, which is what we would need to get the
corresponding generalized statement.

Our Results. As a first contribution, we revise the original result from [9] of
reprogramming the QROM at one input by showing an improved version that has
no additive error term, but only the original multiplicative O(q2) loss. For typical
direct cryptographic applications, this improvement makes no big quantitative
difference due to the error term being negligible, but: (1) it makes the statement
cleaner and easier to formulate, (2) somewhat surprisingly, the proof is simpler
than that of the original result in [9], and (3) most importantly, it removes the

1 The security of the original Bulletproofs protocol relies on the hardness of discrete-
log; however, work in progress considers post-quantum secure versions [2].



604 J. Don et al.

technical hurdle to extend to multiple inputs. Indeed, we then get the desired
multi-input reprogrammability result by means of a not too difficult, though
somewhat tedious, induction argument.

Building on our multi-input reprogrammability result above, our next goal
then is to show the security of the FS transformation (in the QROM) of
multi-round public-coin interactive proofs. In contrast to the original result
in [DFMS19] for the FS transformation of Σ-protocols some additional work
is needed here, to deal with the order of the messages extracted from the FS
adversary. Thus, as a stepping stone, we consider and analyze a variant of the
above multi-input reprogrammability result, which enforces the right order of the
extracted messages. As a simple corollary of this, we then obtain the desired secu-
rity of multi-round FS. Here, the multiplicative loss becomesO(q2n) for a (2n+1)-
round public-coin interactive proof with constantn.

In the context of digital signatures, the original motivation for the FS trans-
formation, we extend previous results by Unruh [18] and Don et al. [9] to show
that FS signature schemes based on a multi-round, honest-verifier zero knowl-
edge public-coin interactive quantum proof of knowledge have standard signature
security (existential unforgeability under chosen message attacks, UF-CMA) in
the QROM. Assuming the additional collision-resistance-like property of com-
putationally unique responses, they are even strongly unforgeable. We go on to
apply this result to the signature scheme MQDSS [5], a candidate in the ongoing
NIST standardization process for post-quantum cryptographic schemes [1], pro-
viding its first QROM proof. Another application of our multi-round FS result
would for instance be to Bulletproofs [4].

As a second application of our multi-input reprogrammability result, we show
QROM-security of the non-interactive OR-proof introduced by Liu, Wei and
Wong [12], further analyzed by Fischlin, Harasser and Janson [10]. While the
well-known (interactive) OR-proof by Cramer, Damg̊ard and Schoenmakers [7]
is a Σ-protocol and thus the results from [9] apply, the inherently non-interactive
OR-proof by Liu et al. does not is not obtained as the FS transformation of a
Σ-protocol (though in some sense it is “close” to being of this form). We show
here how the 2-input version of our multi-input reprogrammability result implies
security of this OR-proof in the QROM.

Our last contribution is a lower bound that shows that the multiplicative
O(q2) loss in the security argument of the FS transformation of Σ-protocols is
tight (up to a factor 4). Thus, the O(q2) loss is unavoidable in general. Fur-
thermore, we extend this lower bound to the FS transformation of multi-round
interactive proofs as considered in this work, and we show that the obtained loss
O(q2n) is in general optimal as well here, up to a constant depending on n only.

Related Work. Before the recently obtained reduction [9,13] was available,
the FS tranform in the QROM was studied in a number of works [8,11,18],
where weaker security properties were shown. In addition, Unruh developed an
alternative transform [16] that provided QROM security at the expense of an
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increased proof size. The Unruh transform was later generalized to apply to
5-round public coin interactive proof systems [6].

2 Notation

Up to some modifications, we follow closely the notation used in [9]. We consider
a (purified) oracle quantum algorithm A that makes q queries to an oracle, i.e.,
an unspecified function H : X → Y with finite non-empty sets X ,Y. Formally,
A is described by a sequence of unitaries A1, . . . , Aq and an initial state |φ0〉.2
For technical reasons that will become clear later, we actually allow (some of)
the Ai’s to be a projection followed by a unitary (or vice versa). One can think
of such a projection as a measurement performed by the algorithm, with the
algorithm aborting except in case of a particular measurement outcome.

For any concrete choice of H : X → Y, the algorithm A computes the state

|φH
q 〉 := AH |φ0〉 := AqOH · · · A1OH |φ0〉,

where OH is the unitary defined by OH : |c〉|x〉|y〉 �→ |c〉|x〉|y ⊕ c·H(x)〉 for any
triple c ∈ {0, 1}, x ∈ X and y ∈ Y, with OH acting on appropriate registers. We
emphasize that we allow controlled queries to H. Per se, this gives the algorithm
more power, and thus will make our result only stronger. It is, however, easy to
see that controlled queries to the standard quantum oracle for a function can be
simulated using ordinary queries, at the price of one additional query.3 The final
state AH |φ0〉 is considered to be a state over registers X = X1 . . .Xn, Z and E.

We introduce some notation following [9]. For 0 ≤ i, j ≤ q we set

AH
i→j := AjOH · · · Ai+1OH ,

where, by convention, AH
i→j is set to 1 if j ≤ i. Furthermore, we let

|φH
i 〉 :=

(AH
0→i

)|φ0〉
be the state of A after the i-th step but right before the (i + 1)-st query, which
is consistent with |φH

q 〉 above.
For a given function H : X → Y and for fixed x ∈ X and Θ ∈ Y, we define

the reprogrammed function H ∗Θx : X → Y that coincides with H on X \ {x}
but maps x to Θ. With this notation at hand, we can then write

(AH∗Θx
i→q

) (AH
0→i

) |φ0〉 =
(AH∗Θx

i→q

)|φH
i 〉

for an execution of A where the oracle is reprogrammed at a given point x
after the i-th query. We stress that (AH∗Θx

i→q )(AH
0→i) can again be considered

2 Alternatively, we may regard |φ0〉, as an additional input given to A.
3 Allowing controlled queries to the random oracle is also the more natural model

compared to restricting to plain access to the unitary After all, the motivation for
the QROM is that in the real world, an attacker can implement hash functions on a
quantum computer, allowing them to implement the controlled version as well.
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to be an oracle quantum algorithm B, which depends on Θ ∈ Y, that makes
q queries to (the unprogrammed) function H. Indeed, the (controlled) queries
to the reprogrammed oracle H ∗ Θx can be simulated by means of controlled
queries to H (using one additional “work qubit”).4 Exploiting that, in addition to
unitaries, we allow projections as elementary operations, we can also understand
(AH∗Θx

i→q )X(AH
0→i) to be an oracle quantum algorithm that makes oracle queries

to H, where X is the projection X = |x〉〈x|, acting on the oracle query register.
More generally, for any x = (x1, . . . , xn) ∈ X n without duplicate entries, i.e.,

xi �= xj for i �= j, and for any Θ ∈ Yn, we define

H ∗ Θx = H ∗ Θ1x1 ∗ · · · ∗ Θnxn : X → Y

x �→
{

Θi if x = xi for some i ∈ {1, . . . , n}
H(x) otherwise.

This will then allow us to consider (AH∗Θ1x1∗Θ2x2
i2→q )X2(AH∗Θ1x1

i1→i2
)X1(AH

0→i1
) as

an oracle quantum algorithm with oracle queries to H, etc.
Eventually, we are interested in the probability that after the execution of

the original algorithm AH , and upon measuring register X in the computational
basis to obtain x = (x1, . . . , xn) ∈ X n, the state of register Z is of a certain
form dependent on x and H(x) = (H(x1), . . . , H(xn)). Such a requirement (for
a fixed x) is captured by a projection

GH
x = |x〉〈x| ⊗ Πx,H(x),

where {Πx,Θ}x,Θ is a family of projections with x ∈ X n and Θ ∈ Yn, and with
the understanding that |x〉〈x| acts on X and Πx,H(x) on register Z. We refer to
such a family of projections as a quantum predicate. We use GΘ

x as a short hand
for GH∗Θx

x , and we write GH
x and GΘ

x with x ∈ X and Θ ∈ Y for the case n = 1.
For an arbitrary but fixed x◦ ∈ X n, we are then interested in the probability

Pr
[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
=

∥
∥GH

x◦ |φH
q 〉∥∥2

2
.

where the left hand side is our notation for this probability, where we understand
AH to be an algorithm that outputs the measured x together with the quan-
tum state z in register Z, and V to be the quantum predicate specified by the
projections Πx,Θ. Correspondingly, Pr

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
=

‖GH
x◦ |φH

q 〉‖2
2 for the n = 1 case.

3 An Improved Single-Input Reprogramming Result

For the case n = 1, Don et al. [9] show the existence of a black-box simulator S
such that for any oracle quantum algorithm A as considered above with oracle
access to a uniformly random H, it holds that

4 Here it is crucial that we allow controlled queries to H.
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Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA, Θ〉]

≥ 1
2(q+1)(2q+3)

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

] − εx◦ ,
(1)

for any x◦ ∈ X , where the εx◦ ’s are non-negative and their sum over x◦ ∈ X
is bounded by 1/(2q|Y|), i.e., negligible whenever |Y| is superpolynomial. The
notation (x, z) ← 〈SA, Θ〉 is to be understood in that in a first stage SA outputs
x, and then on input Θ it outputs z. At the core, Eq. (1) follows from Lemma 1
of [9] which shows that

E
Θ,i,b

[∥
∥(|x〉〈x| ⊗ Πx,Θ)

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]

≥
EΘ

[∥
∥(|x〉〈x| ⊗ Πx,Θ)|φH∗Θx

q 〉∥∥2

2

]

2(q + 1)(2q + 3)
−

∥
∥X|φH

q 〉∥∥2

2

2(q + 1)|Y| ,

(2)

and from which the construction of S can be extracted. The bound (1) on
the “success probability” of S then follows from the observation that S can
simulate the calls to H and to H ∗Θx by means of a 2(q+1)-wise independent
hash function, and that H and H ∗Θx are indistinguishable for random H and
Θ.

In this section we show an improved variant of Eq. (1), which avoids the
additive error term εx◦ . While having negligible quantitative effect in typcial
situations, it makes the statement simpler. In addition it circumvents a technical
issue one encounters when trying to extend to the multi-input case. Furthermore,
our improved version comes with a simpler proof.5

The approach is to avoid the additive error term in Eq. (2). We achieve this
by slightly tweaking the simulator S. From the technical perspective, while on
the left hand side of Eq. (2) the expectation is over a random i ∈ {0, . . . , q},
selecting one of the q + 1 queries of A at random (where the X register of the
output state is considered to be a final query), and a random b ∈ {0, 1}, our
new version has syntactically the same left hand side, but with the expectation
over a random pair (i, b) ∈ ({0, . . . , q�1}×{0, 1})∪{(q, 0)} instead. This absorbs
the additive error term into the simulator’s success probability. Furthermore, it
holds for any fixed choice of Θ (and not only on average for a random choice).

Lemma 1. Let A be a q-query oracle quantum algorithm. Then, for any func-
tion H : X → Y, any x ∈ X and Θ ∈ Y, and any projection Πx,Θ, it holds
that

E
i,b

[∥
∥(|x〉〈x| ⊗ Πx,Θ)

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
≥

∥
∥(|x〉〈x| ⊗ Πx,Θ)|φH∗Θx

q 〉∥∥2

2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ ({0, . . . , q�1} × {0, 1}) ∪ {(q, 0)}.
5 We thank Dominique Unruh for the idea that it might be possible to avoid the

additive error term, and for proposing an argument for achieving that, which inspired
us to find the simpler argument we eventually used.
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This new version of Eq. (2) translates to a simulator S that works by running
A, but with the following modifications. First, one of the q + 1 queries of A
(also counting the final output in register X) is measured, and the measurement
outcome x is output by (the first stage of) S. We emphasize that the crucial
difference to [9] is that each of the q actual queries is picked with probability

2
2q+1 , while the final output is picked with probability 1

2q+1 . Then, very much
as in [9], this very query of A is answered either using the original H or using
the reprogrammed oracle H∗Θx, with the choice being made at random6, while
all the remaining queries of A are answered using oracle H ∗Θx. Finally, (the
second stage of) S outputs whatever A outputs.

In line with Theorem 1 in [9], i.e. Equation (1) above, we obtain the following
result from Lemma 1.

Theorem 2 (Measure-and-reprogram, single input). Let X and Y be
finite non-empty sets. There exists a black-box two-stage quantum algorithm S
with the following property. Let A be an arbitrary oracle quantum algorithm that
makes q queries to a uniformly random H : X → Y and that outputs some x ∈ X
and a (possibly quantum) output z. Then, the two-stage algorithm SA outputs
some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to the second
stage, a (possibly quantum) output z, so that for any x◦ ∈ X and any (possibly
quantum) predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA, Θ〉]

≥ 1
(2q + 1)2

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
.

Furthermore, S runs in time polynomial in q, log |X | and log |Y|.
The proof of Lemma 1 follows closely the proof of Eq. (1) in [9], but the stream-
lined statement and simulator allow to cut some corners.

Proof (of Lemma 1). For any 0 ≤ i ≤ q, inserting a resolution of the identity
and exploiting that

(AH∗Θx
i+1→q

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 =

(AH∗Θx
i→q

)(
1 − X

)|φH
i 〉,

we can write
(AH∗Θx

i+1→q+1

)|φH
i+1〉

=
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)|φH
i 〉 − (AH∗Θx

i→q+1

)
X|φH

i 〉 +
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉

6 If it is the final output that is measured then there is nothing left to reprogram, so
no choice has to be made.
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Rearranging terms, applying GΘ
x = (|x〉〈x|⊗Πx,Θ) and using the triangle equal-

ity, we can thus bound
∥
∥GΘ

x

(AH∗Θx
i→q

)|φH
i 〉∥∥

2
≤ ∥

∥GΘ
x

(AH∗Θx
i+1→q

)|φH
i+1〉

∥
∥

2

+
∥
∥GΘ

x

(AH∗Θx
i→q

)
X|φH

i 〉∥∥
2

+
∥
∥GΘ

x

(AH∗Θx
i+1→q

)(AH
i→i+1

)
X|φH

i 〉∥∥
2
.

Summing up the respective sides of the inequality over i = 0, . . . , q − 1, we get
∥
∥GΘ

x |φH∗Θx
q 〉∥∥

2
≤ ∥

∥GΘ
x |φH

q 〉∥∥
2

+
∑

0≤i<q
b∈{0,1}

∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥
2
.

By squaring both sides, dividing by 2q+1 (i.e., the number of terms on the right
hand side), and using Jensen’s inequality on the right hand side, we obtain

∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2

2q + 1
≤ ∥

∥GΘ
x |φH

q 〉∥∥2

2
+

∑

0≤i<q
b∈{0,1}

∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

and thus, noting that we can write
∥
∥GΘ

x |φH
q 〉∥∥2

2
as

∥
∥GΘ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

with i = q and b = 0,
∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2

(2q + 1)2
≤ E

i,b

[∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
.

��
For completeness, let us spell out how Theorem 8 of [9] on the generic security

of the FS transformation (in the QROM) can now be re-phrased, avoiding the
negligible error term present in [9]. We refer to [9] or to our later Sect. 5 for the
details on the FS transformation.

Theorem 3. There exists a black-box quantum polynomial-time two-stage quan-
tum algorithm S such that for any adaptive FS adversary A, making q queries
to a uniformly random function H with appropriate domain and range, and for
any x◦ ∈ X :

Pr
[
x=x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

≥ 1
(2q + 1)2

Pr
H

[
x=x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]
.
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4 Multi-input Reprogrammability

In this section, we extend our (improved) results on adaptively reprogram-
ming the quantum random oracle at one point x ∈ X to multiple points
x1, . . . , xn ∈ X . This in turn will allow us to extend the results on the secu-
rity of the FS transformation to multi-round protocols. We point out again that
the improvement of Lemma 1 over Lemma 1 in [9] plays a crucial role here, in
that it circumvents the trouble with the negligible error term that occurs when
trying to extend the result from [9] to the setting considered here.

The starting point is the following generalized version of the problem con-
sidered in Sect. 3. We assume an oracle quantum algorithm AH that makes q
queries to a random oracle H : X → Y and then produces an output of the
form (x1, . . . , xn, z), where z may be quantum, such that a certain (quantum)
predicate V (x1,H(x1), . . . , xn,H(xn), z) is satisfied with some probability. The
goal then is to turn such an AH into a multi-stage quantum algorithm S (the
simulator) that, stage by stage, outputs the xi’s and takes corresponding Θi’s
as input, and eventually outputs a (possibly quantum) z with the property that
V (x1, Θ1, . . . , xn, Θn, z) is satisfied with similar probability.

4.1 The General Case

Naively, one might hope for an S that outputs x1 in the first stage (obtained
by measuring one of the queries of AH), and then on input Θ1 proceeds by
outputting x2 in the second stage (obtained by measuring one of the subsequent
queries of AH), etc. However, since AH may query the hashes of x1, . . . , xn in
an arbitrary order, we cannot hope for this to work. Therefore, we have to allow
S to produce x1, . . . , xn in an arbitrary order as well.7 Formally, we consider S
with the following syntactic behavior: in the first stage it outputs a permutation
π together with xπ(1) and takes as input Θπ(1), and then for every subsequent
stage 1 < i ≤ n it outputs xπ(i) and takes as input Θπ(i); eventually, in the final
stage (labeled by n + 1) it outputs z. In line with earlier notation, but taking
this additional complication into account, we denote such an execution of S as
(π, π(x), z) ← 〈SA, π(Θ)〉.

A final issue is that if xi = xj then H(xi) = H(xj) as well, whereas Θi

and Θj may well be different. Thus, we can only expect S to work well when
x1, . . . xn has no duplicates.

For us to be able to mathematically reason about the simulator described
above, we introduce some additional notation. For the basic simulator from
Lemma 1 we write, using r1 = (b1, i1), as

SH,A
Θ1,x1,r1

:= SH,A,Θ1,x1,r1 :=
(AH∗Θ1x1

i1+b1→q

)(AH
i1→i1+b1

)
X1

(AH
0→i1

)
.

7 Looking ahead, in Sect. 4.2 we will force AH to query, and thus S to extract,
x1, . . . , xn in the right order by requiring x2 to contain H(x1) as a substring, x3

to contain H(x2) as a substring, etc. This will be important for the multi-round FS
application.
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This can be recursively extended by applying it to AH now being SH,A
Θ1,x1,r1

so
as to obtain

SH,A
Θ1,2,x1,2,r1,2

:=
(SH∗Θ2x2,A,Θ1,x1,r1

i2+b2→q

)(SH,A,Θ1,x1,r1
i2→i2+b2

)
X2

(SH,A,Θ1,x1,r1
0→i2

)
.

In general, we can consider the following operator, which simulates A and per-
forms n measurements:

SH,A
Θ,x,r :=

(SH∗Θnxn,A,Θ,x,r
in+bn→q

)(SH,A,Θ,x,r
in→in+bn

)
Xn

(SH,A,Θ,x,r
0→in

)
.

where, for arbitrary but fixed n and Θ = (Θ1, . . . , Θn) ∈ Yn, the notation Θ
is understood as Θ = (Θ1, . . . , Θn−1) ∈ Yn−1, and correspondingly for x etc.
Finally, when considering fixed Θ ∈ Yn and x ∈ X n, we write

SH
r (A) := SH,A

Θ,x,r .

At the core of our multi-round result will be the following technical lemma,
which generalizes Lemma 1.

Lemma 4. Let A be a q-query oracle quantum algorithm. Then, for any func-
tion H : X → Y, any x ∈ X n and Θn ∈ Yn, and any projection Πx,Θ, it holds
that

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n
≤ E

r

[∥
∥
(|x〉〈x|A ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

Proof. The proof is by induction on n, where the base case is given by Lemma 1.
For the induction step we first apply the base case, substituting xn for x1, Θn

for Θ1, rn for r1, H∗Θx for H, and Π̂xn,Θn
for Πx1,Θ1 , where

Π̂xn,Θn
= |x1〉〈x1| ⊗ . . . ⊗ |xn�1〉〈xn�1| ⊗ Πx,Θ

to obtain
∥
∥
(|xn〉〈xn| ⊗ Π̂xn,Θn

)A(H∗Θx)∗Θnxn |φ0〉
∥
∥2

2

(2q + 1)2

≤ E
rn

[∥
∥
(|xn〉〈xn|A ⊗ Π̂xn,Θn

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

]

which we can write as

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n
≤

Ern

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

]

(2q + 1)2(n�1) (3)

dividing both sides by (2q + 1)2(n�1) and swapping registers appropriately (to
make sure that the register which contains xn comes after the others).

Now fix rn. We define

Π̂x,Θ := |xn〉〈xn| ⊗ Πx,Θ.
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and apply the induction hypothesis for n−1, substituting SH∗Θx
rn

(A) for AH∗Θx,
and Π̂x,Θ for Πx,Θ, in order to derive

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

(2q + 1)2(n�1) =

∥
∥
(|x〉〈x| ⊗ Π̂x,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

(2q + 1)2(n�1)

≤ E
r

[∥
∥
(|x〉〈x| ⊗ Π̂x,Θ

)SH
r (Srn

(A))|φ0〉
∥
∥2

2

]

= E
r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

Since this inequality holds for any fixed rn, it also holds in expectation over rn.
Substituting it in Eq. 3, we retrieve the statement of the lemma. ��
Remark 5. In case of x = (x1, . . . , xn) ∈ X n without duplicate entries, it fol-
lows from the resulting mutual orthogonality of the projections Xj and the
definition of SH

r (A) that the following holds. The term in the expectation Er in
the inequality of Lemma 4 vanishes for any r = (i,b) for which there exist two
distinct coordinates j �= k with ij = ik. As such, we may well understand this
expectation to be over r = (i,b) for which ij �= ik whenever j �= k; this only
increases the expectation.8 In other words, we may assume that random distinct
queries are measured in order to extract x1, . . . , xn.

Theorem 6 (Measure-and-reprogram, multiple inputs). Let n be a pos-
itive integer, and let X ,Y be finite non-empty sets. There exists a black-box
polynomial-time (n+1)-stage quantum algorithm S with the syntax as outlined
at the start of this section, satisfying the following property. Let A be an arbi-
trary oracle quantum algorithm that makes q queries to a uniformly random
H : X → Y and that outputs a tuple x ∈ X n and a (possibly quantum) output z.
Then, for any x◦ ∈ Xn without duplicate entries and for any predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (π, π(x), z) ← 〈SA, π(Θ)〉]

≥ 1
(q + 1)2n

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
.

Proof. We consider the inequality of Lemma 4 with the expectation over r under-
stood as in Remark 5. Additionally taking the expectation over H and Θ on both
sides, we obtain

E
H,Θ

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n

]

≤ E
H,Θ,r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]

and note that this is equivalent to

E
H

[∥
∥
(|x〉〈x| ⊗ Πx,H(x)

)AH |φ0〉
∥
∥2

2

(2q + 1)2n

]

≤ E
H,Θ,r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

8 One might try to exploit this actual improvement in the bound; however, for typical
choices of parameters, with n a small constant and q large, this is insignificant.
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since all values Θj and H(xj) have the same distribution. The term SH
r (A)|φ0〉 =

SH,A
Θ,x,r|φ0〉 corresponds to the output of the simulator that uses oracle access to

H to run A on an initial state |φ0〉, while measuring queries ij (finding xj as the
outcome) and reprogramming the oracle at xj to Θj from the (ij + bj)-th query
onwards, with (ij , bj) = rj .

Next, we note that the value of the right hand side does not change [19] when
instead of giving S oracle access to H, we let it choose a random instance from
a family of 2q-wise9 independent hash functions to simulate A on. The choice of
r uniquely determines the permutation π with the property iπ(1) < · · · < iπ(n);
by definition of SH,A

Θ,x,r, the values x = (x1, . . . , xn) are then extracted from the
adversary’s queries in the order π(x) = (xπ(1), . . . , xπ(n)). Since S chooses this
r itself, we can assume that it includes π in its output. Likewise, the simulator
takes as input to every stage—from the second to the (n+1)-st — a fresh random
value, in the order given by π(Θ). However, by definition of Πx,Θ the final output
of the simulator satisfies the predicate V with respect to the given order (without
π), i.e. such that V (x,Θ, z) = 1, as is the claim of the theorem. ��

4.2 The Time-Ordered Case

In some applications, like the multi-round version of the FS transformation,
we need that the simulator extracts the messages in the right order. This can
be achieved by replacing the hash list H(x) =

(
H(x1), . . . , H(xn)

)
, consisting of

individual hashes, by a hash chain, where subsequent hashes depend on previous
hashes. Intuitively, this enforces A to query the oracle in the given order.

Formally, considering a function H : (X0∪Y)×X → Y and given a tuple x =
(x0, x1, . . . , xn) in X0 × X n, we define the hash chain hH,x =

(
hH,x

1 , . . . , hH,x
n

)

given by
hH,x

1 = H(x0, x1) and hH,x
i := H

(
hH,x

i−1 , xi

)

for 2 ≤ i ≤ n.

Theorem 7 (Measure-and-reprogram, enforced extraction order). Let
n be a positive integer, and let X0,X and Y be finite non-empty sets. There exists
a black-box polynomial-time (n+1)-stage quantum algorithm S, satisfying the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : (X0 ∪Y)×X → Y and that outputs a tuple
x = (x0, x1, . . . , xn) ∈ (X0 × X n) and a (possibly quantum) output z. Then, for
any x◦ ∈ (X0 × X n) without duplicate entries and for any predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA,Θ〉]

≥ n!
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

] − εx◦ .

where εx◦ is equal to n!
|Y| when summed over all x◦.

9 It is easy to see that the result of [19] also holds for controlled-query algorithms.
Alternatively, the q controlled queries can be simulated using q + 1 plain queries,
and a 2(q + 1)-wise independent function can be used.
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Remark 8. The additive error term n!/|Y| stems from the fact that the extrac-
tion in the right order fails if A succeeds in guessing one (or more) of the hashes
in the hash chain. The claimed term can be improved to (n−1)2/|Y|+n!/|Y|2 by
doing a more fine-grained analysis, distinguishing between permutations π �= id
that bring 2 elements “out of order” or more. In any case, it can be made arbi-
trary small by extending the range Y of H for computing the hash chain.

Proof. First, we note that V (x,hH,x, z) = V ′(v,H(v), z) for v = (v1, . . . , vn)
given by v1 = (x0, x1) and vi =

(
hH,x

i−1 , xi

)
=

(
H(vi−1), xi

)
for i ≥ 2, and

V ′(v,h, z) :=
[
V (x,h, z) ∧ h′

i =hi−1∀i ≥ 2
]

for any v of the form v1 = (x0, x1)
and vi =

(
h′

i, xi

)
for i ≥ 2. Next, at the cost of n additional queries, we can

extend A to an algorithm A+ that actually outputs (v, z), since A+ can easily
obtain the H(vi)’s by making n queries to H. These observations together give

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

]
=

Pr
H

[
x=x◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]
.

Let v◦ = (v◦
1 , . . . , v◦

n) with v◦
i := (h◦

i , x
◦
i ), where h◦

1 = x◦
0 and h◦

i ∈ Y is
arbitrary but fixed for i ≥ 2. Let Θ be uniformly random in Yn. An application
of Theorem 6 yields a simulator Ŝ with

Pr
Θ

[
v=v◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

≥ 1
(q + n + 1)2n

Pr
H

[
v=v◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]
.

Summing both sides of the inequality over h◦
i for i ≥ 2 yields

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

≥ 1
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]

=
1

(q + n + 1)2n
Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

]
.

(4)

Recalling its construction, the simulator ŜA+ begins by sampling a uniformly
random permutation π, so we can write

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

=
1
n!

∑

σ∈Sn

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉∣∣π = σ

]
.

(5)

By definition, the predicate V ′(v,Θ, z) (with v of the form as explained above)
is false whenever there exists an i ≥ 2 such that hi �= Θi−1. Now suppose that
π �= id, then there must be some j such that π(j) < π(j − 1). This implies
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that the first π(j) stages of ŜA+ which together (in the π(j)-th stage) produce
vj = (hj , xj) are independent of Θj−1, since Θj−1 is given as input only at the
later stage π(j − 1). We thus have the following, taking it as understood, here
and in the sequel, that the random variables π,v,Θ and z are as in (5).

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π �= id

]

≤ Pr
[
x=x◦ ∧ hj = Θj−1|π �= id

]
=

Pr
[
x=x◦|π �= id

]

|Y| .

Using Eq. (5), we can bound

1
n!

∑

σ∈Sn

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π=σ

]

≤ 1
n!

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π=id

]
+

Pr
[
x=x◦|π �=id

]

|Y| .

We note that by definition of V ′,

Pr
[
x=x◦ ∧ V (x,Θ, z)

∣
∣π = id

] ≥ Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π = id

]
.

Furthermore, we may define a new simulator S which takes oracle access to A and
turns it into A+, and always chooses π = id instead of a random permutation.
Where Ŝ would output (v, z), S ignores the h-part of v and simply outputs
(x, z). We then have

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA,Θ〉]

≥ n!
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

] − εx◦ .

with εx◦ given by εx◦ := n! · PrΘ
[
x = x◦|π �= id

]
/|Y|. ��

5 The Multi-round Fiat-Shamir Transformation

A straightforward generalization of the FS transformation can be applied to
arbitrary (i.e., multi-round) public-coin interactive proof systems (PCIP). We
show here security of this multi-round FS transformation in the QROM.

5.1 Public Coin Interactive Proofs and Multi-round Fiat-Shamir

We begin by defining PCIPs, mainly to fix notation, and the corresponding
multi-round FS transformation.

Definition 9 (Public coin interactive proof system (PCIP)). Let C be a
finite non-empty set, and V a predicate. A (2n+1)-round public coin interactive
proof system (PCIP) Π = (P,V) for a language L is a (2n+1)-round two-party
interactive protocol that proceeds as follows. In round 2r − 1, P sends ar to C,
who answers with cr

$← C (round 2r), for r = 1, ..., n. Finally, P sends z (round
2n + 1) which is accepted iff V (x, a1, c1, ..., an, cn, z) = 1.
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Remark 10. If the language L is definied by means of an (efficiently verifiable)
witness relation R ⊆ X × W, then the prover typcially gets a witness w for x
as an additional input. We then also say that Π is a PCIP for the relation R. In
case of a (2n+1)-round PCIP Π for a witness relation R that is hard on average,
meaning that there exists an instance generator Gen with the property that for
(w, x) ← Gen it holds that (w, x) ∈ R, but given x alone it is computationally
hard to find w with (w, x) ∈ R, Π is also called an identification scheme.

Just as in the ordinary FS transformation, the interaction used to enforce
the time order between the prover committing to the message ai and receiving
the challenge ci can be replaced by a hash function. In addition, we can include
the previous challenge (i.e. the previous hash value) in the hash determining
the next challenge to enforce the ordering of the n pairs (ai, ci) according to
increasing i. We thus obtain the following non-interactive proof system.

Definition 11 (Fiat-Shamir transformation for general PCIP (mFS)).
Given an (2n+1)-round PCIP Π = (P,V) for a language L and a hash function
H with appropriate domain, and range equal to C, we define the non-interactive
proof system FS[Π] = (PH

FS ,VH
FS) as follows. The prover P outputs

(x, a1, ..., an, z) ← PH
FS

where z and ai for i = 1, ..., n are computed using P, and the challenges are
computed as

c1 = H(0, x, a1) and ci = H(i − 1, ci−1, ai) for i = 2, ..., n ,

The verifier outputs ‘accept’ iff V (x, a1, c1, ..., an, cn, z) = 1 for c1 =
H(0, x, a1) and ci = H(i − 1, ci−1, ai), i = 2, ..., n, denoted by
VFS(x, a1, c1, ..., an, cn, z) = 1.

Remark 12. The challenge number i (minus 1) is included in the hash input
to ensure that the challenges are generated using distinct inputs to H with
probability 1. This is to enable us to apply Theorem 7, which only holds for
duplicate-free lists of hash inputs. In fact, any additional strings can be included
in the argument when computing ci using H, without influencing the security
properties of the non-interactive proof system in a detrimental way. In the liter-
ature one sometimes sees that the entire previous transcript is hashed (in which
case the counter number i may then be omitted).

5.2 General Security of Multi-round Fiat-Shamir in the QROM

When constructing a reduction for mFS, this reduction is participating as a
prover in the underlying PCIP, and is hence only provided with random chal-
lenges one at a time. We thus need the special simulator from Theorem 7, which
always outputs the corresponding messages in the right order. The success of
this simulator is based on the very essence of the FS transformation, namely the
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fact that the intractability of the hash function takes the role of the interaction
in enforcing a time order in the transcript of the PCIP.

The security of the multi-round FS transformation follows as a simple Corol-
lary of Theorem 7.

Corollary 13. There exists a black-box quantum polynomial-time (n+1)-stage
quantum algorithm S such that for any adaptive adversary A against the multi-
round FS transformed version FS[Π] of a (2n+1)-round PCIP Π, making q queries
to a uniformly random function H with appropriate domain and range equal C,
and for any x◦ ∈ X :

Pr
[
x = x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

≥ n!
(2q + n + 1)2n

Pr
H

[
x = x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]−εx◦ .

where the additive error term εx◦ is equal to n!
|C| when summed over all x◦.

Proof. We may simply set x◦ = (x◦, (0, a1), . . . , (n − 1, an)) for arbitrary
a1, . . . , an, apply Theorem 7 and then sum over all choices of a1, . . . , an to obtain
the claimed inequality. Note that the round indices ensure that every such x◦ is
duplicate free, satisfying the corresponding requirement of Theorem 7.

Note that the additive error terms reflect the fact that the random oracle only
approximately succeeds in enforcing the original time order in the transcript of
the PCIP. However, it can be made arbitrarily small, as discussed below.

Remark 14. There exist PCIPs with soundness error much smaller than 1/|C|.
As an example, consider the sequential repetition of a Σ-protocol with special
soundness. Here, the soundness error is 1/|C|n. In this case, the term proportional
to 1/|C| renders the bound from the above theorem trivial. Note however, that
(i) this situation is extremely artificial, as there is absolutely no reason to repeat
sequentially instead of in parallel, and (ii) the additive error term can be made
arbitrarily small by considering a variant Π′ of Π where the random challenges are
enlarged with a certain number of bits that are ignored otherwise, see Remark 8.

In fact, we suspect that the observation from (i) is true in a much broader
sense: if a PCIP still has negligible soundness error when allowing the adver-
sary to learn one of the challenges ci in advance of sending the corresponding
commitment-type message ai, it seems like the number of rounds can be reduced
and the loss in soundness error can be won back by parallel repetition.

As for the case of the FS transformation for Σ-protocols, the general reduction
implies that security properties that protect against dishonest provers carry over
from the interactive to the non-interactive proof system. For a definition of the
properties considered in the following theorem, see, e.g. [9]. The quantum proof-
of-knowledge-property was intoduced in [15].

Corollary 15 (Preservation of Soundness/PoK). Let Π be a constant-
round PCIP that has (statistical/computational) soundness, and/or the (statisti-
cal/computational) quantum proof-of-knowledge-property, respectively. Then, in
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the QROM, FS[Π] has (statistical/computational) soundness, and/or the (statis-
tical/computational) quantum proof-of-knowledge-property, too.

Proof. Corollary 13 turns any dishonest prover AFS[Π] for FS[Π] with success
probability ε into a dishonest prover AΠ for Π, with success probability ε · (2q +
1)−2n, where 2n + 1 is the number of rounds in Π. Since n is constant and q is
polynomial in the security parameter, the success probabilities of the respective
provers are polynomially related. The claimed implications follow now using the
same arguments as in Corollaries 13 and 16 in [9]. ��

6 Tightness of the Reductions

Here, we show tightness of our results. We start with proving tightness of The-
orems 2 and 3 (up to essentially a factor 4). This implies that a O(q2)-loss is
unavoidable in general. Indeed, the following result shows that for a large and
natural class of Σ-protocols Σ, there exists an attack against FS[Σ] that succeeds
with a probability q2 times larger than the best attack against Σ. The attack is
based on an application of Grover’s quantum algorithm for unstructured search.

To our surprise, we could not find an analysis of Grover’s algorithm in the
regime we require in the literature. Grover search has been analyzed in the case of
an unknown number of solutions [3], but the focus of that work is on analyzing
the expected number of queries required to find a solution, while we analyze
the probability with which the Grover search algorithm succeeds for a fixed but
arbitrary number of queries.

Theorem 16. Let L be a language, and let Σ be a Σ-protocol for L with chal-
lenge set C, special soundness and perfect honest-verifier zero-knowledge. Fur-
thermore, we assume that the triples (a, c, z) produced by the simulator SZK(x)
are always accepted by the verifier even for instances x �∈ L, and that a has min-
entropy γ.10 Then for any q such that (q2 +1) ·e2 · (5q)6 < |C| and 2γ/(5q)3 > 2,
there exists a q-query dishonest prover that succeeds with probability q2/|C| in
producing a valid FS[Σ]-proof for an instance x �∈ L.

The idea of the attack against FS[Σ] is quite simple. For a Σ-protocol that is
special honest-verifier zero-knowledge, meaning that the simulation works by first
sampling the challenge c and the repsonse z and then computing a fitting answer
a as a function a(c, z), one simply does a Grover search to find a pair (c, z) for
which H

(
x, a(c, z)

)
= c. For a typical H, this will give a quadratic improvement

over the classical search, which, for a random H, succeeds with probability q/|C|
(due to the special soundness). A subtle issue is that, for some (unlikely) choices
of H, there are actually many (c, z) for which H

(
x, a(c, z)

)
= c, in which case

10 These additional assumptions on the simulator could be avoided, but they simplify
the proof. Furthermore, for typical Σ-protocols they are satisfied. In particular, the
simulated transcripts for hard instances are accepted by the verifier with high prob-
ability. Otherwise, the two polynomial-time algorithms could otherwise be used to
solve the hard instances, a contradiction.
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the Grover search “overshoots”. In the formal proof below, this is dealt with by
controlling the probability of H having this (unlikely) property. Also, it removes
the special honest-verifier zero-knowledge property by doing the Grover search
over the randomness of the simulator, which requires some additional caution.

Remark 17. It is not hard to see that Theorem 16 still holds in the following
two variations of the statement. (1) H(x, a) is random and independent for
different choices of a, but is not necessarily independent for different choices of
x. (2) The Σ-protocol Σ is replaced by Σ′, which has its challenge enlarged with
a certain number of bits that are ignored otherwise, in line with Remark 14, and
FS[Σ′] then uses an H with a correspondingly enlarged range.11

Proof. Let SZK be the zero-knowledge simulator given by the perfect honest-
verifier zero-knowledge property of Σ. Consider an adversary AFS against FS[Σ],
that works as follows for an arbitrary instance x /∈ L:

– Define the function fH : R → {0, 1} (where R is the set of random coins for
SZK) as

fH(ρ) =

{
1 for SZK(x; ρ) → (a, c, z) ∧ H(x||a) = c

0 otherwise.

– Use Grover’s algorithm for q steps, to try and find ρ s.t. f(ρ) = 1
– Run SZK(x; ρ) → (a, c, z) and output (x, a||z).

Let pH
1 be the fraction of random coins from R that map to 1 under fH . Note

that by the special soundness of Σ, in any accepting triple a determines c and we
thus have EH [pH

1 ] = 1
|C| . By the way Grover works, after q iterations (requiring

q queries to H) the probability pH
2 of finding such an input is sin2((2q + 1)ΘH),

where 0 ≤ ΘH ≤ π/2 is such that sin2(ΘH) = pH
1 . Now as long as Θ is not

too large to begin with (i.e. as long as the Grover search will not ‘overshoot’),
pH
2 is approximately a factor q2 larger than pH

1 . Our goal will be to show that
also on average over H, the improvement is at least q2. To this end we define
Hbad := {H : pH

1 > sin2( π
6q+3 )} and Hgood its complement. Then,

E
H

[pH
2 ] = (1 − α) · E

H

[
pH
2 |H ∈ Hgood

]
+ α · E

H

[

pH
2 |H ∈ H

bad

]

≥ (1 − α) · E
H

[
pH
2 |H ∈ Hgood

]

where α = Pr
H

[H ∈ Hbad] and 1 − α = PrH [H ∈ Hgood].

11 While (1) follows by inspecting the proof, (2) holds more generically: the dishonest
prover attacking FS[Σ′] simply runs the prover attacking FS[Σ] but enlarges the
output register of the hash queries, with the corresponding state being set to be the
fully mixed state in each query, and then dismisses these additional qubits again.
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We first compute EHgood

[
pH
2

]
. Let H ∈ Hgood. We have (2q + 1)ΘH ≤ π

3 .
Since d

dΘ sin(Θ) = cos(Θ) ≥ 1/2 for Θ ∈ [0, π
3 ], and Θ ≥ sin(Θ), it follows that

sin((2q + 1) · ΘH) ≥ sin(ΘH) +
2q · ΘH

2
≥ (q + 1) · sin(ΘH).

Using sin(Θ) ≥ 0 for Θ ∈ [0, π
3 ], we obtain

pH
2 = sin2((2q + 1) · ΘH) ≥ (q + 1)2 · sin2(ΘH) = (q + 1)2 · pH

1 .

Therefore,

E
H

[pH
2 ] ≥ E

H

[
pH
2 |H ∈ Hgood

] · Pr
H

[H ∈ Hgood]

≥ (q + 1)2 · E
H

[
pH
1 |H ∈ Hgood

] · Pr
H

[H ∈ Hgood]

≥ (q + 1)2 ·
(

E
H

[pH
1 ] − Pr

H
[H ∈ Hbad]

)
(6)

Next we bound α = PrH [H ∈ Hbad] = PrH [pH
1 > sin2( π

6q+3 )]. Note that for
pH
1 to be large, we need that for many first messages a, H(a) must be the unique

challenge c for which there exist an accepting response. For a random H this
is unlikely to happen. Formally, we argue as follows, using the Chernoff bound
eventually.

We first define the following equivalence relation:

ρ ∼ ρ′ iff SZK(ρ) = (a, c, z) ∧ SZK(ρ′) = (a, c′, z′) for ρ, ρ′ ∈ R.

R/∼ then denotes the set of equivalence classes [ρ] = {ρ′ ∈ R | ρ ∼ ρ′}. By the
perfect special soundness property and the assumptions on SZK, we have that a
determines c (remember that x /∈ L), and therefore fH is constant on elements
within a given equivalence class. Thus, fH : R/∼ → {0, 1}. For two distinct
equivalence classes [ρ] �= [ρ′], we have

Pr
H

[fH([ρ]) = 1 ∧ fH([ρ′]) = 1] = Pr
H

[fH([ρ]) = 1] · Pr
H

[fH([ρ′]) = 1] ,

since H(x||a) is chosen independently for different a. Taking XH :=
∑

[ρ] f
H([ρ])

we then have

pH
1 = Pr

ρ
[fH(ρ) = 1] =

∑
ρ f(ρ)
|R|

=

∑
[ρ]

(
fH([ρ]) · |[ρ]|)

|R| ≤ |[ρmax]| · ∑[ρ] f
H([ρ])

|R| = XH · 2−γ

where [ρmax] is the [ρ] that maximizes |[ρ]|. It follows that

α = Pr
H

[pH
1 > sin2

(
π

6q + 3

)

]

≤ Pr
H

[

XH > sin2

(
π

6q + 3

)

· 2γ

]

≤ Pr
H

[

XH >
2γ

|C| +
2γ

(5q)3

]



The Measure-and-Reprogram Technique 2.0 621

where we used sin2(x) > x3 for 0 ≤ x ≤ 0.80 and π
6q+3 > 1

5q + 3

√
1

|C| for |C| > (5q)3

in the last inequality. By definition of f , for any [ρ] we have PrH [f(ρ) = 1] = 1
|C| ,

hence

E
H

[X] =
∑

[ρ]

E
H

[fH([ρ])] =
∑

[ρ]

Pr
H

[fH([ρ]) = 1] =
|R/∼|
|C| ≥ 2γ

|C| .

We use the following Chernoff bound:

Pr
H

[

XH > (1 + δ) · E
H

[
XH

]
]

<

(
eδ

(1 + δ)1+δ

)EH [XH ]
<

(
e1+δ

δ1+δ

)EH [XH ]

=
(e

δ

)EH [XH ]·(1+δ).

Setting δ := |C|
(5q)3 , together with the inequalities derived above this leads to

α ≤
(

e · (5q)3

|C|
) 2γ

|C| +
2γ

(5q)3

<
e2 · (5q)6

|C|2 <
1

|C| · (q2 + 1)

where we used 2γ

(5q)3 > 2 in the second to last, and |C| > (q2 + 1) · e2 · (5q)6 in
the last inequality. Plugging this bound into Eq. 6, we get

E
H

[pH
2 ] ≥ (q2 + 1) ·

(

p1 − 1
|C| · (q2 + 1)

)

=
q2

|C| +
1
|C| − 1

|C| =
q2

|C| .

Thus, the success probability of our adversary AFS after making q queries to H

is at least q2

|C| . ��

The tightness of Corollary 13 follows from the above tightness result for the
case of Σ-protocols in a fairly straightforward manner.

Theorem 18. For every positive integer n, there exists a (2n+1)-round PCIP
Π with soundness error ε and challenge space C such that |C| ≥ 1/ε and such
that there exists a q-query dishonest prover A on FS(Π) with success probability
n−2nq2nε.

Before proving the theorem, we show how it implies the tightness of Theorem 13.

Corollary 19. The security loss in the bound in Corollary 13 is optimal, up to
a multiplicative factor that depends on n only.

Proof. Let Π be a PCIP as shown to exist in Theorem 18. Let εΠ, and εFS(Π)(q),
be the soundness error of Π, and the one of its Fiat Shamir transformation
against q-query adversaries, respectively. By Theorem 18,

εFS(Π)(q) ≥ n−2nq2nεΠ. (7)
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Theorem 13, on the other hand, yields

εΠ ≥ n!
(2q + n + 1)2n

εFS(Π)(q) − n!
|C| ≥ n!

(2q + n + 1)2n
εFS(Π)(q) − n!εΠ, (8)

where we used the condition on the challenge space size from Theorem 18 in the
last line. Rearranging terms we obtain

εFS(Π)(q) ≤ (2q + n + 1)2n

(

1 +
1
n!

)

εΠ(q) ≤ 2(n + 3)2q2nεΠ(q), (9)

where we have used 1 ≤ q in the last line. In summary, we have constants
c1 = n−2n and c2 = 2(n + 3)2n such that

c1q
2nεΠ ≤ εFS(Π)(q) ≤ c2q

2nεΠ. (10)

��
Proof. (of Theorem 18). Let Σ̂ be a Σ-protocol for a language L fulfilling the
requirements of Theorem 16. Let the challenge space be denoted by Ĉ. Given
an arbitrary positive integer, we define an (2n+1)-round PCIP Π for the same
language L by means of n sequential independent executions of Σ̂ . Concretely,
the 2n + 1 messages of Π are given in terms of the messages âi, ĉi and ẑi of the
i-th repetition of Σ̂ as

a1 = â1, ci = (ĉi, ri) for i = 1, ..., n,

ai = (âi, ẑi−1) for i = 2, ..., n, and z = ẑn,

where ri is an independent random string of arbitrary (but fixed) length, which
is ignored otherwise (in line with Remark 14). The purpose of ri is to make the
challenge space C of Π arbitrary large, as required. The verification procedure
of Π simply checks if all the triples (âi, ĉi, ẑi) are accepted by Σ̂. By the special
soundness property of Σ̂, the soundness error of this PCIP is ε = |Ĉ|−n.

Using Theorem 16, we can attack the FS transformation of Σ̂ repeatedly to
devise an attack agains FS(Π): first use Theorem 16 to find â1 and ẑ1, then
use it again to find â2 and ẑ2, etc., having the property that with the correctly
computed challenges these form valid triples for an instance x �∈ L. In each
invocation of Theorem 16 we use a q′-query attack, which then succeeds with
probability q′2/|Ĉ|. Thus, using in total q = nq′ queries, we succeed in breaking
FS[Π] with probability q′2n/|Ĉ|n = n−2nq2nε, as claimed.

There are two issues we neglected in the above argument. First, we actually
employ Theorem 16 for attacking a variant of Σ̂ that has its challenge enlarged
(and thus is not special sound); and, second, the challenge ci is computed as

ci = H(i − 1, ...,H(1,H(0, x, â1), â2), ..., âi),

which is not a uniformly random function of x and âi (but only of âi). However,
by Remark 17, the attack from Theorem 16 still applies. ��
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7 Applications

7.1 Digital Signature Schemes from Multi-round Fiat-Shamir

One of the prime applications of the FS transformation is the construction of
digital signature schemes from interactive identification schemes. In this context,
multi-round variants have also been used. An example where a QROM reduction
is especially desirable is MQDSS [5], a candidate digital signature scheme in the
ongoing NIST standardization process for post-quantum cryptographic schemes
[1]. This digital signature scheme is constructed by applying the multi-round FS
transformation to the 5-round identification scheme by Sakumoto, Shirai, and
Hiwatari [14] based on the hardness of solving systems of multivariate quadratic
equations.

In this section, we present a generic construction of a digital signature scheme
based on multi-round FS, and give a proof sketch of its strong unforgeability
under chosen message attacks. We refrain from giving a full, self-contained proof
here so as to not distract from our main technical result and its implications.
Many, though not all, parts of the argument are very similar to the ones made
elsewhere for the 3-round case.

The following construction is a straightforward generalization of the original
construction of Fiat and Shamir.

Definition 20 (Fiat-Shamir signatures from a general PCIP). Given an
(2n+1)-round public coin identification scheme Π = (Gen,P,V) for a witness
relation R and a hash function H with appropriate domain and range equal to
C, we define the digital signature scheme Sig[Π] = (Gen,Sign,Verify) as follows.
The key generation algorithm Gen is just the one from Π. The signing algorithm
Sign, on input a secret key sk and a message m, outputs

σ = (a1, ..., an, z) ← Signsk(m)

where z and ai for i = 1, ..., n are computed using P(pk), and the challenges are
computed as

c1 = H(0, pk,m, a1) and ci = H(i − 1, ci−1, ai) for i = 2, ..., n .

The verification algorithm Verify, on input a public key pk, a message m and
a signature σ = (a1, ..., an, z), computes ci as specified above, outputs ‘accept’ iff
Vpk(a1, c1, ..., an, cn, z) = 1, denoted by Verifypk(m,σ) = 1.

We note that the above definition is equivalent to the following, alternative
formulation: Let Signsk(m) produce σ by running PH

FS(x||m), and let Verify(m,σ)
be equal to the outcome of V H

FS(x||m), where (PH
FS , V H

FS) = FS[Π∗] and Π∗ =
(P∗,V∗) is the identification scheme obtained from Π by setting P∗(x||m) = P(x)
and V∗(x||m) = V(x) for any m. This alternative formulation will be convenient
in the proof of Theorem 23.

Remark 21. As in the case of the plain multi-round FS transformation, one
can include arbitrary additional strings in the argument when computing the
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challenges ci. Examples where this is done include the MQDSS signature scheme
[5], where the message m and the first commitment a1 are also included in
the argument for computing the second challenge, and Bulletproofs, where the
challenges are computed by hashing the entire transcript up to that point [4].

As an identification scheme is an interactive honest-verifier zero knowledge proof
of knowledge of a secret key, the above signature scheme is a non-interactive
zero knowledge proof of knowledge of a secret key according to Corollary 13.
For a digital signature scheme, however, the stronger security notion of (strong)
unforgeability against chosen message ((s)UF-CMA) attacks is required.

In the following, we give a proof sketch for the fact that the above signature
scheme is (s)UF-CMA. This fact follows immediately once we have convinced
ourselves that a certain result by Unruh about the FS transformation holds
for the multi-round case as well: For the FS transformation of Σ-protocols,
extractability implies a stronger notion of extractability enabling a proof of
(s)UF-CMA [18]. Here, we just patch the parts of the proof from [18] that make
use of the fact that the underlying PCIP has only three rounds.

For the following we need the notion of a PCIP having computationally
unique responses.

Definition 22. (Computationally unique responses - PCIP). A (2n+1)-
round PCIP Π = (P,V) is said to have computationally unique responses if
given a partial transcript (x, a1, c1, . . . ai, ci) it is computationally hard to find
two accepting conversations that both extend the partial transcript but differ
in (at least) ai+1 (here we consider z to be equal to an+1), i.e. for coni =
x, a1, c1, . . . ai, ci, a

(j)
i+1, c

(j)
i+1 . . . , a

(j)
n , c

(j)
n , z(j), j = 1, 2 we have that

Pr [V(con1) = 1 ∧ V(con2) = 1 : (con1, con2) ← A]

is negligible for computationally bounded (quantum) A, where a
(1)
i+1 �= a

(2)
i+1.

Equipped with this definition, we can state the main result of this section.

Theorem 23. ((s)UF-CMA of multi-round FS signatures). Let Π be a
PCIP for some hard relation R, which is a quantum proof of knowledge and sat-
isfies completeness, HVZK, and has unpredictable commitments12 as well as a
superpolynomially large challenge space. Then Sig[Π] is existentially unforgeable
under chosen message attack (UF-CMA). If Π in addition has computationally
unique responses, Sig[Π] is strongly existentially unforgeable under chosen mes-
sage attack (sUF-CMA).

In [18] (Theorem 24, and 25, respectively), it is proven that an extractable
FS proof system (of an HVZK Σ-protocol, and of an HVZK Σ-protocol with
computationally unique responses, respectively) satisfies the stronger notion of
(strong) simulation-sound extractability. In addition, it is shown that such a

12 We take unpredictable commitments for PCIP’s to be exactly the same as for
Σ-protocols, with the first message playing the role of the commitment.
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FS proof system gives rise to a (s)UF-CMA signature scheme if the underlying
relation is hard. Corollary 15 implies that FS[Π∗] is indeed extractable if Π
is extractable. Below we rely on the proof in [18] to argue simulation-sound
extractability, only pointing out a particular difference for the multi-round case.

Proof (sketch). Since Π is a quantum proof of knowledge, so is Π∗. By Corollary
15, FS[Π∗] is a quantum proof of knowledge (extractable), and by Theorem
20 in [18] (which easily generalizes to the multi-round setting), completeness,
unpredictable commitments13 and HVZK of Π∗ together imply ZK for FS[Π∗].
For the proof that FS[Π∗] is also simulation-sound extractable, we refer to the
proof of Theorem 24 in [18], noting only that in the hop from Game 1 to Game
2 we have to adjust the argument as follows: Let SZK be the zero-knowledge
simulator that runs the HVZK simulator from Π∗ and reprograms the oracle
as necessary. We write Hf for the oracle H after it has been reprogrammed by
SZK , at the end of the run of A. We have to show that V

Hf

FS (x, a1, . . . , an, z) = 1
implies V H

FS(x, a1, . . . , an, z) = 1, where (x, a1, . . . , an, z) is the final output of A.
Suppose the implication does not hold. Then either (i) Hf (0, x, a1) �= H(0, x, a1)
or (ii) Hf (i − 1, ci−1, ai) �= H(i − 1, c′

i−1, ai) for some i, where ci−1 is the (i−1)-
st challenge as recomputed by V

Hf

FS and c′
i−1 is the one computed by V H

FS . In
case (i) holds, A has queried x and the corresponding forged proof that was
output by SZK starts with a1. In case (ii), assume that Hf (j − 1, cj−1, aj) =
H(j − 1, cj−1, aj) for all j < i, so that ci−1 = c′

i−1. Then,

Hf (i−1, ...,H(1,H(0, x, a1), a2), ..., ai) �= H(i−1, ...,H(1,H(0, x, a1), a2), ..., ai)

which means that A either queried x and the corresponding forged proof that
was output by SZK starts with a1, or else A has queried some x′ such that

H(i − 2, . . . , H(1,H(0, x′, a′
1), a

′
2), . . . a

′
i−1)

= H(i − 2, . . . , H(1,H(0, x, a1), a2), . . . , ai−1)

and ai = a′
i, where (a′

1, . . . , a
′
i) is part of the SZK proof resulting from query x′.

By the fact that H is a random oracle, it is infeasible for A to find such an x′.
In the context of weak simulation-sound extractability, the fact that A has

queried x is enough to derive a contradiction. For the strong variant, we now
have that SZK has output (x, a1, a

′
2, . . . , a

′
n, z′) such that

V(x, a1,Hf (0, x, a1), a′
2, c

′
2 . . . , a′

n, c′
n, z′) = 1

and A has output (x, a1, a2, . . . , an, z) such that

V(x, a1,Hf (0, x, a1), a2, c2, . . . , an, cn, z) = 1

13 This property is required to have sufficient entropy on the inputs to the oracle that
are reprogrammed by the zero-knowledge simulator SZK . While SZK may reprogram
the oracle on inputs (i−1, ci−1, ai) for i > 1, it is enough to require the first message
a1 to have sufficient entropy, since with ci−1, these later inputs all include a uniformly
random element from the superpolynomially large challenge space.
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(and A knows both since it interacted with SZK). By the computationally unique
responses property of Π, it must be that a2 = a′

2. But then it follows that

c2 = Hf (1,Hf (0, x, a1), a2) = Hf (1,Hf (0, x, a1), a′
2) = c′

2

(remember that both proofs are accepting with respect to Hf ) which in turn
implies that a3 = a′

3, etc. Thus, we obtain that A has output a proof that was
produced by SZK , yielding a contradiction. We conclude that

V
Hf

FS (x, a1, . . . , an, z) = 1 implies V H
FS(x, a1, . . . , an, z) = 1

except with negligible probability.
In the rest of the proof of Theorems 24 and 25 in [18], no properties specific

to a three-round scheme are used, and so the results extend to the PCIP con-
text, that is, FS[Π∗] is (strongly) simulation-sound extractable. Now applying
Theorem 31 from [18], we obtain that Sig[Π] is (s)UF-CMA. ��

Together with the fact that commit-and-open PCIPs can easily be made
quantum extractable in the right sense by using standard hash-based commit-
ments based on a collapsing hash function, we obtain the security of the MQDSS
signature scheme. Recall that the standard hash-based commitment scheme
works as follows. On input s, the commitment algorithm samples a random open-
ing string u and outputs it together with the commitment c = H(s, u). Opening
just works by recomputing the hash and comparing it with c. Note that, while
this commitment scheme is collapse-binding [17], we need the stronger property
of collapsingness of the function defined by the commitment algorithm that, on
input a string and some randomness, outputs a commitment (collapse-binding
only requires the collapsingness with respect to the committed string, not the
opening information).

Corollary 24 (sUF-CMA of MQDSS). Let ΠSSH be the 5-round identifica-
tion scheme from [14] repeated in parallel a suitable number of times and instan-
tiated with the standard hash-based commitment scheme using a collapsing hash
function. Then the FS signature scheme constructed from ΠSSH is sUF-CMA.

Proof (sketch). In ΠSSH, the honest prover’s first message consists of two com-
mitments, and the second and final messages contain functions of the strings
committed to in the first message. This structure, together with the computa-
tional binding property (implied by the collapse binding property) of the com-
mitments, immediately implies that ΠSSH has computationally unique responses.
According to Corollary 30 in the appendix, ΠSSH is a quantum proof of knowl-
edge. It also has HVZK according to [14]. Finally, the first message of ΠSSH is
clearly unpredictable. An application of Theorem 23 finishes the proof. ��

7.2 Sequential OR Proofs

A second application of our multi-input version of the measure-and-reprogram
result is to the OR-proof as introduced by Liu, Wei and Wong [12] and further
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analyzed by Fischlin, Harasser and Janson [10]. This is an alternative (non-
interactive) proof for proving existence/knowledge of (at least) one of two wit-
nesses without revealing which one, compared to the well known technique by
Cramer, Damg̊ard and Schoenmakers [7].

Formally, given two Σ-protocols Σ0, and Σ1, for languages L0, and L1,
respectively, [12] proposes as a non-interactive proof for the OR-language L∨ =
{(x0, x1) : x0 ∈L0 ∨ x1 ∈L1} a quadruple π∨ = (a0, a1, z0, z1) such that

V H
∨ (x0, x1, π∨) :=

[
V0

(
x0, a0,H(1, x0, x1, a1), z0

)∧V1

(
x1, a1,H(0, x0, x1, a0), z1

)]

is satisfied. Fischlin et al. call this construction sequential OR proof. We empha-
size that the two challenges c0 and c1 are computed “over cross”, i.e., the chal-
lence c0 for the execution of Σ0 is computed by hashing a1, and vice versa. It
is straightforward to verify that if Σ0 and Σ1 are special honest-verifier zero-
knowledge, meaning that for any challenge c and response z one can efficiently
compute a first message a such that (a, c, z) is accepted, then it is sufficient to
be able to succeed in one of the two interactive protocols Σ0 and Σ1 in order to
honestly produce such an OR-proof π∨. Thus, depending on the context, it is
sufficient that one instance is in the corresponding language, or that the prover
knows one of the two witnesses, to produce π∨. Indeed, if, say, x0 ∈ L0 (and a
witness w0 is available), then π∨ can be produced as follows. Prepare a0 accord-
ing to Σ0, compute c1 := H(0, x0, x1, a0) and simulate z1 and a1 using the special
honest-verifier zero-knowledge property of Σ1 so that V1(x1, a1, c1, z1) is satis-
fied, and then compute the response z0 for the challenge c0 := H(1, x0, x1, a1)
according to Σ0.

On the other hand, intuitively one expects that one of the two instances must
be true in order to be able to successfully produce a proof. Indeed, [12] shows
security of the sequential OR in the (classical) ROM. [10] go a step further and
show security in the (classical) non-programmable ROM. Here we show that our
multi-input version of the measure-and-reprogram result (as a matter of fact the
2-input version) implies security in the QROM.

Theorem 25. There exists a black-box quantum polynomial-time interactive
algorithm P̂, which first outputs a bit b and two instances x0, x1, and in a second
stage acts as an interactive prover that runs Σb on instance xb, such that for
any adversary A making q queries to a uniformly random function H and for
any x◦

0, x
◦
1:

Pr
[
x0 = x◦

0 ∧ x1 = x◦
1 ∧ vb = accept : (b, x0, x1, vb) ← 〈P̂A,Vb〉

]

≥ 1
(2q + 1)4

Pr
H

[
x0 = x◦

0 ∧ x1 = x◦
1 ∧ V H

∨ (x0, x1, π∨) : (x0, x1, π∨) ← AH
]
.

As explained above, the execution (b, x0, x1, vb) ← 〈P̂A,Vb〉 should be under-
stood in that P̂A first outputs x0, x1 and b, and then it engages with Vb to execute
Σb on instance xb. Thus, the statement ensures that if AH succeeds to produce
a convincing proof π∨ then P̂A succeeds to convincingly run Σ0 or Σ1 (with
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similar success probability), where it is up to P̂A to choose which one it wants
to do.

Of course, the statement translates to the static setting where the two
instances x0 and x1 are fixed and not produced by the dishonest prover.

Proof. The algorithm A fits into the statement of Theorem 6 with the two
extractable inputs x̃0 = (0, x0, x1, a0) and x̃1 = (1, x0, x1, a1). Thus, we can
consider the 3-stage algorithm S ensured by Theorem 6, which behaves as fol-
lows with at least the probability given by the right hand side of the claimed
inequality. In the first stage, it outputs a permutation on the set {0, 1}, repre-
sented by a bit b ∈ {0, 1} with b = 0 corresponding to the identity permuta-
tion, as well as x̃b = (b, x0, x1, ab). On input a random Θb = c1−b (“locally”
chosen by P̂), S then outputs x̃1−b = (1 − b, x0, x1, a1−b). Finally, on input a
random Θ1−b = cb (provided by Vb as challenge upon the first message ab),
S outputs z0, z1 so that V∨ is satisfied with the challenges cb and c1−b, and
thus in particular Vb

(
xb, ab, cb, zb

)
is satisfied. This shows the existence of P̂ as

claimed. ��
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A Quantum extractability of q2 identification schemes

A class of identification schemes that is of particular interest are so-called q2-
identification schemes. The NIST candidate signature scheme MQDSS, for exam-
ple, is obtained from such an identification scheme via the multi-round FS trans-
formation from Definition 20 (with some additional strings included in the hash
arguments). In this section, we will prove that a PCIP with a so-called “q2
extractor” [5, Definition 4.6] is a quantum proof of knowledge if it has an addi-
tional collapsingness property. This is necessary for its FS transformation to
fulfill (s)UF-CMA in the QROM (for (s)UF-CMA in the ROM, the q2-extractor
alone is sufficient [5]).

We begin by defining q2 identification schemes and their extractors.

Definition 26. A 5-round identification scheme is a q2 identification scheme,
if the second challenge is a single bit. A q2 identification scheme is called q2-
extractable if there exists a polynomial-time algorithm that, on input four tran-
scripts t(i) = (a(i)

1 , c
(i)
1 , a

(i)
2 , c

(i)
2 , z(i)), i = 1, 2, 3, 4, such that

c
(1)
1 = c

(2)
1 �= c

(3)
1 = c

(4)
1 and c

(1)
2 = c

(3)
3 �= c

(2)
2 = c

(4)
2 , (11)

outputs the secret key with non-negligible probability.
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For ease of exposition we have assumed that the different challenges of a sin-
gle PCIP come all from the same challenge space. A q2 identification scheme
can be brought into this form by having the prover compute the second chal-
lenge by selecting the first bit of an augmented second challenge that is as
large as the first one. For classical provers, four transcripts as required by the
above definition can be obtained by straightforward rewinding. In the following,
we show that, if the q2 identification scheme has an additional property sim-
ilar to the quantum-computationally unique responses property introduced in
[9,13], then the existence of a q2 extractor implies that there exists a quantum
extractor. This makes the scheme a quantum proof of knowledge. The argu-
ment follows the same lines as the one given in [9] to prove that t-soundness
and quantum-computationally unique responses imply the quantum proof-of-
knowledge-property, which in turn is an extension of the result by Unruh for
Σ-protocols with perfect unique responses [15].

Recall the definition of a collapsing relation, [9, Definition 23], a generaliza-
tion of the notion of a collapsing hash function [17]. We define the notion of
collapsingness for interactive proof systems as follows:

Definition 27. A (2n+1)-round interactive proof system Π is called collapsing,
if the relation RΠ : X ×Y → {0, 1} with X = Cn ×A1 and Y = A2 × ...×An ×Z
given by the verification predicate VΠ of Π is collapsing from X to Y.

Note that for n = 1, this notion of collapsingness coincides with the notion of
quantum-computationally unique responses from [9].

Given a q2-identification scheme Π, consider the following straightforward
(first stage of a) quantum extractor EA

Π . The extractor runs the prover A using
honestly sampled challenges to obtain a first transcript t(1). Now it rewinds three
times and reruns A, each time with a fresh pair of challenges, chosen such as to
obtain t(i), i = 2, 3, 4 such that the four transcripts fulfill the conditions (11).
For this extractor, we obtain the following

Theorem 28. Let Π a q2-extractable q2-identification scheme that is also col-
lapsing. Then the success probability of the extractor EA

Π is lower-bounded in
terms of the success probability of the prover A as

Pr[EA
Π extracts] ≥ (

Pr
[
v = accept : (x, v) ← 〈A,VΠ〉])7 (12)

The proof of this theorem is essentially the same as for Theorem 25 in [9],
which is a slight modification of an argument from [15].

As a corollary, we obtain the fact that for q2 identification schemes, q2-
extractability and collapsingness imply the quantum proof of knowledge property
as defined in [15].

Corollary 29. Let Π a q2-extractable q2-identification scheme that is also col-
lapsing. Then it is a quantum proof of knowledge.

In particular, the 5-round identification scheme ΠSSH from [14] which is
used to construct the post-quantum digital signature scheme MQDSS has these
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properties under plausible assumptions, namely that it is instantiated with the
standard hash-based commitment scheme using a collapsing hash function [17]
(see discussion towards the end of Sect. 7.1). For MQDSS, this is no additional
assumption, as the FS transformation uses the QROM anyway, and a quantum
accessible random oracle is collapsing by [17].

Corollary 30. If the 5-round identification scheme from [14] is instantiated
with the standard hash-based commitment scheme using a collapsing hash func-
tion, it is a quantum proof of knowledge.

Proof (sketch). According to [5], ΠSSH is a q2-extractable q2 identification
scheme. In ΠSSH, the honest prover’s first message consists of two commitments,
and the second and final messages contain functions of the strings commited to
in the first message, and some opening information, respectively. Measuring a
function of a register is equivalent to a partial computational basis measurement
of that register. According to the collapsing property of the hash function, no
efficient algorithm can distinguish whether the committed string and the opening
information are measured or not. This clearly implies the same indistinguisha-
bility for partial measurements of the string register, which implies that ΠSSH is
collapsing. ��
Note that the above proof works for any multi-round PCIP that has a similar
commit-and-open structure.

References

1. Nist post-quantum cryptography standardization. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions

2. Bootle, J.: Recursive techniques for lattice-based zero-knowledge. https://www.
youtube.com/watch?v=NEayIq k4ks. Accessed 06 Feb 2020

3. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4–5), 493–505 (1998)

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334, May 2018

5. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 5

6. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: SOFIA:
MQ-based signatures in the QROM. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76581-5 1

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.youtube.com/watch?v=NEayIq_k4ks
https://www.youtube.com/watch?v=NEayIq_k4ks
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19


The Measure-and-Reprogram Technique 2.0 631
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