
Functional Encryption for
Attribute-Weighted Sums from k-Lin

Michel Abdalla1 , Junqing Gong2(B), and Hoeteck Wee1,3

1 CNRS, ENS and PSL, Paris, France
michel.abdalla@ens.fr, wee@di.ens.fr

2 East China Normal University, Shanghai, China
jqgong@sei.ecnu.edu.cn

3 NTT Research, Palo Alto, CA, USA

Abstract. We present functional encryption schemes for attribute-
weighted sums, where encryption takes as input N attribute-value pairs
(xi, zi) where xi is public and zi is private; secret keys are associated with
arithmetic branching programs f , and decryption returns the weighted
sum

∑N
i=1 f(xi)zi while leaking no additional information about the zi’s.

Our main construction achieves
(1) compact public parameters and key sizes that are independent of

N and the secret key can decrypt a ciphertext for any a-priori
unbounded N ;

(2) short ciphertexts that grow with N and the size of zi but not xi;
(3) simulation-based security against unbounded collusions;
(4) relies on the standard k-linear assumption in prime-order bilinear

groups.

1 Introduction

In this work, we consider the problem of computing aggregate statistics
on encrypted databases. Consider a database of N attribute-value pairs
(xi, zi)i=1,...,N , where xi is a public attribute of user i (e.g. demographic data),
and zi is private sensitive data associated with user i (e.g. salary, medical condi-
tion, loans, college admissions outcome). Given a function f , we want to privately
compute weighted sums over the zi’s corresponding to

∑N

i=1
f(xi)zi

We refer to this quantity as an attribute-weighted sum. An important special
case is when f is a boolean predicate, so that the attribute-weighted sum

∑N

i=1
f(xi)zi =

∑
i:f(xi)=1

zi (1)

M. Abdalla—Supported by ERC Project aSCEND (H2020 639554) and the French FUI
project ANBLIC.
J. Gong—Supported by NSFC-ISF Joint Scientific Research Program (61961146004)
and the ERC Project aSCEND (H2020 639554). Part of this work was done while at
ENS, Paris.
H. Wee—Supported in part by ERC Project aSCEND (H2020 639554).

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12170, pp. 685–716, 2020.
https://doi.org/10.1007/978-3-030-56784-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56784-2_23&domain=pdf
http://orcid.org/0000-0002-2447-4329
https://doi.org/10.1007/978-3-030-56784-2_23

686 M. Abdalla et al.

corresponds to the average zi over all users whose attribute xi satisfies the pred-
icate f . Concrete examples include average salaries of minority groups holding
a particular job title (zi = salary) and approval ratings of an election candidate
amongst specific demographic groups in a particular state (zi = rating). Simi-
larly, if zi is boolean, then the attribute-weighted sum becomes

∑
i:zi=1 f(xi).

This could capture for instance the number of and average age of smokers with
lung cancer (zi = lung cancer).

This work. We study functional encryption (FE) schemes for attribute-
weighted sums [13,24,26,36], for a more general setting where the attribute-
value pairs and the output of f are vectors. That is, we would like to encrypt
N attribute-value pairs (xi, zi)i=1,...,N to produce a ciphertext ct, and generate
secret keys skf so that decrypting ct with skf returns the attribute-weighted
sum

∑
i f(xi)�zi while leaking no additional information about the individual

zi’s. We want to support rich and expressive functions f , such as boolean for-
mula and simple arithmetic computation. In addition, we want simulation-based
security against collusions, so that an adversary holding secret keys for different
functions learns nothing about the zi’s beyond the attribute-weighted sums for
all of these functions.

In many databases, it is often the case that the size of each attribute-value
pair (xi, zi) is small and a-priori bounded, whereas the number of slots N
is large and a-priori unbounded. This motivates the notion of an unbounded-
slot FE scheme for attribute-weighted sums, where a secret key skf can
decrypt encrypted databases with an arbitrary number of slots. Indeed, han-
dling arbitrary-sized inputs is also the motivation behind studying ABE and
FE schemes for DFA and NFA [7,38]. In an unbounded-slot FE, key genera-
tion and the size of skf depends only on f and not N . This provides stronger
flexibility than standard ABE and FE (even in the so-called unbounded setting
[14,19,25,32]), where each skf only works for a fixed N . In practice, this means
that we can reuse the same set-up and secret keys across multiple databases
without an a-priori upper bound on the database size N .

1.1 Our Results

We present an unbounded-slot functional encryption scheme for attribute-
weighted sums for the class of functions f captured by arithmetic branching
programs (ABP), a powerful model of computation that captures both boolean
formula and branching programs with only a linear blow-up in size. Our con-
struction achieves:

(1) compact public parameters and key sizes that are independent of N ;
(2) short ciphertexts that grow with N and the size of zi but not xi;
(3) selective1, simulation-based security against unbounded collusions;
(4) relies on the standard k-linear assumption in prime-order bilinear groups.

1 We actually achieve semi-adaptive security [16], a slight strengthening of selective
security.

Functional Encryption for Attribute-Weighted Sums from k-Lin 687

As with all prior FE schemes that rely on DDH and bilinear groups [1,3,6,10,
17,28,29,33], efficient decryption requires that the output of the computation∑N

i=1 f(xi)�zi lies in a polynomial-size domain. We also show how to extend
our unbounded-slot scheme to a setting where the database is distributed across
multiple clients that do not completely trust one another [18,21], assuming some
simple non-interactive MPC set-up amongst the clients that does not depend on
the database and does not require interaction with the key authority.

Prior works. While we regard the unbounded-slot setting as the key conceptual
and technical novelty of this work, we note that FE for attribute-weighted sums
for N = 1 already captures many functionalities considered in the literature, e.g.

(i) FE for inner product [1,6] where f outputs a fixed vector,
(ii) attribute-based encryption (ABE) by taking z to be the payload,
(iii) attribute-based inner-product FE [2,17], where ciphertexts are associated

with a public x and a private z, and keys with a boolean formula g and a
vector y, and decryption returns z�y iff g(x) = 1, by taking f(x) := y·g(x),
which can be computed using an ABP.

On the other hand, none of these three classes captures the special case of
attribute-weighted sums in (1). We show a comparison in Fig. 1. The more recent
works in [28,29] do capture a larger class supporting quadratic instead of linear
functions over z,2 but in a weaker secret-key setting with indistinguishability-
based security, which is nonetheless sufficient for the application to obfuscation.
As articulated [13], simulation-based security is the right notion for functional
encryption applied to real-world data. Finally, none of these works consider the
unbounded-slot setting.

1.2 Our Construction

We present a high-level overview of our unbounded-slot FE scheme for attribute-
weighted sums. We start with a one-slot scheme that only handles N = 1, and
then “bootstrap” to the unbounded-slot setting. The main technical novelty of
this work lies in the bootstrapping, which is what we would focus on in this
section.

A one-slot scheme. In a one-slot FE scheme, we want to encrypt (x, z) and
generate secret keys skf for computing f(x)�z, while leaking no additional infor-
mation about z. We adopt the framework of Wee’s [40] (which in turn builds
on [27,30,37,39]) that builds a FE scheme for a closely related functionality
f(x)�z ?= 0; the construction also achieves selective, simulation-based security
under the k-Lin assumption in prime-order bilinear groups. We achieve a smaller

2 Note that we can also capture the same class with a quadratic blow-up in ciphertext
size.

688 M. Abdalla et al.

ciphertext, and an algebraically more concise and precise description. Our simu-
lator also embeds the output of the ideal functionality f(x)�z into the simulated
skf . This is in some sense inherent for two reasons: (i) the ciphertext has a fixed
size and cannot accommodate an a-priori unbounded number of key queries [4],
(ii) in the selective setting, we do not know f or f(x)�z while simulating the
ciphertext.

The unbounded-slot scheme. A very natural approach is to use the one-slot
scheme to compute

f(xi)�zi, i = 1, 2, . . . , N (2)

by providing N independent encryptions ctxi,zi
of (xi, zi). The secret key is

exactly that for the one-slot scheme and therefore independent of N , and decryp-
tion proceeds by decrypting each of the N one-slot ciphertexts, and then com-
puting their sum. The only problem with this approach is that it is insecure
since decryption leaks the intermediate summands.

First idea. To avoid this leakage, we would computationally mask the summands
using DDH tuples, by using the one-slot scheme to compute

[f(xi)�zi + wir], i = 1, 2, . . . , N (3)

where

– the wi’s are sampled during encryption subject to the constraint
∑N

i=1 wi = 0;
– r is fresh per secret key; and
– [·] denotes “in the exponent” of a bilinear group.

Multiplying the partial decryptions yields [
∑

i f(xi)�zi], and we need to per-
form a brute-force discrete log to recover the answer. Indeed, we can modify the
one-slot scheme to support the functionality in (3), where the one-slot encryp-
tion takes as input (xi, zi‖wi) (where wi is also private) to produce a cipher-
text ctxi,zi‖wi

, and with secret keys skf,r associated with (f, r). Henceforth, we
describe the proof strategy for a single secret key query for simplicity, but every-
thing we describe extends quite readily to an unbounded number of key queries.

The intuition is that the partial decryptions now yield

(Dec(skf,r, ctx1,z1‖w1), Dec(skf,r, ctx2,z2‖w2), . . . , Dec(skf,r, ctxN ,zN ‖wN
))

= ([f(x1)
�z1 + w1r], [f(x2)

�z2 + w2r], . . . , [f(xN)�zN + wN r]),
DDH≈c ([f(x1)

�z1 + w′
1], [f(x2)

�z2 + w′
2], . . . , [f(xN)�zN + w′

N]),
∑

w′
i = 0

≈s ([
∑

i f(xi)
�zi + w′

1], [w′
2], . . . , [w′

N]),

As with the one-slot scheme, we need to embed these N partial descriptions into
skf,r in the proof of security. Translating this intuition into a proof would then
require embedding ≈ N units of statistical entropy into the simulated skf,r in
the final game; this means that the size of skf,r would grow with N , which we
want to avoid!

Functional Encryption for Attribute-Weighted Sums from k-Lin 689

Second idea. Instead, we will do a hybrid argument over the N slots, collecting
“partial sums”

∑
i≤η f(xi)�zi (with 1 ≤ η ≤ N) as we go along, which we then

embed into the simulated skf,r. This proof strategy is in fact inspired by proof
techniques introduced in the recent ABE for DFA from k-Lin [22], notably the
idea of propagating entropy along the execution path of a DFA.

In particular, for N = 3, partial decryption now yields
(Dec(skf,r, ctx1,z1‖w1

), Dec(skf,r, ctx2,z2‖w2
), Dec(skf,r, ctx3,z3‖w3

))

= ([f(x1)
�z1 + w1r], [f(x2)

�z2 + w2r], [f(x3)
�z3 + w3r])

DDH≈c ([f(x1)
�z1 + f(x2)

�z2 + w1r], [w2r], [f(x3)
�z3 + w3r])

DDH≈c ([f(x1)
�z1 + f(x2)

�z2 + f(x3)
�z3 + w1r], [w2r], [w3r])

(4)

where the first
DDH≈c uses pseudorandomness of ([w2r], [r]) and the second uses

that of ([w3r], [r]).
Next, we need to design the ciphertext and key distributions for the

unbounded-slot scheme so that partial decryption yields the quantities in (4).
We begin by defining the final simulated ciphertext-key pair as follows:

(ct∗x1
, ctx2,0‖w2 , . . . , ctxN ,0‖wN

), sk∗
f,r (5)

where

– (ct∗x1
, sk∗

f,r) are obtained using the simulator for the one-slot scheme so that

Dec(sk∗
f,r, ct

∗
x1

) = [w1r +
∑

i
f(xi)�zi]

That is, we embed [w1r +
∑

i f(xi)�zi] into the simulated sk∗
f,r;

– ctxi,0‖wi
, i > 1 are generated as normal encryptions of (xi,0‖wi) (instead of

normal encryptions of (xi, zi‖wi)) so that

Dec(sk∗
f,r, ctxi,0‖wi

) = Dec(skf,r, ctxi,0‖wi
) = [wir], i > 1

Here, we use fact that simulated secret keys behave like normal secret keys
when used to decrypt normal ciphertexts.

This distribution can be computed given just
∑

i f(xi)�zi and matches exactly
what we need in the final game in (4).

Third idea. Now, consider the following attempt to interpolate between the nor-
mal distributions and the simulated distributions for the case N = 2:

(ctx1,z1‖w1 , ctx2,z2‖w2 , skf,r)
≈c (ct∗x1 , ctx2,z2‖w2 , sk∗

f,r), Dec(sk∗
f,r, ct

∗
x1) = [f(x1)

�z1 + w1r]
≈c (ct∗x1 , ???, sk∗

f,r),
≈c (ct∗x1 , ctx2,0‖w2 , sk∗

f,r), Dec(sk∗
f,r, ct

∗
x1) = [f(x1)

�z1 + f(x2)
�z2 + w1r]

where the first row is the real distribution, the last row is the simulated dis-
tribution in (5), and the first ≈c follows from simulation-based security of the
one-slot scheme. A natural idea is to replace “???” with a simulated ciphertext
ct∗x2

but this is problematic for two reasons: first, we cannot switch between a

690 M. Abdalla et al.

normal and simulated ciphertext in the presence of a simulated key, and second,
the simulator can only generate a single simulated ciphertext.

Luckily, we can overcome both difficulties by modifying the unbounded-slot
FE scheme to use two independent copies of the one-slot scheme as follows:

– setup generates two one-slot master public-secret key pairs (mpk1,msk1),
(mpk2,msk2);

– to encrypt (xi, zi)i=1,...,N , we generate ctx1,z1‖w1 w.r.t mpk1 and the remain-
ing ctxi,zi‖wi

, i = 2, . . . , N w.r.t. mpk2;
– the secret key contains two one-slot secret keys skf,r,1, skf,r,2 generated for

(f, r) but using msk1,msk2 respectively.

That would in fact be our final construction, where the asymmetry of encryption
with respect to the first slot reflects the asymmetry of the simulated ciphertext
in (5). Note that the first issue goes away because we can switch between a
normal and simulated ciphertext w.r.t. mpk2 in the presence of a simulated secret
key w.r.t. mpk1; the second goes away because the two simulated ciphertext
correspond to mpk1 and mpk2 respectively. We defer the remaining details to
the technical overview in Sect. 2 and the formal scheme in Sect. 7.

Scheme Enc KeyGen Function Security |ct|
OT12, KSW08 [30,34,35] z y z�y

?
= 0 AD-IND O(|z|)

ALS16, ABDP15 [1,6] z y z�y AD-IND O(|z|)
W17 [40] x, z f ABP z�f(x)

?
= 0 SA-SIM O(|x| + |z|)

DOT18 [19] x, z f ABP z�f(x)
?
= 0 AD-SIM O(|x| + |z|)

ACGU20, CZY19 [2,17] x, z y, f NC1 f(x) · z�y AD-IND O(|x| + |z|)
ACGU20 [2] z1, z2 y1,y2 z�1y1 if z�2y2 = 0 AD-IND O(|z1| + |z2|)
This work (§5) x, z f ABP z�f(x) SA-SIM O(|z|)

Fig. 1. Comparison of prior public-key schemes with our construction for N = 1.
Throughout, x is public and z, z1, z2 are private, and |ct| omits the contribution from x.

The multi-client setting. Now, consider a setting where the database
(xi, zi)i=1,...,N are distributed across multiple clients that do not completely
trust one another [18,21]; in practice, the clients could correspond to hospitals
holding medical records for different patients, or colleges holding admissions
data. It suffices to just consider the setting with N clients where client i holds
(xi, zi). Note that to produce the ciphertext in our unbounded-slot FE scheme,
it suffices for the N clients to each hold a random private wi (per database) sub-
ject to the constraint

∑
wi = 0, which is simple to generate via a non-interactive

MPC protocol where each client sends out additive shares of 0 [11]. Moreover,
generating the wi’s can take place in an offline, pre-processing phase before
knowing the database, and does not require interacting with the key generation
authority. Moreover, our unbounded-slot FE scheme also achieves a meaningful

Functional Encryption for Attribute-Weighted Sums from k-Lin 691

notion of security, namely that if some subset S of clients collude and addition-
ally learn some skf , they will not learn anything about the remaining zi’s apart
from

∑
i/∈S f(xi)�zi (that is, the attribute-weighted sum as applied to the honest

clients’ inputs); security is simulation-based and also extends to the many-key
setting. In order to achieve this, we require a slight modification to the scheme
to break the asymmetry with respect to the first slot: to encrypt (xi, zi), client
i samples random z′

i, w
′
i and publishes a one-slot encryption of (xi, z′

i‖w′
i) under

mpk1 and another of (xi, z − z′
i‖wi − w′

i) under mpk2. This readily gives us a
multi-client unbounded-slot FE for attribute-weighted sums; we refer the reader
to full paper for more details of the definition, construction and proof.

1.3 Discussion

Additional related works. As noted earlier in the introduction, our
unbounded-slot notion is closely related to uniform models of computation with
unbounded input lengths, such as ABE and FE for DFA and NFA [7,8,22,38].
At a very high level, our construction may be viewed as following the paradigm
in [7,8] for building ABE/FE for uniform models of computation by “stitching”
together ABE/FE for the smaller step functions; in our setting, the linear rela-
tion between the step functions and the overall computation makes “stitching”
much simpler. The way we use two copies of the one-slot scheme is also analo-
gous to the “two-slot, interweaving dual system encryption” argument used in
the previous ABE for DFA from k-Lin in [22], except our implementation is
simpler and more modular.

On selective vs adaptive security. We believe that selective, simulation-
based security already constitutes a meaningful notion of security for many of the
applications we have in mind. For instance, in medical studies, medical records
and patient conditions (the xi, zi’s) will not depend –not in the short run, at
least– adaptively on the correlations (the functions f ’s) that researchers would
like to investigate. Nonetheless, we do agree that extending our results to achieve
adaptive security is an important research direction. Concretely,

– Can we show that the one-slot scheme achieves simulation-based, adaptive
security in the generic group model, as has been shown for a large class of
selectively secure ABEs [9]?

– Can we construct an adaptively secure unbounded-slot FE for arithmetic
branching programs with compact ciphertexts without the one-use restric-
tion from k-Lin? We conjecture that our transformation from one-slot to
unbounded-slot preserves adaptive security. Solving the one-slot problem
would require first adapting the techniques for adaptive simulation-based
security in [5,19], and more recent advances in [31] to avoid the one-use
restriction.

692 M. Abdalla et al.

Open problems. We conclude with two other open problems. One is whether
we can construct (one-slot) FE for attribute-weighted sums from LWE, simul-
taneously generalizing prior ABE and IPFE schemes from LWE [6,12,23]; an
affirmative solution would likely also avoid the polynomial-size domain limita-
tion. Another is to achieve stronger notions of security for the multi-client setting
where the wi’s could be reused across multiple databases.

Organization. We provide a more detailed technical overview in Sect. 2. We
present preliminaries, definitions and tools in Sects. 3 and 4. We present our one-
slot scheme and an extension in Sects. 5 and 6, and the unbounded-slot scheme
in Sect. 7.

2 Technical Overview

We proceed with a more technical overview of our construction, building on the
overview given in Sect. 1.2, and giving more details on the one-slot scheme. We
summarize the parameters of the one-slot and unbounded-slot scheme in Fig. 2.

2.1 One-Slot Scheme

Notation. We will make extensive use of tensor products. For instance, we will
write the linear function x1U1 + x2U2 as

(U1‖U2)
(

x1I
x2I

)
= (U1‖U2)

((
x1

x2

)
⊗ I

)

Fig. 2. Summary of ciphertext and key sizes of our one-slot scheme Πone and
unbounded-slot scheme Πubd. Recall that n = |x| = |xi|, n′ = |z| = |zi|, m is pro-
portional to the size of f and N is the number of slots. In the table, we count the
number of group elements in G1 (resp. G2) in the column |ct| (resp. column |sk|). Note
that SXDH = 1−Lin.

This allows us to concisely and precisely capture “compilers” where we substitute
scalars with matrices, as well as the underlying linear relations, which may refer
to left or right multiplication, and act on scalars or matrices.

Functional Encryption for Attribute-Weighted Sums from k-Lin 693

Partial garbling. Recall the starting point for ABE for ABP as an “arithmetic
secret-sharing scheme” that on input an ABP f : Zn

p → Zp and a secret z ∈ Zp,
outputs m affine functions �1, . . . , �m : Zn

p → Zp such that for all x ∈ Z
n
p :

– (correctness) given �1(x), . . . , �m(x) along with f,x, we can recover z if f(x) �=
0.

– (privacy) given �1(x), . . . , �m(x) along with f,x, we learn nothing about z if
f(x) = 0.

In particular, the coefficients of the functions �1, . . . , �m depends linearly on the
randomness used in secret sharing.

Partial garbling generalizes the above as follows: on input an ABP f : Zn
p →

Z
n′
p , outputs m+1 affine functions �0, �1, . . . , �m such that for all x ∈ Z

n
p , z ∈ Z

n′
p :

– (correctness) given �0(z), �1(x), . . . , �m(x) along with f,x, we can recover
f(x)�z.

– (privacy) given �0(z), �1(x), . . . , �m(x) along with f,x, we learn nothing about
z apart from f(x)�z.

Henceforth, we will use t�(L1(x ⊗ Im) + L0) ∈ Z
m
p to denote the m linear

functions �1(x), . . . , �m(x),3 where t ← Z
m+n′−1
p corresponds to the randomness

used in the secret sharing; L1 ∈ Z
(m+n′−1)×mn
p ,L0 ∈ Z

(m+n′−1)×m
p depends only

on the function f , and m is linear in the size of the ABP f .

Basic scheme. We rely on an asymmetric bilinear group (G1,G2,GT , e) of
prime order p where e : G1×G2 → GT . We use [·]1, [·]2, [·]T to denote component-
wise exponentiations in respective groups G1,G2,GT [20]. Our starting point is
the following scheme4:

mpk =
(
[w]1, [u]1, [v]1

)
and msk =

(
w, u, v

)
(6)

ctx,z =
(
[s]1, [z + sw]1, [s(u�x + v)]1

) ∈ G
n′+2
1

skf =
(
[t + w]2, [t�L1 + u�(In ⊗ r�)]2, [t�L0 + vr�]2, [r]2

)

where
w ← Z

n′
p ,u ← Z

n
p , v ← Zp, t ← Z

m+n′−1
p , r ← Z

m
p

3 As an example with n = 2, m = 3, we have

(
a11x1 + a12x2 + b1, a21x1 + a22x2 + b2, a31x1 + a32x2 + b3

)

= (a11, a21, a31, a12, a22, a32)
(
(

x1

x2

)

⊗ I3
)

+ (b1, b2, b3).

4 The scheme in [40] has a larger ciphertext of the form: ctx,z =
(
[s]1, [z+sw]1, [s(u+

vx)]1
) ∈ G

n+n′+1
1 .

694 M. Abdalla et al.

Decryption uses the fact that

t�(L1(x ⊗ Im) + L0) =
(t�L1 + u�(In ⊗ r�)) · (x ⊗ Im) + (t�L0 + vr�) − (u�x + v) · r� (7)

which in turn uses (In ⊗ r�) · (x⊗ Im) = x · r�. Using the pairing and the above
relation, we can recover

[z − st]T , [st�(L1(x ⊗ Im) + L0)]T

We can then apply reconstruction “in the exponent” to recover [f(x)�z]T and
thus f(x)�z via brute-force DLOG.

Security in the secret-key setting. The scheme as written already achieves
simulation-based selective security in the secret-key, many-key setting (that is,
against an adversary that does not see mpk); this holds under the DDH assump-
tion in G2. We sketch how we can simulate (ctx,z, skf) given x, f, f(x)�z; the
proof extends readily to the many-key setting. The idea is to program

w̃ = z + sw, ṽ = s(u�x + v)

In addition, using (7), we can rewrite (ctx,z, skf) as

ctx,z =
(
[s]1, [w̃]1, [ṽ]1

) ∈ G
n′+2
1

skf =
(
[t+ s−1(w̃ − z)]2, [û

�]2, [t
�(L1(x ⊗ Im) + L0) − û� · (x ⊗ Im) + s−1ṽr�]2, [r]2

)

where û� := t�L1 + u�(In ⊗ r�). Under the DDH assumption in G2, we know
that5

[u�(In ⊗ r�)]2, [r�]2,u ← Z
n
p , r ← Z

m
p

is pseudorandom, which means that [û�]2, [r�]2 is pseudorandom.
We can therefore simulate (ctx,z, skf) as follows: on input μ = f(x)�z,

1. run the simulator for partial garbling on input f,x, μ to obtain (p�
1,p

�
2);

2. sample s ← Zp, w̃ ← Z
n′
p , ṽ ← Zp, û ← Z

mn
p ;

3. output

ctx,z =
(
[s]1, [w̃]1, [ṽ]1

) ∈ G
n′+2
1

skf =
(
[−p1 + s−1w̃]2, [û�]2, [p�

2 − û� · (x ⊗ Im) + s−1ṽr�]2, [r]2
)

Looking ahead, we note that the above analysis extends to the k-Lin assump-
tion, at the cost of blowing up the width of u, v, r� by a factor of k. In the analysis,
we use the fact that under k-Lin over G2, ([u�(In ⊗R)]2, [R]2) is pseudorandom
where u ← Z

kn
p ,R ← Z

k×m
p .

5 Recall that if we write u = (u1, . . . , un), then u�(In ⊗ r�) = (u1r
�, . . . , unr

�).

Functional Encryption for Attribute-Weighted Sums from k-Lin 695

The compiler. To obtain a public-key scheme secure under the k-Lin assump-
tion, we perform the following substitutions to (6), following [15,40]:

s
→ s�A� ∈ Z
1×(k+1)
p , r�
→ R ∈ Z

k×m
p , t�
→ T ∈ Z

(k+1)×(m+n′−1)
p

w�
→ W ∈ Z
(k+1)×n′
p , u�
→ U ∈ Z

(k+1)×kn
p , v
→ V ∈ Z

(k+1)×k
p

That is, we blow up the height of w�,u�, v, t� by a factor of k+1, and the width
of u�, v, r by a factor of k. The proof of security follows the high-level strategy
in [40]:

– We first switch [s�A�]1 in the ciphertext with a random [c�]1.
– We decompose skf into two parts, A�skf , c�skf , corresponding to component-

wise multiplication by A�, c� respectively, using the fact that (A|c) forms a
full-rank basis.

– We simulate A�skf using (mpk, f), and simulate the ciphertext and c�skf as
in the secret-key setting we just described.

We refer the reader to Sect. 6 to see how the construction can be extended to
handle the “extended” functionality in (3); an overview is given at the beginning
of that section.

2.2 Unbounded-Slot Scheme

We refer the reader to Sect. 1.2 for a high-level overview of the unbounded-slot
scheme, and proceed directly to describe the construction and the security proof.

The construction. We run two copies of the one-slot scheme, which we denote
by (Encb,KeyGenb) = (Enc(mpkb, ·),KeyGen(mskb, ·)) for b = 1, 2. We denote the
corresponding simulators by (Enc∗

b ,KeyGen
∗
b). Informally, we have

(Encb(x, z‖w),KeyGenb(f, [r]2)) ≈c (Enc∗
b(x),KeyGen∗

b((f, [r]2), [f(x)�z + wr]2))

Then, Enc,KeyGen in the unbounded-slot scheme are given by

Enc((xi, zi)i) = Enc1(x1, z1‖ − ∑
i∈[2,N] wi), Enc2(x2, z2‖w2), · · · ,Enc2(xN , zN‖wN)

KeyGen(f) = KeyGen1(f, [r]2),KeyGen2(f, [r]2), [r]2

696 M. Abdalla et al.

Fig. 3. Summary of game sequence for N = 3. In the figure,
SIM-b≈c indicates that this

step uses the simulate-based semi-adaptive security of (Encb,KeyGenb).

The final simulator is given by:

Enc∗((xi)i) = Enc∗
1(x1), Enc2(x2,0‖w2), · · · ,Enc2(xN ,0‖wN)

KeyGen∗(f, μ) = KeyGen∗
1((f, [r]2), [μ − ∑

i∈[2,N] wir]2),KeyGen2(f, [r]2)

As a sanity check, observe that decrypting Enc∗((xi)i) using KeyGen∗(f,
∑

i

f(xi)�zi) returns
∑

i f(xi)�zi.

Proof overview. For simplicity, we focus on the setting N = 3 with one secret

key query in Fig. 3 where in
DDH≈c , we use pseudorandomness of ([w1r]2, [r]2)

and ([w2r]2, [r]2) respectively; in
SIM-1≈c and

SIM-2≈c , we use simulation-based semi-
adaptive security of (Enc1,KeyGen1) and (Enc2,KeyGen2), respectively.

In the setting for general N and Q secret key queries,

– we will invoke simulation-based security of (Enc1,KeyGen1) once, and that of
(Enc2,KeyGen2) for 2(N − 1) times, while using the fact that both of these
schemes are also secure against Q secret key queries;

– in
DDH≈c , we will rely on pseudorandomness of {[wirj]2, [rj]2)}j∈[Q] for i ∈

[2, N].

3 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random
from a finite set S. We use ≈s to denote two distributions being statistically

Functional Encryption for Attribute-Weighted Sums from k-Lin 697

indistinguishable, and ≈c to denote two distributions being computationally
indistinguishable. We use lower case boldface to denote column vectors and upper
case boldcase to denote matrices. We use ei to denote the i’th elementary column
vector (with 1 at the i’th position and 0 elsewhere, and the total length of the
vector specified by the context). For any positive integer N , we use [N] to denote
{1, 2, . . . , N} and [2, N] to denote {2, . . . , N}.

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z
�×m,

B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp. (8)

Arithmetic Branching Programs. A branching program is defined by a
directed acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling
function φ. An arithmetic branching program (ABP), where p is a prime, com-
putes a function f : Zn

p → Zp. Here, φ assigns to each edge in E an affine function
in some input variable or a constant, and f(x) is the sum over all v0−v1 paths of
the product of all the values along the path. We refer to |V |+ |E| as the size of f .
The definition extends in a coordinate-wise manner to functions f : Zn

p → Z
n′
p .

Henceforth, we use FABP,n,n′ to denote the class of ABP f : Zn
p → Z

n′
p .

We note that there is a linear-time algorithm that converts any boolean for-
mula, boolean branching program or arithmetic formula to an arithmetic branch-
ing program with a constant blow-up in the representation size. Thus, ABPs can
be viewed as a stronger computational model than all of the above. Recall also
that branching programs and boolean formulas correspond to the complexity
classes LOGSPACE and NC1 respectively.

3.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description
G := (p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are
cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, GT and the bilinear
map e are computable in deterministic polynomial time in λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall
the matrix Diffie-Hellman (MDDH) assumption on G1 [20]:

Assumption 1 (MDDHd
k,� Assumption). Let k, �, d ∈ N. We say that the

MDDHd
k,� assumption holds if for all PPT adversaries A, the following advantage

function is negligible in λ.

Adv
MDDHd

k,�

A (λ) :=
∣∣ Pr[A(G, [M]1, [MS]1) = 1] − Pr[A(G, [M]1, [U]1) = 1]

∣∣

where G := (p,G1,G2,GT , e) ← G(1λ), M ← Z
�×k
p , S ← Z

k×d
p and U ← Z

�×d
p .

698 M. Abdalla et al.

The MDDH assumption on G2 can be defined in an analogous way. Escala et al.
[20] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,� ∀ k, d ≥ 1, � > k

with a tight security reduction. (In the setting where � ≤ k, the MDDHd
k,�

assumption holds unconditionally.)
We state the following lemma implied by MDDH1

k,Q without proof.

Lemma 1. For all Q ∈ N and μ1, . . . , μQ ∈ Zp, we have
{

[−w�rj]2, [μj + w�rj]2, [rj]2
}

j∈[Q]

≈c

{
[μj − w�rj]2, [w�rj]2, [rj]2

}
j∈[Q]

where w, rj ← Z
k
p for all j ∈ [Q]. Concretely, the distinguishing advantage is

bounded by 2 · AdvMDDH1
k,Q

B (λ).

4 Definitions and Tools

In this section, we formalize functional encryption for attribute-weighted sums,
using the framework of partially-hiding functional encryption [13,24,40].

4.1 FE for Attribute-Weighted Sums

Syntax. An unbounded-slot FE for attribute-weighted sums consists of four
algorithms:

Setup(1λ, 1n, 1n′
) : The setup algorithm gets as input the security parameter 1λ

and function parameters 1n, 1n′
. It outputs the master public key mpk and

the master secret key msk.
Enc(mpk, (xi, zi)i∈[N]) : The encryption algorithm gets as input mpk and message

(xi, zi)i∈[N] ∈ (Zn
p × Z

n′
p)�. It outputs a ciphertext ct(xi,zi) with (xi) being

public.
KeyGen(msk, f) : The key generation algorithm gets as input msk and a function

f ∈ FABP,n,n′ . It outputs a secret key skf with f being public.
Dec((skf , f), (ct(xi,zi), (xi)i∈[N])) : The decryption algorithm gets as input skf

and ct(xi,zi) along with f and (xi)i∈[N]. It outputs a value in Zp.

Correctness. For all (xi, zi)i∈[N] ∈ (Zn
p × Z

n′
p)� and f ∈ FABP,n,n′ , we require

Pr[Dec((ct(xi,zi), (xi)i∈[N]), (skf , f)) =
∑

i∈[N]

f(xi)�zi] = 1

where (mpk,msk) ← Setup(1λ, 1n, 1n′
), skf ← KeyGen(msk, f) and ct(xi,zi) ←

Enc(mpk, (xi, zi)i∈[N]).

Functional Encryption for Attribute-Weighted Sums from k-Lin 699

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation
of correctness where the decryption algorithm takes an additional bound 1B

(and runs in time polynomial in B) and outputs
∑

i∈[N] f(xi)�zi if the value is
bounded by B. This limitation is also present in prior works on (IP)FE from DDH
and bilinear groups [1,3,6,10,33], due to the reliance on brute-force discrete log
to recover the answer “from the exponent”. We stress that the relaxation only
refers to functionality and does not affect security.

Security definition. We consider semi-adaptive [16] (strengthening of selec-
tive), simulation-based security, which stipulates that there exists a randomized
simulator (Setup∗,Enc∗, KeyGen∗) such that for every efficient stateful adversary
A,

⎡

⎢
⎢
⎢
⎢
⎣

1N ← A(1λ);

(mpk,msk) ← Setup(1λ, 1n, 1n′
);

(x∗
i , z∗

i)i∈[N] ← A(mpk);
ct∗ ← Enc(mpk, (x∗

i , z∗
i)i∈[N]);

output AKeyGen(msk,·)(mpk, ct∗)

⎤

⎥
⎥
⎥
⎥
⎦

≈c

⎡

⎢
⎢
⎢
⎢
⎣

1N ← A(1λ);

(mpk,msk∗) ← Setup∗(1λ, 1n, 1n′
, 1N);

(x∗
i , z∗

i)i∈[N] ← A(mpk);
ct∗ ← Enc∗(msk∗, (x∗

i)i∈[N]);

output AKeyGen∗(msk∗,(x∗
i)i∈[N],·,·)(mpk, ct∗)

⎤

⎥
⎥
⎥
⎥
⎦

such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets
f along with

∑
i∈[N] f(x∗

i)
�z∗

i . We use AdvFE
A (λ) to denote the advantage in

distinguishing the real and ideal games.

One-slot scheme. A one-slot scheme is the same thing, except we always have
N = 1 for both correctness and security.

4.2 Partial Garbling Scheme

The partial garbling scheme [27,40] for f(x)�z with f ∈ FABP,n,n′ is a random-
ized algorithm that on input f outputs an affine function in x, z of the form:

p�
f,x,z =

(
z� − t�, t�(L1(x ⊗ Im) + L0)

)

where L0 ∈ Z
(m+n′−1)×mn
p ,L1 ∈ Z

(m+n′−1)×m
p depends only on f ; t ← Z

m+n′−1
p

is the random coin and t consists of the last n′ entries in t, such that given
(p�

f,x,z, f,x), we can recover f(x)�z, while learning nothing else about z.

Lemma 2 (partial garbling [27,40]). There exists four efficient algorithms
(lgen, pgb, rec, pgb∗) with the following properties:

– syntax: on input f ∈ FABP,n,n′ , lgen(f) outputs L0 ∈ Z
(m+n′−1)×mn
p ,L1 ∈

Z
(m+n′−1)×m
p , and

pgb(f,x, z; t) =
(
z� − t�, t�(L1(x ⊗ Im) + L0)

)

pgb∗(f,x, μ; t) =
(−t�, t�(L1(x ⊗ Im) + L0) + μ · e�

1

)

where t ∈ Z
m+n′−1
p and t consists of the last n′ entries in t and m are linear

in the size of f .

700 M. Abdalla et al.

– reconstruction: rec(f,x) outputs df,x ∈ Z
n′+m
p such that for all f,x, z, t, we

have p�
f,x,zdf,x = f(x)�z where p�

f,x,z = pgb(f,x, z; t).
– privacy: for all f,x, z, pgb(f,x, z; t) ≈s pgb∗(f,x, f(x)�z; t) where the ran-

domness is over t ← Z
m+n′−1
p .

Extension. We will also rely on an extra property of the above construction to
handle shifts by δ ∈ Zp, namely that, given

p�
f,x,z, δ

=
(
z� − t�, t�(L1(x ⊗ Im) + L0) + δ · e�

1

)

together with (f,x), we can recover f(x)�z+δ, while learning nothing else about
z, δ. That is, for all f,x, z and δ ∈ Zp:

– reconstruction: (pgb(f,x, z; t) + (0, δ · e�
1))df,x = f(x)�z + δ ;

– privacy: pgb(f,x, z; t) + (0, δ · e�
1) ≈s pgb∗(f,x, f(x)�z + δ ; t) where the

randomness is over t ← Z
m+n′−1
p .

See the full paper for more detail about Lemma 2 and the extension.

5 Πone: One-Slot Scheme

In this section, we present our one-slot FE scheme for attribute-weighted sums.
This scheme achieves simulation-based semi-adaptive security under k-Linear
assumptions.

5.1 Construction

Our one-slot FE scheme Πone in prime-order bilinear group is described as fol-
lows.

– Setup(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
(k+1)×k
p and W ← Z

(k+1)×n′
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

and output

mpk =
(
G, [A�]1, [A�W]1, [A�U]1, [A�V]1

)
and msk =

(
W, U, V

)
.

– Enc(mpk, (x, z)): Sample s ← Z
k
p and output

ctx,z =
(
[s�A�]1, [z� + s�A�W]1, [s�A�U(x ⊗ Ik) + s�A�V]1

)
and x.

– KeyGen(msk, f): Run (L1,L0) ← lgen(f) where L1 ∈ Z
(m+n′−1)×mn
p ,L0 ∈

Z
(m+n′−1)×m
p (cf. Sect. 4.2). Sample T ← Z

(k+1)×(m+n′−1)
p and R ← Z

k×m
p

and output

skf =
(
[T + W]2, [TL1 + U(In ⊗ R)]2, [TL0 + VR]2, [R]2

)
and f

where T refers to the matrix composed of the right most n′ columns of T.

Functional Encryption for Attribute-Weighted Sums from k-Lin 701

– Dec((skf , f), (ctx,z,x)): On input key:

skf =
(
[K1]2, [K2]2, [K3]2, [R]2

)
and f

and ciphertext:
ctx,z =

(
[c�

0]1, [c�
1]1, [c�

2]1
)

and x

the decryption works as follows:
1. compute

[p�
1]T = e([c�

1]1, [In′]2) · e([c�
0]1, [−K1]2) (9)

2. compute

[p�
2]T = e([c�

0]1, [K2(x ⊗ Im) + K3]2) · e([−c�
2]1, [R]2) (10)

3. run df,x ← rec(f,x) (cf. Sect. 4.2), compute

[D]T = [(p�
1,p

�
2)df,x]T (11)

and use brute-force discrete log to recover D as the output.

Correctness. For ctx,z and skf , we have

p�
1 = z� − s�A�T (12)

p�
2 = s�A�TL1(x ⊗ Im) + s�A�TL0 (13)

(p�
1,p

�
2)df,x = f(x)�z (14)

Here (14) follows from the fact that

(p�
1,p

�
2) = pgb(f,x, z; (s�A�T)�) and df,x = rec(f,x)

and reconstruction of the partial garbling in (9); the remaining two equalities
follow from:

(12) z� − s�A�T = (z� + s�A�W) · In′ − s�A� · (T + W)

(13) s�A�TL1(x ⊗ Im) + s�A�TL0 = s�A� · (
(TL1 + U(In ⊗ R))(x ⊗ Im) + (TL0 + VR)

)

−(
s�A�U(x ⊗ Ik) + s�A�V

) · R

in which we use the equality (In ⊗R)(x⊗ Im) = (x⊗ Ik)R. This readily proves
the correctness.

Remark 2 (Comparison with W17 [40]). The ciphertext in [40] contains a term
of the form

[x� ⊗s�A�V+s�A�U]1 ∈ G
kn
1 in the place of [s�A�U(x⊗Ik)+s�A�V]1 ∈ G

k
1

where U ← Z
(k+1)×kn
p ,V ← Z

(k+1)×k
p . The secret key sizes in both our schemes

and that in [40] are O(mn + n′). In our scheme, the multiplicative factor of n
comes at the cost of a smaller ciphertext. In [40], the multiplicative factor of n
comes from a locality requirement that each column of L1(x⊗ Im)+L0 depends
on a single entry of x, which can be achieved generically at the cost of a blow-up
of n. We remove the locality requirement in our scheme.

702 M. Abdalla et al.

Security. We have the following theorem with the proof shown in the subse-
quent subsection.

Theorem 1. Our one-slot scheme Πone for attribute-weighted sums described in
this section achieves simulation-based semi-adaptive security under the MDDH
assumption in G1 and in G2.

5.2 Simulator

We start by describing the simulator.

– Setup∗(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
(k+1)×k
p and W ← Z

(k+1)×n′
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

c ← Z
k+1
p w̃ ← Z

n′
p , ṽ ← Z

k
p

and output

mpk =
(
G, [A�]1, [A�W]1, [A�U]1, [A�V]1

)

msk∗ =
(
W, U, V, w̃, ṽ, c,C⊥,A,a⊥)

where (A|c)�(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1 − 1/p.

– Enc∗(msk∗,x∗): Output

ct∗ =
(
[c�]1, [w̃�]1, [ṽ�]1

)
and x∗.

– KeyGen∗(msk∗,x∗, f, μ ∈ Zp): Run

(L1,L0) ← lgen(f) and ((p∗
1)

�, (p∗
2)

�) ← pgb∗(f,x∗, μ).

Sample û ← Z
nm
p , T ← Z

(k+1)×(m+n′−1)
p and R ← Z

k×m
p and output

sk∗
f =

(
C⊥ · sk∗

f [1] + a⊥ · sk∗
f [2], [R]2

)
and f (15)

where

sk∗
f [1] =

(
[A�T + A�W]2, [A�TL1 + A�U(In ⊗ R)]2, [A�TL0 + A�VR]2

)

sk∗
f [2] =

(
[−(p∗

1)
� + w̃�]2, [û�]2, [(p∗

2)
� − û�(x∗ ⊗ Im) + ṽ�R]2

)

Here T refers to the matrix composed of the right most n′ columns of T.
That is,

sk∗
f =

⎛

⎝
[C⊥(A�T+A�W) +a⊥(−(p∗

1)
� + w̃�)]2,

[C⊥(A�TL1 +A�U(In ⊗ R)) +a⊥(û�)]2 , [R]2
[C⊥(A�TL0 +A�VR) +a⊥(

(p ∗
2)

� − û�(x∗ ⊗ Im) + ṽ�R
)
]2

⎞

⎠

Functional Encryption for Attribute-Weighted Sums from k-Lin 703

Remark 3 (decryption checks). As a sanity check, we check that an adversary
cannot use the decryption algorithm to distinguish between the real and simu-
lated output.

Observe that when we decrypt the simulated ciphertext ct∗x∗ ←
Enc∗(msk∗,x∗) with the simulated secret key sk∗

f ← KeyGen∗(msk∗,x∗, f, f(x∗)�

z∗), the sk∗
f [1] part cancels out and leaves just the sk∗

f [2] part since c�C⊥ =
0, c�a⊥ = 1 and we end up with ((p∗

1)
�, (p∗

2)
�)df,x∗ = f(x∗)�z∗ where

((p∗
1)

�, (p∗
2)

�) ← pgb∗(f,x∗, f(x∗)�z∗).
Similarly, when we decrypt a normal ciphertext ctx,z ← Enc(mpk, (x, z))

corresponding to any (x, z) with a simulated secret key, the sk∗
f [2] part cancels

out and leaves just the sk∗
f [1] part since A�C⊥ = I,A�a⊥ = 0. We end up with

(p�
1,p

�
2)df,x = f(x)�z where (p�

1,p
�
2) = pgb(f,x, z; (s�A�T)�) as in the real Dec

algorithm.

5.3 Proof

With our simulator, we prove the following theorem which implies Theorem 1.

Theorem 2. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈
Time(A) such that

AdvΠone

A (λ) ≤ Adv
MDDH1

k,k+1
B1

(λ) + Adv
MDDHn

k,mQ

B2
(λ) + 1/p

where n is length of public input x∗ in the challenge, m is the parameter depend-
ing on size of function f and Q is the number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption. Before
we proceed to describe the game sequence and proof, we state the following
lemma we will use.

Lemma 3 (statistical lemma). For any full-rank (A|c) ∈ Z
(k+1)×k
p × Z

k+1
p ,

we have
{
A�W, c�W : W ← Z

(k+1)×k
p

} ≡ {
A�W, w̃� : W ← Z

(k+1)×k
p , w̃ ← Z

k
p

}
.

Game sequence. We use (x∗, z∗) to denote the semi-adaptive challenge and for
notational simplicity, assume that all key queries fj share the same parameter
m. We prove Theorem 2 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗, z∗) is given by

ct∗ =
(
[c�]1, [(z∗)� + c� W]1, [c� U(x∗ ⊗ Ik) + c� V]1

)

where c ← Z
k+1
p . We claim that Game0 ≈c Game1. This follows from

MDDH1
k,k+1 assumption:

[A�]1, [s�A�]1 ≈c [A�]1, [c�]1 .

704 M. Abdalla et al.

In the reduction, we sample W,U,V honestly and use them to simulate mpk
and KeyGen(msk, ·) along with [A�]1; the challenge ciphertext ct∗ is generated
using the challenge term given above.

Game2: Identical to Game1 except that the j-th query fj to KeyGen
KeyGen(msk, ·) is answered by

skfj
=

(
C⊥ · skfj

[1] + a⊥ · skfj
[2], [Rj]2

)

with
skfj

[1] =
(
[A�Tj +A�W]2, [A

�TjL1,j +A�U(In ⊗ Rj)]2, [A
�TjL0,j +A�VRj]2

)

skfj
[2] =

(
[c�Tj + c�W]2, [c

�TjL1,j + c�U(In ⊗ Rj)]2, [c
�TjL0,j + c�VRj]2

)

where (L1,j ,L0,j) ← lgen(fj), Tj ← Z
(k+1)×(m+n′−1)
p , Rj ← Z

k×m
p , c is the

randomness in ct∗ and C⊥,a⊥ are defined such that (A|c)�(C⊥|a⊥) = Ik+1

(cf. Setup∗ in Sect. 5.2). By basic linear algebra, we have Game1 = Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗

where ct∗ is given by

ct∗ =
(
[c�]1, [w̃�]1, [ṽ�]1

)

and replace KeyGen(msk, ·) with KeyGen∗
3(msk∗, ·), which works as

KeyGen(msk, ·) in Game2 except that, for the j-th query fj , we compute

skfj
[2] =

⎛

⎝
[t̃

�
j − (z∗)� + w̃�]2 , [t̃�j L1,j + ũ� (In ⊗ Rj)]2,

[t̃�j L0,j −ũ�(In ⊗ Rj)(x∗ ⊗ Im) + ṽ�Rj]2

⎞

⎠

where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ← Z
kn
p , tj ← Z

m+n′−1
p ,

Rj ← Z
k×m
p . We claim that Game2 ≈s Game3. This follows from the following

statement: for any full-rank (A|c), we have

(A�U, c�U, A�W, c�W, A�V, c�V, A�Tj , c�Tj)

≡ (A�U, ũ� , A�W, w̃� − (z∗)� , A�V, ṽ� − ũ�(x∗ ⊗ Ik) , A�Tj , t̃�j)

which is implied by Lemma 3.

Game4: Identical to Game3 except that we replace KeyGen∗
3 with KeyGen∗

4 which
works as KeyGen∗

3 except that, for the j-th query fj , we compute

skfj
[2] =

(
[t̃

�
j −(z∗)�+w̃�]2, [t̃�jL1,j+ û�

j]2, [t̃�jL0,j− û�
j (x∗⊗Im)+ṽ�Rj]2

)

where ûj ← Z
nm
p and Rj ← Z

k×m
p . We claim that Game3 ≈c Game4. This

follows from MDDHn
k,mQ assumption which tells us that

{
[ũ�(In ⊗ Rj)]2, [Rj]2

}
j∈[Q]

≈c

{
[û�

j]2 , [Rj]2
}

j∈[Q]

where Q is the number of key queries.

Functional Encryption for Attribute-Weighted Sums from k-Lin 705

Game5: Identical to Game4 except that we replace KeyGen∗
4 with KeyGen∗; this

is the ideal game. We claim that Game4 ≈s Game5. This follows from the
privacy of partial garbling scheme in Sect. 4.2.

We prove the indistinguishability of adjacent games listed above in the full
paper.

6 Πext: Extending Πone

In this section, we extend our one-slot FE scheme Πone in Sect. 5 to handle the
randomization offsets w�r. The scheme achieves simulation-based semi-adaptive
security under k-Linear assumption.

Extension. The extended scheme is the same as a one-slot FE for attribute-
weighted sums, except we replace functionality ((x, z), f)
→ f(x)�z with

((x, z‖w), (f, [r]2))
→ [f(x)�z + w�r]T

where w, r ∈ Z
k
p. That is, we make the following modifications:

– Enc takes z‖w instead of z as the second input;
– KeyGen,KeyGen∗ takes (f, [r]2) instead of f as input;
– in correctness, decryption computes [f(x)�z + w�r]T instead of f(x)�z;
– in the security definition, A produces (x∗, z∗‖w∗) instead of (x∗, z∗), and

KeyGen∗ gets [f(x∗)�z∗ + (w∗)�r]2 instead of f(x∗)�z∗.

In particular, correctness states that:

Dec(Enc(mpk, (x, z‖w)),KeyGen(msk, (f, [r]2))) = [f(x)�z + w�r]T

Construction overview. To obtain a scheme with the extension, the idea —
following the IPFE in [6]— is to augment the previous construction Πone with
[A�W0]1 in mpk, [w� + s�A�W0]1 in the ciphertext, and [W0r]2 in the secret
key. During decryption, we will additionally compute

e([w� + s�A�W0]1, [r]2) · e([s�A�]1, [W0r]2)−1 = [w�r]T

This works for correctness, but violates security since the decryptor learns both
[f(x)�z]T and [w�r]T instead of just the sum. To avoid this leakage while preserv-
ing correctness, we will carefully embed W0r into the secret key for Πone, while
relying on the extension of the garbling scheme for handling shifts to argue both
correctness and security, cf. Sect. 4.2. We will describe the scheme and simulator
but defer the details for the proof to full paper.

706 M. Abdalla et al.

6.1 Our Scheme

Scheme. Our extended one-slot FE scheme Πext in prime-order bilinear group is
described as follows. The boxes indicate the changes from the scheme in Sect. 5.1.

– Setup(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample A ←

Z
(k+1)×k
p and

W ← Z
(k+1)×n′
p , W0 ← Z

(k+1)×k
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

and output

mpk =
(
G, [A�]1, [A�W]1, [A�U]1, [A�V]1, [A�W0]1

)

msk =
(
W, U, V, W0

)
.

– Enc(mpk, (x, z‖w)): Sample s ← Z
k
p and output

ctx,z‖w =

(
[s�A�]1, [z� + s�A�W]1, [s�A�U(x ⊗ Ik) + s�A�V]1,

[w� + s�A�W0]1

)
, x.

– KeyGen(msk, (f, [r]2)): Run (L1,L0) ← lgen(f) where L1 ∈ Z
(m+n′−1)×mn
p ,

L0 ∈ Z
(m+n′−1)×m
p (cf. Sect. 4.2). Sample T ← Z

(k+1)×(m+n′−1)
p and R ←

Z
k×m
p and output6

skf,r =
(
[T+W]2, [TL1 +U(In ⊗ R)]2, [TL0 − W0r · e�

1 +VR]2, [R]2
)
, (f, [r]2)

where T refers to the matrix composed of the right most n′ columns of T.
– Dec((skf,r, (f, [r]2)), (ctx,z‖w,x)): On input key:

skf,r =
(
[K1]2, [K2]2, [K3]2, [R]2

)
and (f, [r]2)

and ciphertext:

ctx,z‖w =
(
[c�

0]1, [c�
1]1, [c�

2]1, [c�
3]1

)
and x

the decryption works as follows:
1. compute

[p�
1]T = e([c�

1]1, [In′]2) · e([c�
0]1, [−K1]2) (16)

2. compute

[p�
2]T = e([c�

0]1, [K2(x ⊗ Im) + K3]2) · e([−c�
2]1, [R]2) · e([c�

3]1, [r · e�
1]2)
(17)

3. run df,x ← rec(f,x) (see Sect. 4.2), output

[D]T = [(p�
1,p

�
2)df,x]T (18)

6 We use r instead of [r]2 in the subscript here and note that the function is described
by (f, [r]2) rather than (f, r).

Functional Encryption for Attribute-Weighted Sums from k-Lin 707

Simulator. The simulator for Πext is as follows. The boxes indicate the changes
from the simulator for Πone in Sect. 5.2.

– Setup∗(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
(k+1)×k
p and c ← Z

k+1
p and

W ← Z
(k+1)×n′
p , W0 ← Z

(k+1)×k
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

w̃ ← Z
n′
p , w̃0 ← Z

k
p , ṽ ← Z

k
p

and output

mpk =
(
G, [A�]1, [A�W]1, [A�W0]1 , [A�U]1, [A�V]1

)

msk∗ =
(
W, W0 , U, V, w̃, w̃0 , ṽ, c,C⊥,A,a⊥)

where (A|c)�(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1 − 1/p.

– Enc∗(msk∗,x∗): Output

ct∗ =
(
[c�]1, [w̃�]1, [ṽ�]1, [w̃�

0]1
)

and x∗.

– KeyGen∗(msk∗,x∗, (f, [r]2), [μ]2): Run

(L1,L0) ← lgen(f) and ([(p∗
1)

�]2, [(p∗
2)

�]2) ← pgb∗(f,x∗, [μ]2).

Here, we use the fact that pgb∗(f,x∗, ·) is an affine function. Sample û ← Z
nm
p ,

T ← Z
(k+1)×(m+n′−1)
p and R ← Z

k×m
p and output

sk∗
f,r =

(
C⊥ · sk∗

f,r[1] + a⊥ · sk∗
f,r[2], [R]2

)
and (f, [r]2) (19)

where

sk∗
f,r[1] =

(
[A�T+A�W]2, [A

�TL1 +A�U(In ⊗ R)]2,

[A�TL0 − A�W0r · e�
1 +A�VR]2

)

sk∗
f,r[2] =

(
[−(p∗

1)
� + w̃�]2, [û

�]2, [(p
∗
2)

� − û�(x∗ ⊗ Im) − w̃�
0r · e�

1 + ṽ�R]2
)

Here T refers to the matrix composed of the right most n′ columns of T.
That is,

sk∗
f,r =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[C⊥(A�T + A�W) +a⊥(−(p∗
1)� + w̃�)]2,

[C⊥(A�TL1 + A�U(In ⊗ R)) +a⊥(û�)]2 , [R]2

[C⊥(A�TL0 − A�W0r · e�1 + A�VR) +a⊥(
(p ∗

2)� − û�(x∗ ⊗ Im) − w̃�
0 r · e�1 + ṽ�R

)
]2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

708 M. Abdalla et al.

7 Πubd: Unbounded-Slot Scheme

In this section, we describe our unbounded-slot FE scheme. We give a generic
transformation from scheme Πext in Sect. 6 and present a self-contained descrip-
tion of the scheme in the full paper.

7.1 Scheme

Let Πext = (Setupext,Encext,KeyGenext,Decext) be the extended one-slot FE
scheme in Sect. 6. Our unbounded-slot FE scheme Πubd is as follows:

– Setup(1λ, 1n, 1n′
): Run

(mpk1,msk1) ← Setupext(1
λ, 1n, 1n′

); (mpk2,msk2) ← Setupext(1
λ, 1n, 1n′

)

and output

mpk = (mpk1,mpk2) and msk = (msk1,msk2).

– Enc(mpk, (xi, zi)i∈[N]): Sample w2, . . . ,wN ← Z
k
p, compute

ct1 ← Encext(mpk1, (x1, z1‖ − ∑
i∈[2,N] wi))

cti ← Encext(mpk2, (xi, zi‖wi)), ∀i ∈ [2, N]

and output
ct(xi,zi) = (ct1, . . . , ctN) and (xi)i∈[N].

– KeyGen(msk, f): Pick r ← Z
k
p, compute

skf,1 ← KeyGenext(msk1, (f, [r]2)); skf,2 ← KeyGenext(msk2, (f, [r]2))

and output
skf = (skf,1, skf,2, [r]2) and f.

– Dec((skf , f), (ct(xi,zi), (xi)i∈[N])): Parse ciphertext and key as

skf = (skf,1, skf,2, [r]2) and ct(xi,zi) = (ct1, . . . , ctN).

We proceed as follows:
1. Compute

[D1]T ← Decext
(
(skf,1, (f, [r]2)), (ct1,x1)

)
; (20)

2. For all i ∈ [2, N], compute

[Di]T ← Decext
(
(skf,2, (f, [r]2)), (cti,xi)

)
; (21)

3. Compute
[D]T = [D1]T · · · [DN]T (22)

and output D via brute-force discrete log.

Functional Encryption for Attribute-Weighted Sums from k-Lin 709

Correctness. For ct(xi,zi) with randomness w2, . . . ,wN and skf with random-
ness r, we have

D1 = f(x1)�z1 − ∑
i∈[2,N] w

�
i r (23)

Di = f(xi)�zi + w�
i r, ∀i ∈ [2, N] (24)

D =
∑

i∈[N] f(xi)�zi (25)

Here (23) and (24) follow from the correctness of Πext and the last (25) is implied
by (23) and (24). This readily proves the correctness.

Security. We have the following theorem with the proof shown in the subse-
quent subsection.

Theorem 3. Assume that extended one-slot scheme Πext achieves simulation-
based semi-adaptive security, our unbounded-slot FE scheme Πubd described in
this section achieves simulation-based semi-adaptive security under the k-Linear
assumption in G2.

7.2 Simulator

Let (Setup∗
ext,Enc

∗
ext,KeyGen

∗
ext) be the simulator for Πext, we start by describ-

ing the simulator for Πubd. As written, the adversary needs to commit to the
length N in advance; this is merely an artifact of our formalization of simulation-
based security, and can be avoided by having Enc∗ pass auxiliary information to
KeyGen∗.

– Setup∗(1λ, 1n, 1n′
, 1N): Sample w2, . . . ,wN ← Z

k
p, run

(mpk1,msk∗
1) ← Setup∗

ext(1
λ, 1n, 1n′

); (mpk2,msk2) ← Setupext(1
λ, 1n, 1n′

)

and output

mpk = (mpk1,mpk2) and msk∗ = (msk∗
1,msk2,w2, . . . ,wN).

– Enc∗(msk∗, (x∗
i)i∈[N]): Compute

ct∗1 ← Enc∗
ext(msk∗

1,x
∗
1) and cti ← Encext(mpk2, (x

∗
i ,0‖wi)), ∀i ∈ [2, N]

and output
ct∗ = (ct∗1, ct2, . . . , ctN) and (x∗

i)i∈[N].

– KeyGen∗(msk∗, (x∗
i)i∈[N], f, μ ∈ Zp): Pick r ← Z

k
p, compute

sk∗
f,1 ← KeyGen∗

ext(msk∗
1,x

∗
1, (f, [r]2), [μ − ∑

i∈[2,N] w
�
i r]2)

skf,2 ← KeyGenext(msk2, (f, [r]2))

and output
sk∗

f = (sk∗
f,1, skf,2, [r]2) and f.

710 M. Abdalla et al.

7.3 Proof

With our simulator, we prove the following theorem which implies Theorem 3.

Theorem 4. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈
Time(A) such that

AdvΠubd

A (λ) ≤ (2N − 1) · AdvΠext

B1
(λ) + (N − 1) · AdvMDDH1

k,Q

B2
(λ)

where Q is the number of key queries and N is number of slots.

Game sequence. We use (x∗
1, z

∗
1, . . . ,x

∗
N , z∗

N) to denote the semi-adaptive chal-
lenge and prove Theorem 4 via the following game sequence summarized in Fig. 4,
where

Game0 ≈c Game1 = Game2.0 ≈c Game2.1 ≈c Game2.2 ≈c Game2.3

. . .
= GameN.0 ≈c GameN.1 ≈c GameN.2 ≈c GameN.3

Game0: Real game.
Game1: Identical to Game0 except for the boxed terms below:

– we generate mpk = (mpk1,mpk2) and msk = (msk∗
1 ,msk2) where

(mpk1,msk∗
1) ← Setup∗

ext(1
λ, 1n, 1n′

) ; (mpk2,msk2) ← Setupext(1
λ, 1n, 1n′

)

– the challenge ciphertext for (x∗
1, z

∗
1, . . . ,x

∗
N , z∗

N) is ct∗ = (ct∗1 , ct2, . . . ,

ctN) where

ct∗1 ← Enc∗
ext(msk∗

1,x
∗
1) ; cti ← Encext(mpk2, (x

∗
i , z

∗
i ‖wi)), ∀i ∈ [2, N]

– the key for the j-th query fj is skfj
= (sk∗

fj ,1 , skfj ,2, [rj]2) where

sk∗
fj ,1 ← KeyGen∗

ext

(
msk∗

1,x
∗
1, (fj , [rj]2), [fj(x∗

1)
�z∗

1 − ∑
i∈[2,N] w

�
i rj]2

)

skfj ,2 ← KeyGenext(msk2, (fj , [rj]2));

where w2, . . . ,wN ← Z
k
p and rj ← Z

k
p for all j ∈ [Q]. We claim that Game0 ≈c

Game1. This follows from the simulation-based semi-adaptive security of Πext.

Gameη.0 for η ∈ [2, N]: Identical to Game1 except for the boxed terms below:
– the challenge ciphertext for (x∗

1, z
∗
1, . . . ,x

∗
N , z∗

N) is ct∗ = (ct∗1, ct2, . . . , ctN)
where

ct∗1 ← Enc∗
ext(msk∗

1,x
∗
1); cti ←

{
Encext(mpk2, (x

∗
i , 0 ‖wi)) i ∈ [2, η − 1]

Encext(mpk2, (x
∗
i , z∗

i ‖wi)) i ∈ [η, N]

Functional Encryption for Attribute-Weighted Sums from k-Lin 711

– the key for the j-th query fj is skfj
= (sk∗

fj ,1, skfj ,2, [rj]2) where

sk∗fj,1 ← KeyGen∗
ext

(
msk∗1 , x∗

1 , (fj, [rj]2), [
∑

i∈[η−1] fj(x∗
i)�z∗

i − ∑
i∈[2,N] w

�
i rj]2

)

skfj ,2 ← KeyGenext(msk2, (fj , [rj]2));
where w2, . . . ,wN ← Z

k
p and rj ← Z

k
p for all j ∈ [Q].

Gameη.1 for η ∈ [2, N]: Identical to Gameη.0 except for the boxed terms below:

– we generate mpk = (mpk1,mpk2) and msk = (msk∗
1, msk∗

2) where

(mpk1,msk∗
1) ← Setup∗

ext(1
λ, 1n, 1n′

); (mpk2,msk∗
2) ← Setup∗

ext(1
λ, 1n, 1n′

)

– the challenge ciphertext for (x∗
1, z

∗
1, . . . ,x

∗
N , z∗

N) is ct∗ = (ct∗1, ct2, . . . ,
ctη−1, ct∗η , ctη+1, . . . , ctN) where

ct∗1 ← Enc∗
ext(msk∗

1,x
∗
1),

⎧
⎪⎪⎨

⎪⎪⎩

cti ← Encext(mpk2, (x∗
i ,0‖wi)) i ∈ [2, η − 1]

ct∗η ← Enc∗
ext(msk∗

2,x
∗
η) i = η

cti ← Encext(mpk2, (x∗
i , z

∗
i ‖wi)) i ∈ [η + 1, N]

– the key for the j-th query fj is skfj
= (sk∗

fj ,1, sk∗
fj ,2 , [rj]2) where

sk∗
fj ,1 ← KeyGen∗

ext

(
msk∗

1,x
∗
1, (fj , [rj]2), [

∑
i∈[η−1] fj(x

∗
i)

�z∗
i − ∑

i∈[2,N] w
�
i rj]2

)

sk∗
fj ,2 ← KeyGen∗

ext(msk∗
2,x

∗
η, (fj , [rj]2), [fj(x∗

η)�z∗
η + w�

ηrj]2)

where w2, . . . ,wN ← Z
k
p and rj ← Z

k
p for all j ∈ [Q]. We claim that

Gameη.0 ≈c Gameη.1. This follows from the simulation-based semi-adaptive
security of Πext.

Gameη.2 for η ∈ [2, N]: Identical to Gameη.1 except for the boxed terms below:
– the key for the j-th query fj is skfj

= (sk∗
fj ,1, sk

∗
fj ,2, [rj]2) where

sk∗
fj ,1 ← KeyGen∗

ext

(
msk∗

1,x
∗
1, (fj , [rj]2), [

∑
i∈[η] fj(x

∗
i)

�z∗
i − ∑

i∈[2,N] w
�
i rj]2

)

sk∗
fj ,2 ← KeyGen∗

ext(msk∗
2,x

∗
η, (fj , [rj]2), [w�

ηrj]2)

where w2, . . . ,wN ← Z
k
p and rj ← Z

k
p for all j ∈ [Q]. We claim that

Gameη.1 ≈c Gameη.2. This follows from Lemma 1 w.r.t. wη and fj(x∗
η)�z∗

η

which is implied by MDDH1
k,Q assumption: for all fj ,x∗

η, z∗
η,

{
sk∗

fj,1

︷ ︸︸ ︷
[−w�

ηrj]2,

sk∗
fj,2

︷ ︸︸ ︷
[fj(x∗

η)�z∗
η + w�

ηrj]2, [rj]2
}

j∈[Q]

≈c

{
[fj(x∗

η)�z∗
η − w�

ηrj]2, [w�
ηrj]2, [rj]2

}
j∈[Q]

(26)

where wη, rj ← Z
k
p for all j ∈ [Q].

712 M. Abdalla et al.

F
ig
.
4
.

G
a
m

e
se

q
u
en

ce
fo

r
Π

u
b
d

w
it

h
η

∈
[2

,N
],

w
h
er

e
G
am

e 2
.0

=
G
am

e 1
,G

am
e 3

.0
=

G
am

e 2
,3

,.
..

,G
am

e N
,0

=
G
am

e N
−
1
,3

.E
a
ch

ce
ll

is
in

th
e

fo
rm

a
t

“
xx
x:
yy
y”

w
h
er

e
xx
x

∈
{r

ea
l,

si
m

}
in

d
ic

a
te

s
w

h
et

h
er

th
e

ci
p
h
er

te
x
t/

k
ey

co
m

p
o
n
en

t
is

g
en

er
a
te

d
u
si

n
g

re
a
l

a
lg

o
ri

th
m

o
r

si
m

u
la

to
r
a
n
d
yy
y

g
iv

es
o
u
t
th

e
in

fo
rm

a
ti

o
n

fe
d

to
a
lg

o
ri

th
m

/
si

m
u
la

to
r.

T
h
ro

u
g
h
o
u
t,

th
e

fi
rs

t
in

p
u
t
to

K
ey
G
en

ex
t/

K
ey
G
en

∗ ex
t
fo

r
g
en

er
a
ti

n
g

sk
f
,1

is
(f

,[
r]

2
);

th
e

sa
m

e
a
p
p
li
es

to
sk

f
,2

.
T

h
e

su
m

o
f
w

� i
r

is
a
lw

ay
s

ov
er

i
∈

[2
,N

].

Functional Encryption for Attribute-Weighted Sums from k-Lin 713

Gameη.3 for η ∈ [2, N]: Identical to Gameη.2 except for the boxed terms below:

– we generate mpk = (mpk1,mpk2) and msk = (msk∗
1, msk2) where

(mpk1,msk∗
1) ← Setup∗

ext(1
λ, 1n, 1n′

), (mpk2,msk2) ← Setupext(1
λ, 1n, 1n′

)

– the challenge ciphertext for (x∗
1, z

∗
1, . . . ,x

∗
N , z∗

N) is ct∗ = (ct∗1, ct2, . . . ,
ctη−1, ctη , ctη+1, . . . , ctN) where

ct∗1 ← Enc∗
ext(msk∗

1,x
∗
1),

⎧
⎪⎪⎨

⎪⎪⎩

cti ← Encext(mpk2, (x
∗
i ,0‖wi)) i ∈ [2, η − 1]

cti ← Encext(mpk2, (x
∗
η,0‖wη)) i = η

cti ← Encext(mpk2, (x
∗
i , z∗

i ‖wi)) i ∈ [η + 1, N]

– the key for the j-th query fj is skfj
= (sk∗

fj ,1, skfj ,2 , [rj]2) where

sk∗
fj ,1 ← KeyGen∗

ext

(
msk∗

1,x
∗
1, (fj , [rj]2), [

∑
i∈[η] fj(x

∗
i)

�z∗
i − ∑

i∈[2,N] w
�
i rj]2

)

skfj ,2 ← KeyGenext(msk2, (fj , [rj]2))

where w2, . . . ,wN ← Z
k
p and rj ← Z

k
p for all j ∈ [Q]. We claim that

Gameη.2 ≈c Gameη.3. This follows from the simulation-based semi-adaptive
security of Πext with the fact fj(x∗

η)�0 + w�
ηr = w�

ηr.

Here we have Game2.0 = Game1 and Gameη.0 = Gameη−1.3 for all η ∈ [3, N]. Note
that GameN.3 corresponds to the output of the simulator in the ideal game. We
summarize the game sequence in Fig. 4. We prove the indistinguishability of
adjacent games listed above in the full paper.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. Cryptology ePrint Archive, Report 2020/577
(2020)

3. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 21

4. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 28

5. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 34–64. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9 2

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-030-45374-9_2

714 M. Abdalla et al.

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 12

7. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 765–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 26

8. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 4

9. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the
generic group model: automated proofs and new constructions. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 647–664. ACM
Press, October/November 2017

10. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 3

11. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and Compact Garbled Circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 30

13. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

14. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
III. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 13

15. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

16. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10879-7 16

17. Chen, Y., Zhang, L., Yiu, S.-M.: Practical attribute based inner product functional
encryption from simple assumptions. Cryptology ePrint Archive, Report 2019/846
(2019)

18. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03329-3 24

https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-319-10879-7_16
https://doi.org/10.1007/978-3-030-03329-3_24

Functional Encryption for Attribute-Weighted Sums from k-Lin 715

19. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-
hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part II. LNCS, vol. 11273, pp. 640–672. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 22

20. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

21. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

22. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 25

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 25

25. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling func-
tionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part
II. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53644-5 14

26. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. Available as Cryptology ePrint Archive Report 2006/309

27. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS,
vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43948-7 54

28. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

29. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
IACR Cryptology ePrint Archive, 2019:1252 (2019)

30. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

31. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 1

32. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-53644-5_14
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-030-17653-2_1
https://doi.org/10.1007/978-3-642-20465-4_30

716 M. Abdalla et al.

33. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

34. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 35

35. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 96–A(1), 42–52 (2013)

36. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

37. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

38. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

39. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

40. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 206–233.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 8

https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-70500-2_8

	Functional Encryption for Attribute-Weighted Sums from k-Lin
	1 Introduction
	1.1 Our Results
	1.2 Our Construction
	1.3 Discussion

	2 Technical Overview
	2.1 One-Slot Scheme
	2.2 Unbounded-Slot Scheme

	3 Preliminaries
	3.1 Prime-Order Bilinear Groups

	4 Definitions and Tools
	4.1 FE for Attribute-Weighted Sums
	4.2 Partial Garbling Scheme

	5 one: One-Slot Scheme
	5.1 Construction
	5.2 Simulator
	5.3 Proof

	6 ext: Extending one
	6.1 Our Scheme

	7 ubd: Unbounded-Slot Scheme
	7.1 Scheme
	7.2 Simulator
	7.3 Proof

	References

