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Abstract. The masking countermeasure is among the most power-
ful countermeasures to counteract side-channel attacks. Leakage mod-
els have been exhibited to theoretically reason on the security of such
masked implementations. So far, the most widely used leakage model is
the probing model defined by Ishai, Sahai, and Wagner at (CRYPTO
2003). While it is advantageously convenient for security proofs, it does
not capture an adversary exploiting full leakage traces as, e.g., in horizon-
tal attacks. Those attacks target the multiple manipulations of the same
share to reduce noise and recover the corresponding value. To capture a
wider class of attacks another model was introduced and is referred to as
the random probing model. From a leakage parameter p, each wire of the
circuit leaks its value with probability p. While this model much better
reflects the physical reality of side channels, it requires more complex
security proofs and does not yet come with practical constructions.

In this paper, we define the first framework dedicated to the random
probing model. We provide an automatic tool, called VRAPS, to quantify
the random probing security of a circuit from its leakage probability. We
also formalize a composition property for secure random probing gadgets
and exhibit its relation to the strong non-interference (SNI) notion used
in the context of probing security. We then revisit the expansion idea
proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce a
compiler that builds a random probing secure circuit from small base gad-
gets achieving a random probing expandability property. We instantiate
this compiler with small gadgets for which we verify the expected prop-
erties directly from our automatic tool. Our construction can tolerate a
leakage probability up to 2−8, against 2−25 for the previous construction,
with a better asymptotic complexity.
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1 Introduction

Most cryptographic algorithms are assumed to be secure against black-box
attacks where the adversary is limited to the knowledge of some inputs and
outputs to recover the manipulated secrets. However, as revealed in the late
nineties [19], when implemented on physical devices, they become vulnerable
to the more powerful side-channel attacks which additionally exploit the physi-
cal emanations such as temperature, time, power consumption, electromagnetic
radiations.

As such attacks may only require cheap equipment and can be easily mounted
in a short time interval, the community had to adapt quickly by looking for
efficient countermeasures. The most widely deployed approach to counteract
side-channel attacks was simultaneously introduced in 1999 by Chari et al. [11]
and by Goubin and Patarin [16] and is now called masking. Basically, the idea is
to split each sensitive variable x of the implementation into n shares such that
n − 1 of them are generated uniformly at random and the last one is computed
as the combination of x and all the previous shares according to some group law
∗. When ∗ is the (bitwise) addition, we talk about linear sharing (aka Boolean
masking). The adversary thus needs to get information on all the shares of
x to recover information on the sensitive value. This countermeasure is really
simple to implement for linear operations which are simply applied on each share
separately. However, things are getting trickier for non-linear operations where
it is impossible to compute the result without combining shares.

To reason about the security of masked implementations, the community
introduced leakage models. One of the most broadly used is the probing model,
introduced by Ishai, Sahai, and Wagner [18]. In a nutshell, a circuit is claimed
to be t-probing secure if the exact values of any set of t intermediate variables
do not reveal any information on the secrets. As leakage traces are assumed to
reveal noisy functions of the manipulated data, this model is motivated by the
difficulty to recover information from the combination of t variables from their
noisy functions in masking schemes (as t grows). Nevertheless, the probing model
fails to capture the huge amount of information resulting from the leakage of all
manipulated data, and in particular from the repeated manipulation of identical
values (see horizontal attacks in [7]). Therefore, after a long sequence of works
building and analyzing masking schemes with respect to their security in the
probing model [8,14,23], the community is now looking for security in more
practical models.

The noisy leakage model was originally considered by Chari et al. in [11]
and was later formalized by Prouff and Rivain in [22] as a specialization of the
only computation leaks model [21] in order to better capture the reality of the
physical leakage. Informally, a circuit is secure in the noisy leakage model if the
adversary cannot recover the secrets from a noisy function of each intermediate
variable of the implementation. While realistic, this model is not convenient for
security proofs, and therefore masking schemes continued to be verified in the
probing model relying on the not tight reduction that was formally established
by Duc, Dziembowski, and Faust [15].
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The latter reduction actually came with an intermediate leakage model,
called random probing model, to which the security in the noisy leakage model
reduces to. In the random probing model, each intermediate variable leaks with
some constant leakage probability p. A circuit is secure in this model if there is a
negligible probability that these leaking wires actually reveal information on the
secrets. It is worth noting that this notion advantageously captures the horizon-
tal attacks which exploit the repeated manipulations of variables throughout the
implementation. Classical probing-secure schemes are also secure in the random
probing model but the tolerated leakage probability (a.k.a. leakage rate) might
not be constant which is not satisfactory from a practical viewpoint. Indeed, in
practice the side-channel noise might not be customizable by the implementer.

Only a few constructions [1–3] tolerate a constant leakage probability. These
three constructions are conceptually involved and their practical instantiation
is not straightforward. The first one from Ajtai et al. and its extension [3] are
based on expander graphs. The tolerated probability is not made explicit. The
third work [2] is based on multi-party computation protocols and an expansion
strategy; the tolerated probability is around 2−26 and for a circuit with |C| gates,
the complexity is O(|C| · poly(κ)) for some parameter κ but the polynomial is
not made explicit.

Following the long sequence of works relying on the probing security, for-
mal tools have recently been built to supervise the development of masking
implementations proven secure in the probing model. Namely, verification tools
are now able to produce a security proof or identify potential attacks from the
description of a masked implementation at up to some masking orders (i.e.,
<5) [4,10,13]. In the same vein, compilers have been built to automatically gen-
erate masked implementations at any order given the high level description of a
primitive [5,9,10]. Nevertheless, no equivalent framework has yet been proposed
to verify the security of implementations in the random probing model.

Our contributions. In this paper, we aim to fill this huge gap by providing
a framework to verify, compose, and build random probing secure circuits from
simple gadgets. Our contributions are three-fold.

Automatic verification tool. As a first contribution, we define a verification
method that we instantiate in a tool to automatically exhibit the random probing
security parameters of any small circuit defined with addition and multiplica-
tion gates whose wires leak with some probability p. In a nutshell, a circuit is
(p, f)-random probing secure if it leaks information on the secret with proba-
bility f(p), where f(p) is the failure probability function. From these notations,
our tool named VRAPS (for Verifier of Random Probing Security), based on top
of a set of rules that were previously defined to verify the probing security of
implementations [4], takes as input the description of a circuit and outputs an
upper bound on the failure probability function. While it is limited to small cir-
cuits by complexity, the state-of-the-art shows that verifying those circuits can
be particularly useful in practice (see e.g. the maskVerif tool [4]), for instance
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to verify gadgets and then deduce global security through composition proper-
ties and/or low-order masked implementations. The source code of VRAPS is
publicly available.1

Composition and expanding compiler. We introduce a composition security prop-
erty to make gadgets composable in a global random probing secure circuit.
We exhibit the relation between this new random probing composability (RPC)
notion and the strong non-interference (SNI) notion which is widely used in the
context of probing security [5]. Then, we revisit the modular approach of Ananth,
Ishai, and Sahai [2] which uses an expansion strategy to get random probing
security from a multi-party computation protocol. We introduce the expanding
compiler that builds random probing secure circuits from small base gadgets. We
formalize the notion of random probing expandability (RPE) and show that a
base gadget satisfying this notion can be securely used in the expanding compiler
to achieve arbitrary/composable random probing security. As a complementary
contribution, our verification tool, VRAPS, is extended to verify the newly intro-
duced RPC and RPE properties.

Instantiation. We instantiate the expanding compiler with new constructions of
simple base gadgets that fulfill the desired RPE property, which is verified by
VRAPS. For a security level κ, our instantiation achieves a complexity of O(κ7.5)
and tolerates a constant leakage probability p ≈ 0.0045 > 2−8. In comparison,
and as a side contribution, we provide a precise analysis of the construction
from [2] and show that it achieves an O(κ8.2) complexity for a much lower
tolerated leakage probability (p ≈ 2−26). Finally, we note that our framework
probably enables more efficient constructions based on different base gadgets;
we leave such optimizations open for future works.

2 Preliminaries

Along the paper, K shall denote a finite field. For any n ∈ N, we shall denote
[n] the integer set [n] = [1, n] ∩ Z. For any tuple x = (x1, . . . , xn) ∈ K

n and any
set I ⊆ [n], we shall denote x|I = (xi)i∈I . Any two probability distributions D1

and D2 are said ε-close, denoted D1 ≈ε D2, if their statistical distance is upper
bounded by ε, that is

SD(D1;D2) :=
1
2

∑

x

|pD1(x) − pD2(x)| ≤ ε ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Circuit Compilers

In this paper, an arithmetic circuit over a field K is a labeled directed acyclic
graph whose edges are wires and vertices are arithmetic gates processing oper-
ations over K. We consider three types of arithmetic gate:
1 See https://github.com/CryptoExperts/VRAPS.

https://github.com/CryptoExperts/VRAPS
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– an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,
– a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication

over K,
– a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.

A randomized arithmetic circuit is equipped with an additional type of gate:

– a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random
value of K.

A (randomized) arithmetic circuit is further formally composed of input gates
of fan-in 0 and fan-out 1 and output gates of fan-in 1 and fan-out 0. Evaluating
an �-input m-output circuit C consists in writing an input x ∈ K

� in the input
gates, processing the gates from input gates to output gates, then reading the
output y ∈ K

m from the output gates. This is denoted by y = C(x). During the
evaluation process, each wire in the circuit is assigned with a value on K. We
call the tuple of all these wire values a wire assignment of C (on input x).

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms
(CC,Enc,Dec) defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an
arithmetic circuit C and outputs a randomized arithmetic circuit Ĉ.

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K
�

to an encoded input x̂ ∈ K
�′
.

– Dec (output decoding) is a deterministic algorithm that maps an encoded out-
put ŷ ∈ K

m′
to a plain output y ∈ K

m.

These three algorithms satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length �, and for every
x ∈ K

�, we have

Pr
(
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂ ← Enc(x)
)

= 1 , where Ĉ = CC(C).

– Efficiency: For some security parameter λ ∈ N, the running time of CC(C) is
poly(λ, |C|), the running time of Enc(x) is poly(λ, |x|) and the running time
of Dec

(
ŷ
)

is poly(λ, |ŷ|), where poly(λ, q) = O(λk1qk2) for some constants
k1, k2.

2.2 Linear Sharing and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the
function

⋃
n K

n → K defined as

LinDec : (x1, . . . , xn) 
→ x1 + · · · + xn ,

for every n ∈ N and (x1, . . . , xn) ∈ K
n. We shall further consider that, for every

n, � ∈ N, on input (x̂1, . . . , x̂�) ∈ (Kn)� the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂�) 
→ (LinDec(x̂1), . . . , LinDec(x̂�)) .

Let us recall that for some tuple x̂ = (x1, . . . , xn) ∈ K
n and for some set

I ⊆ [n], the tuple (xi)i∈I is denoted x̂|I .
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Definition 2 (Linear Sharing). Let n, � ∈ N. For any x ∈ K, an n-linear
sharing of x is a random vector x̂ ∈ K

n such that LinDec(x̂) = x. It is said to be
uniform if for any set I ⊆ [n] with |I| < n the tuple x̂|I is uniformly distributed
over K

|I|. A n-linear encoding is a probabilistic algorithm LinEnc which on input
a tuple x = (x1, . . . , x�) ∈ K

� outputs a tuple x̂ = (x̂1, . . . , x̂�) ∈ (Kn)� such that
x̂i is a uniform n-sharing of xi for every i ∈ [�].

In the following, we shall call an (n-share, �-to-m) gadget, a randomized
arithmetic circuit that maps an input x̂ ∈ (Kn)� to an output ŷ ∈ (Kn)m such
that x = LinDec(x̂) ∈ K

� and y = LinDec(ŷ) ∈ K
m satisfy y = g(x) for some

function g. In this paper, we shall consider gadgets for three types of functions
(corresponding to the three types of gates): the addition g : (x1, x2) 
→ x1 + x2,
the multiplication g : (x1, x2) 
→ x1 · x2 and the copy g : x 
→ (x, x). We shall
generally denote such gadgets Gadd, Gmult and Gcopy respectively.

Definition 3 (Standard Circuit Compiler). Let λ ∈ N be some security
parameter and let n = poly(λ). Let Gadd, Gmult and Gcopy be n-share gadgets
respectively for the addition, multiplication and copy over K. The standard cir-
cuit compiler with sharing order n and base gadgets Gadd, Gmult, Gcopy is the
circuit compiler (CC,Enc,Dec) satisfying the following:

1. The input encoding Enc is an n-linear encoding.
2. The output decoding Dec is the n-linear decoding mapping LinDec.
3. The circuit compilation CC consists in replacing each gate in the original

circuit by an n-share gadget with corresponding functionality (either Gadd,
Gmult or Gcopy), and each wire by a set of n wires carrying a n-linear sharing
of the original wire. If the input circuit is a randomized arithmetic circuit,
each of its random gates is replaced by n random gates, which duly produce a
n-linear sharing of a random value.

For such a circuit compiler, the correctness and efficiency directly holds from the
correctness and efficiency of the gadgets Gadd, Gmult and Gcopy.

2.3 Random Probing Leakage

Let p ∈ [0, 1] be some constant leakage probability parameter. This parameter is
sometimes called leakage rate in the literature. Informally, the p-random probing
model states that during the evaluation of a circuit C each wire leaks its value
with probability p (and leaks nothing otherwise), where all the wire leakage
events are mutually independent.

In order to formally define the random-probing leakage of a circuit, we shall
consider two probabilistic algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C
and a probability p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with
probability p to W (where all the probabilities are mutually independent).
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– The assign-wires sampler takes as input a randomized arithmetic circuit C,
a set of wire labels W (subset of the wire labels of C), and an input x, and
it outputs a |W|-tuple w ∈ (K ∪ {⊥})|W|, denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W
for an evaluation on input x.

We can now formally define the random probing leakage of a circuit.

Definition 4 (Random Probing Leakage). The p-random probing leakage
of a randomized arithmetic circuit C on input x is the distribution Lp(C,x)
obtained by composing the leaking-wires and assign-wires samplers as

Lp(C,x) id= AssignWires(C, LeakingWires(C, p),x) .

Remark 1. By convention the output wires of C (i.e. the wires incoming output
gates) are excluded by the LeakingWires sampler whereas the input wires of C
(i.e. the wires connecting input gates to subsequent gates) are included. Namely
the output set W of LeakingWires(C, p) does not include any output wire label
of C. This is because when composing several circuits (or gadgets), the output
wires of a circuit are the input wires in a next circuit. This also relates to the
widely admitted only computation leaks assumption [21]: the processing of a
gate leaks information on its input values (and information on the output can
be captured through information on the input).

Definition 5 (Random Probing Security). A randomized arithmetic circuit
C with � · n ∈ N input gates is (p, ε)-random probing secure with respect to
encoding Enc if there exists a simulator Sim such that for every x ∈ K

�:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure if for every
(randomized) arithmetic circuit C the compiled circuit Ĉ = CC(C) is (p, |C| · ε)-
random probing secure where |C| is the size of original circuit.

As in [2] we shall consider a simulation with abort. In this approach, the
simulator first calls the leaking-wires sampler to get a set W and then either
aborts (or fails) with probability ε or outputs the exact distribution of the wire
assignment corresponding to W. Formally, for any leakage probability p ∈ [0, 1],
the simulator Sim is defined as

Sim(Ĉ) = SimAW(Ĉ, LeakingWires(Ĉ, p)) (2)

where SimAW, the wire assignment simulator, either returns ⊥ (simulation fail-
ure) or a perfect simulation of the requested wires. Formally, the experiment

W ← LeakingWires(Ĉ, p)

out ← SimAW(Ĉ,W)



346 S. Beläıd et al.

leads to

Pr[out = ⊥] = ε and
(
out | out �= ⊥) id

=
(
AssignWires(Ĉ, W, Enc(x)) | out �= ⊥)

.
(3)

It is not hard to see that if we can construct such a simulator SimAW for a
compiled circuit Ĉ, then this circuit is (p, ε)-random probing secure.

3 Formal Verification

In this section we show how to compute the simulation failure probability f(p)
as a function of the leakage probability p for the base gadgets. Since even for
simple gadgets this tasks would be difficult to perform by hand, we use a formal
verification tool to compute f(p).

3.1 Simulation Failure Probability

We first derive an upper bound on the simulation failure probability as a function
of the leakage probability p. We consider a compiled circuit Ĉ composed of s
wires labeled from 1 to s and a simulator SimAW as defined in previous section.
For any sub-set W ⊆ [s] we denote by δW the value defined as follows:

δW =

{
1 if SimAW(Ĉ,W) = ⊥,

0 otherwise.

The simulation failure probability ε in (3) can then be explicitly expressed
as a function of p. Namely, we have ε = f(p) with f defined for every p ∈ [0, 1]
by:

f(p) =
∑

W⊆[s]

δW · p|W| · (1 − p)s−|W| . (4)

Letting ci be the number of sub-sets W ⊆ [s] of cardinality i for which δW = 1,
namely for which the simulation fails, we have ci =

∑
|W|=i δW and hence (4)

simplifies to

f(p) =
s∑

i=1

ci · pi · (1 − p)s−i . (5)

For any circuit Ĉ achieving t-probing security, the values δW with |W| ≤ t
are equal to zero, and therefore the corresponding ci’s are zero, which implies
the following simplification:

f(p) =
s∑

i=t+1

ci · pi · (1 − p)s−i .

Moreover, by definition, the coefficients ci satisfy:

ci �
(

s

i

)
(6)



Random Probing Security 347

which leads to the following upper-bound for f(p):

f(p) �
s∑

i=t+1

(
s

i

)
· pi · (1 − p)s−i .

An example of the evaluation of f(p) for the 2-share multiplication gadget
from [18] is given in the full version of this paper.

3.2 Verification Method

For any compiled circuit Ĉ and any simulator defined as in Sect. 2.3, the compu-
tation of the function f(p) for any probability p essentially amounts to computing
the values of the coefficients ci’s appearing in (5). If no assumption is made on
the circuit, this task seems difficult to carry out by hand. Actually, it may be
checked that an exhaustive testing of all the possible tuples of wires for a gadget
with s wires has complexity lower bounded by 2s, which gives 221 for a simple
gadget like the ISW multiplication gadget with two shares per input. Here, we
introduce a verification tool, that we call VRAPS, enabling to automatically test
the perfect simulation for any set of wires of size lower than or equal to some
threshold β. The role of the latter threshold is simply to control the verification
duration (which can be long if the circuit to test is complex). Our tool implicitly
defines a simulator that may fail with a probability ε = f(p) satisfying (5).

The verification tool takes as input the representation of a compiled circuit Ĉ
and a test parameter β, and outputs the list of coefficients c1, ..., cβ . It is assumed
that Ĉ takes as input the n-linear encoding Enc(x) of vector x = (x1, . . . , x�)
defined in K

�. It is moreover assumed that Ĉ is composed of s wires respectively
denoted by w1, ..., ws. In the following, we consider s-tuples in the form of u =
(u1, . . . , us) ∈ {0, 1}s together with the common rule u′ ⊂ u iff for every i ∈ [s],
u′

i = 1 ⇒ ui = 1 (in this case u′ will be said to be included in u). An s-tuple u
for which there exists an assignment of the wires in W = {wi; i ∈ [s], ui = 1}
such that the simulation fails shall be called a failure tuple. Such a tuple shall be
said to be incompressible if no tuple t′ ⊂ t is a failure tuple. The main idea of the
proposed verification tool is to test the simulation failure only on incompressible
failure tuples whose Hamming weight ranges from 1 to β. The steps are described
in Algorithm 1.

The function listTuples outputs the list of all s-tuples with Hamming weight
h with h ∈ [s]. The function eliminateFromSmaller takes as input the list �h of
current tuples of Hamming weight h and the list of incompressible failure tuples
�p. It returns two lists:

– �f1
h : the elements of �h which are not incompressible (i.e. which include at

least one element from �p)
– �p

h: the elements of �h which are incompressible (i.e. �h\�f1
h )
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Algorithm 1. Verification tool
Input: a compiled circuit Ĉ with s wires and a threshold β � s
Output: a list of β coefficients c1, ..., cβ

1: �p ← [] � will be used to store a list of failure tuples
2: c ← (0, . . . , 0) � will be used to store the output coefficients
3: for h = 1 to β do
4: �h ← listTuples(s,h) � list of s-tuples of Hamming weight h
5: (�p

h, �f1
h ) ← eliminateFromSmaller(�h, �p) � select tuples including an

incompressible failure tuple
6: �f2

h ← failureTest(Ĉ, �p
h) � identify failure tuples in �p

h

7: �p ← �p ∪ �f2
h � update list of incompressible failure tuples

8: c ← updateCoeffs(c, �f1
h ∪ �f2

h ) � update coefficients
9: end for

10: return c

The function failureTest takes as input the second list �p
h and checks if a perfect

simulation can be achieved for each wire family W corresponding to a tuple in
�p
h. Basically, for each wire family, a sequence of rules taken from maskVerif [4]

is tested to determine whether W can be perfectly simulated. It outputs �f2
h , the

list of incompressible failure s-tuples of Hamming weight h. In a nutshell, each
wire wi in W is considered together with the algebraic expression ϕi(·) describing
its assignment by Ĉ as a function of the circuit inputs and the random values
returned by the random gates, then the three following rules are successively
and repeatedly applied on all the wires families W (see [4] for further details):

rule 1: check whether all the expressions ϕi(·) corresponding to wires wi in W
contain all the shares of at least one of the coordinates of x;

rule 2: for every ϕi(·), check whether a random r (i.e. an output of a random
gate) additively masks a sub-expression e (which does not involve r) and
appears nowhere else in the other ϕj(·) with j �= i; in this case replace the
sum of the so-called sub-expression and r by r, namely e + r ← r;

rule 3: apply mathematical simplifications on the tuple.

Function updateCoeffs takes as input the current array of β coefficients ci for
1 � i � β and the concatenation of both lists of potential failure tuples �f1

h and
�f2
h . For each failure tuple, these coefficients are updated.

Implementation. An implementation of Algorithm 1 has been developed in
Python. This tool, named VRAPS, has been open sourced at:

https://github.com/CryptoExperts/VRAPS

Further details. The full version of this paper gives more details on the con-
crete link between VRAPS and maskVerif and provides two possible optimizations
to improve the performances of the former. Three examples of multiplication
gadgets are also displayed to illustrate the behavior of our verification tool.

https://github.com/CryptoExperts/VRAPS
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4 Composition

This section aims to provide composition properties for random-probing secure
gadgets. In a nutshell, we aim to show how to build random probing secure larger
circuits from specific random probing secure building blocks.

4.1 Random Probing Composability

We introduce hereafter the random probing composability notion for a gadget.
In the following definition, for an n-share, �-to-m gadget, we denote by I a
collection of sets I = (I1, . . . , I�) with I1 ⊆ [n], . . . , I� ⊆ [n] where n ∈ N

refers to the number of shares. For some x̂ = (x̂1, . . . , x̂�) ∈ (Kn)�, we then
denote x̂|I = (x̂1|I1 , . . . , x̂�|I�

) where x̂i|Ii
∈ K

|Ii| is the tuple composed of the
coordinates of the sharing x̂i of indexes included in Ii.

Definition 6 (Random Probing Composability). Let n, �,m ∈ N. An n-
share gadget G : (Kn)� → (Kn)m is (t, p, ε)-random probing composable (RPC)
for some t ∈ N and p, ε ∈ [0, 1] if there exists a deterministic algorithm SimG

1

and a probabilistic algorithm SimG
2 such that for every input x̂ ∈ (Kn)� and for

every set collection J1 ⊆ [n], . . . , Jm ⊆ [n] of cardinals |J1| ≤ t, . . . , |Jm| ≤ t,
the random experiment

W ← LeakingWires(G, p)

I ← SimG
1 (W,J)

out ← SimG
2

(
x̂|I

)

yields
Pr

(
(|I1| > t) ∨ . . . ∨ (|I�| > t)

) ≤ ε (7)

and
out

id=
(
AssignWires(G,W, x̂) , ŷ|J

)

where J = (J1, . . . , Jm) and ŷ = G(x̂). Let f : R → R. The gadget G is (t, f)-
RPC if it is (t, p, f(p))-RPC for every p ∈ [0, 1].

In the above definition, the first-pass simulator SimG
1 determines the neces-

sary input shares (through the returned collection of sets I) for the second-pass
simulator SimG

2 to produce a perfect simulation of the leaking wires defined by
the set W together with the output shares defined by the collection of sets J .
Note that there always exists such a collection of sets I since I = ([n], . . . , [n])
trivially allows a perfect simulation whatever W and J . However, the goal of
SimG

1 is to return a collection of sets I with cardinals at most t. The idea behind
this constraint is to keep the following composition invariant: for each gadget
we can achieve a perfect simulation of the leaking wires plus t shares of each
output sharing from t shares of each input sharing. We shall call failure event
the event that at least one of the sets I1, . . . , I� output of SimG

1 has cardinality
greater than t. When (t, p, ε)-RPC is achieved, the failure event probability is



350 S. Beläıd et al.

upper bounded by ε according to (7). A failure event occurs whenever SimG
2

requires more than t shares of one input sharing to be able to produce a perfect
simulation of the leaking wires (i.e. the wires with label in W) together with the
output shares in ŷ|J . Whenever such a failure occurs, the composition invariant
is broken. In the absence of failure event, the RPC notion implies that a perfect
simulation can be achieved for the full circuit composed of RPC gadgets. This
is formally stated in the next theorem whose proof is given in the full version.

Theorem 1 (Composition). Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard cir-
cuit compiler with (t, p, ε)-RPC base gadgets. For every (randomized) arithmetic
circuit C composed of |C| gadgets, the compiled circuit CC(C) is (p, |C| · ε)-
random probing secure. Equivalently, the standard circuit compiler CC is (p, ε)-
random probing secure.

4.2 Relation with Standard Probing Composition Notions

We first reformulate the Strong Non-Interference notion introduced in [5] with
the formalism used for our definition of the Random Probing Composability.

Definition 7 (Strong Non-Interference (SNI)). Let n, � and t be positive
integers. An n-share gadget G : (Kn)� → K

n is t-SNI if there exists a determin-
istic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every set

J ⊆ [n] and subset W of wire labels from G satisfying |W|+ |J | � t, the following
random experiment with any x̂ ∈ (Kn)�

I ← SimG
1 (W, J)

out ← SimG
2

(
x̂|I

)

yields
|I1| � |W|, . . . , |I�| � |W| (8)

and
out

id=
(
AssignWires(G,W, x̂) , ŷ|J

)
(9)

where I = (I1, . . . , I�) and ŷ = G(x̂).

Then, we demonstrate that gadgets satisfying the t-SNI notion are also ran-
dom probing composable for specific values that we explicit in the following
proposition, whose proof is available in the full version of this paper.

Proposition 1. Let n, � and t be positive integers and let G be a gadget from
(Kn)� to K

n. If G is t-SNI, then it is also (t/2, p, ε)-RPC for any probability p
and ε satisfying:

ε =
s∑

i=� t
2+1�

(
s

i

)
pi(1 − p)s−i , (10)

where s is the number of wires in G.
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4.3 Verification of Gadget Composability

Our random probing verification tool (Algorithm1) can be easily extended to
define a simulator for the (t, p, ε)-random probing composability of a gadget for
some t and some p. This essentially amounts to extend Algorithm 1 inputs with a
multi-set O and to modify the failureTest procedure in order to test the simulation
for each tuple in the input list �p

n augmented with the outputs coordinates with
indices in O. Then, our extended algorithm is called for every set O composed
of at most t indices in each of the sets J1, . . . , Jm. The output for the call with
input set O is denoted by cO = (cO

1 , . . . , cO
β ). For our simulator construction,

the probability ε satisfies

ε =
s∑

i=1

ci · pi · (1 − p)s−i,

where s denotes the number of wires in the tested gadget. Moreover, the ci’s
satisfy ci = maxO cO

i .
The full version of this paper provides an illustration of the proposition with

the well deployed 3-share ISW multiplication gadget [18].

5 Expansion

Constructing random-probing-secure circuit compilers with a gadget expansion
strategy has been proposed by Ananth, Ishai and Sahai in [2]. Such strategy was
previously used in the field of multi-party computation (MPC) with different but
close security goals [12,17]. Note that such approach is called composition in [2]
since it roughly consists in composing a base circuit compiler several times. We
prefer the terminology of expansion here to avoid any confusion with the notion
of composition for gadgets as considered in Sect. 4 and usual in the literature –
see for instance [5,8,10].

We recall hereafter the general principle of the gadget expansion strategy and
provide an asymptotic analysis of the so-called expanding circuit compiler. Then
we propose an implementation of this strategy which relies on the new notion of
gadget expandability. In contrast, the construction of [2] relies on a t-out-n secure
MPC protocol in the passive security model. The advantage of our notion is that
it can be achieved and/or verified by simple atomic gadgets leading to simple
and efficient constructions. After introducing the gadget expandability notion,
we show that it allows to achieve random-probing security with the expansion
strategy. We finally explain how to adapt the verification tool described in Sect. 3
to this expandability notion.

5.1 Expansion Strategy

The basic principle of the gadget expansion strategy is as follows. Assume we
have three n-share gadgets Gadd, Gmult, Gcopy and denote CC the standard cir-
cuit compiler for these base gadgets. We can derive three new n2-share gadgets
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by simply applying CC to each gadget: G
(2)
add = CC(Gadd), G

(2)
mult = CC(Gmult)

and G
(2)
copy = CC(Gcopy). Let us recall that this process simply consists in replac-

ing each addition gate in the original gadget by Gadd, each multiplication gate
by Gmult and each copy gate by Gcopy, and by replacing each wire by n wires
carrying a sharing of the original wire. Doing so, we obtain n2-share gadgets
for the addition, multiplication and copy on K. This process can be iterated an
arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced
by a base gadget Gadd, Gmult or Gcopy. The second output circuit Ĉ2 is the
original circuit C in which each gate is replaced by an n2-share gadget G

(2)
add,

G
(2)
mult or G

(2)
copy as defined above. Equivalently, Ĉ2 is the circuit Ĉ1 in which each

gate is replaced by a base gadget. In the end, the output circuit Ĉk is hence the
original circuit C in which each gate has been replaced by a k-expanded gadget
and each wire as been replaced by nk wires carrying an (nk)-linear sharing of
the original wire. The underlying compiler is called expanding circuit compiler
which is formally defined hereafter.

Definition 8 (Expanding Circuit Compiler). Let CC be the standard cir-
cuit compiler with sharing order n and base gadgets Gadd, Gmult, Gcopy. The
expanding circuit compiler with expansion level k and base compiler CC is the
circuit compiler (CC(k),Enc(k),Dec(k)) satisfying the following:

1. The input encoding Enc(k) is an (nk)-linear encoding.
2. The output decoding Dec is the (nk)-linear decoding mapping.
3. The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ · · · ◦ CC︸ ︷︷ ︸
k times

(·)

The goal of the expansion strategy in the context of random probing security
is to replace the leakage probability p of a wire in the original circuit by the
failure event probability ε in the subsequent gadget simulation. If this simulation
fails then one needs the full input sharing for the gadget simulation, which
corresponds to leaking the corresponding wire value in the base case. The security
is thus amplified by replacing the probability p in the base case by the probability
ε (assuming that we have ε < p). If the failure event probability ε can be upper
bounded by some function of the leakage probability: ε < f(p) for every leakage
probability p ∈ [0, pmax] for some pmax < 1, then the expanding circuit compiler
with expansion level k shall result in a security amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) ,

which for an adequate function f (e.g. f : p 
→ p2) provides exponential security.
In order to get such a security expansion, the gadgets must satisfy a stronger
notion than the composability notion introduced in Sect. 4 which we call random
probing expandability ; see Sect. 5.3 below.
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5.2 Asymptotic Analysis of the Expanding Compiler

In this section we show that the asymptotic complexity of a compiled circuit
Ĉ = CC(k)(C) is |Ĉ| = O(|C| · κe

)
for security parameter κ, for some constant e

that we make explicit.
Let us denote by N = (Na, Nc, Nm, Nr)T the column vector of gate

counts for some base gadget G, where Na, Nc, Nm, Nr stands for the num-
ber of addition gates, copy gates, multiplication gates and random gates
respectively. We have three different such vectors Nadd

.= (Nadd,a, Nadd,c,
Nadd,m, Nadd,r)T, Nmult

.= (Nmult,a, Nmult,c, Nmult,m, Nmult,r)T, Ncopy
.=

(Ncopy,a, Ncopy,c, Ncopy,m, Ncopy,r)T for the gate counts respectively in the base
addition gadget Gadd, in the base multiplication gadget Gmult and in the base
copy gadgets Gcopy. Let us define the 4 × 4 square matrix M as

M =
(
Nadd | Ncopy | Nmult | Nrand

)
with Nrand = (0, 0, 0, n)T ,

where the definition Nrand holds from the fact that the standard circuit compiler
replaces each random gate by n random gates.

It can be checked that applying the standard circuit compiler with base
gadgets Gadd, Gmult and Gcopy to some circuit C with gate-count vector NC

gives a circuit Ĉ with gate-count vector N
̂C = M · NC . It follows that the kth

power of the matrix M gives the gate counts for the level-k gadgets as:

Mk = M · M · · · M︸ ︷︷ ︸
k times

=
(
N

(k)
add | N (k)

copy | N
(k)
mult | N

(k)
rand

)
with N

(k)
rand =

⎛

⎜⎜⎝

0
0
0
nk

⎞

⎟⎟⎠

where N
(k)
add, N

(k)
mult and N

(k)
copy are the gate-count vectors for the level-k gadgets

G
(k)
add, G

(k)
mult and G

(k)
copy respectively. Let us denote the eigen decomposition of

M as M = Q · Λ · Q−1, we get

Mk = Q · Λk · Q−1 with Λk =

⎛

⎜⎜⎝

λk
1

λk
2

λk
3

λk
4

⎞

⎟⎟⎠

where λ1, λ2, λ3, λ4 are the eigenvalues of M . We then obtain an asymptotic
complexity of

|Ĉ| = O(|C| · (λk
1 + λk

2 + λk
3 + λk

4)
)

= O(|C| · max(λ1, λ2, λ3, λ4)k
)

for a compiled circuit Ĉ = CC(k)(C) (where the constant in the O(·) depends on
Q and shall be fairly small).

Interestingly, if multiplication gates are solely used in the multiplication gad-
get (i.e. Nadd,m = Ncopy,m = 0) which is the case in the constructions we consider
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in this paper, it can be checked that (up to some permutation) the eigenvalues
satisfy

(λ1, λ2) = eigenvalues(Mac), λ3 = Nk
mult,m and λ4 = nk

where Mac is the top left 2 × 2 block matrix of M i.e.

Mac =
(

Nadd,a Ncopy,a

Nadd,c Ncopy,c

)
.

We finally get

|Ĉ| = O(|C| · Nk
max

)
with Nmax = max(eigenvalues(Mac), Nmult,m) . (11)

In order to reach some security level ε = 2−κ for some target security parame-
ter κ and assuming that we have a security expansion p → f (k)(p), the expansion
level k must be chosen so that f (k)(p) ≤ 2−κ. In practice, the function f is of
the form

f : p 
→
∑

i≥d

ci pi ≤ (cd + O(p)) pd .

where O(p) is to be interpreted as p tends to 0. In the rest of this paper, we
shall say that such a function has amplification order d.

The upper bound f(p) ≤ c′
d pd with c′

d = cd +O(p) implies f (k)(p) < (c′
d p)dk

.
Hence, to satisfy the required security f (k)(p) ≤ 2−κ while assuming c′

d p < 1,
the number k of expansions must satisfy:

k � logd(κ) − logd(− log2(c
′
d p)) .

We can then rewrite (11) as

|Ĉ| = O(|C| · κe
)

with e =
log Nmax

log d
. (12)

5.3 Random Probing Expandability

In the evaluation of random probing composability, let us recall that the failure
event in the simulation of a gadget means that more that t shares from one of
its inputs are necessary to complete a perfect simulation. For a gadget to be
expandable we need slightly stronger notions than random probing composabil-
ity. As first requirement, a two-input gadget should have a failure probability
which is independent for each input. This is because in the base case, each wire
as input of a gate leaks independently. On the other hand, in case of failure event
in the child gadget, the overall simulator should be able to produce a perfect
simulation of the full output (that is the full input for which the failure occurs).
To do so, the overall simulator is given the clear output (which is obtained from
the simulation of the base case) plus any set of n − 1 output shares. This means
that whenever the set J is of cardinal greater than t, the gadget simulator can
replace it by any set J ′ of cardinal n − 1.
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Definition 9 (Random Probing Expandability). Let f : R → R. An n-
share gadget G : Kn × K

n → K
n is (t, f)-random probing expandable (RPE) if

there exists a deterministic algorithm SimG
1 and a probabilistic algorithm SimG

2

such that for every input (x̂, ŷ) ∈ K
n × K

n, for every set J ⊆ [n] and for every
p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J ′) ← SimG
1 (W, J)

out ← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (|I1| > t
)

and F2 ≡ (|I2| > t
)

verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (13)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n − 1 otherwise,
3. the output distribution satisfies

out
id=

(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(14)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1

simulator takes two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′
1

and J ′
2 satisfying the same property as J ′ in the above definition (w.r.t. J1 and

J2). The SimG
2 simulator must then produce an output including ẑ1|J ′

1
and ẑ2|J ′

1

where ẑ1 and ẑ2 are the output sharings. The RPE notion can also be simply
extended to gadgets with a single input: the SimG

1 simulator produces a single
set I so that the failure event (|I| > t) occurs with probability lower than ε
(and the SimG

2 simulator is then simply given x̂|I where x̂ is the single input
sharing). For the sake of completeness, and since we only focus in 2 → 1 and
1 → 2 gadgets in this paper, the RPE definition for the 1 → 2 case is given in
the full version of this paper.

It is not hard to check that the above expandability notion is stronger that
the composability notion introduced in Sect. 4. Formally, we have the following
reduction:

Proposition 2. Let f = R → R and n ∈ N. Let G be an n-share gadget. If G
is (t, f)-RPE then G is (t, f ′)-RPC, with f ′(·) = 2 · f(·).
Proof. We consider a (t, f)-RPE n-share gadget G : Kn×K

n → K
n. The (t, 2·f)-

random composability property is directly implied by the (t, f)-random probing
expandability by making use of the exact same simulators and observing that

Pr
(
(|I1| > t) ∨ (|I2| > t)

) ≤ Pr(|I1| > t) + Pr(|I2| > t) = 2 · ε.

The case of 1 → 2 gadgets is even more direct. �
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5.4 Expansion Security

Definition 9 of random probing expandability is valid for base gadgets. For level-
k gadgets G(k) = CC(k−1)(G) where G ∈ {Gadd, Gmult, Gcopy} is a base gadget,
we provide a generalized definition of random probing expandability.

Adequate subsets of [nk ]. We first define the notion of “adequate” subsets
of [nk], instead of only bounded subsets. For this we define recursively a family
Sk ∈ P([nk]), where P([nk]) denotes the set of all subsets of [nk], as follows:

S1 = {I ∈ [n], |I| ≤ t}
Sk = {(I1, . . . , In) ∈ (Sk−1 ∪ [nk−1])n, Ij ∈ Sk−1 ∀ j ∈ [1, n] except at most t}

In other words, a subset I belongs to Sk if among the n subset parts of I, at
most t of them are full, while the other ones recursively belong to Sk−1; see the
full version for an illustration with n = 3 and t = 1.

Generalized definition of random probing expandability. We generalize
Definition 9 as follows. At level k the input sets I1 and I2 must belong to Sk,
otherwise we have a failure event. As in Definition 9, the simulation is performed
for an output subset J ′ with J ′ = J if J ∈ Sk, otherwise J ′ = [nk] \ {j�} for
some j� ∈ [nk].

Definition 10 (Random Probing Expandability with {Sk}k∈N). Let f :
R → R and k ∈ N. An nk-share gadget G : Knk ×K

nk → K
nk

is (Sk, f)-random
probing expandable (RPE) if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input (x̂, ŷ) ∈ K
nk × K

nk

, for
every set J ∈ Sk ∪ [nk] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J ′) ← SimG
1 (W, J)

out ← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡ (
I1 /∈ Sk

)
and F2 ≡ (

I2 /∈ Sk

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (15)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. the set J ′ is such that J ′ = J if J ∈ Sk, and J ′ = [nk] \ {j�} for some

j� ∈ [nk] otherwise,
3. the output distribution satisfies

out
id=

(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(16)

where ẑ = G(x̂, ŷ).
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The notion of random probing expandability from Definition 10 naturally
leads to the statement of our main theorem; the proof is given in the full version.

Theorem 2. Let n ∈ N and f : R → R. Let Gadd, Gmult, Gcopy be n-share
gadgets for the addition, multiplication and copy on K. Let CC be the standard
circuit compiler with sharing order n and base gadgets Gadd, Gmult, Gcopy. Let
CC(k) be the expanding circuit compiler with base compiler CC. If the base gadgets
Gadd, Gmult and Gcopy are (t, f)-RPE then, G

(k)
add = CC(k−1)(Gadd), G

(k)
mult =

CC(k−1)(Gmult), G
(k)
copy = CC(k−1)(Gcopy) are (Sk, f (k))-RPE, nk-share gadgets

for the addition, multiplication and copy on K.

The random probing security of the expanding circuit compiler can then be
deduced as a corollary of the above theorem together with Proposition 2 (RPE
⇒ RPC reduction) and Theorem 1 (composition theorem).

Corollary 1. Let n ∈ N and f : R → R. Let Gadd, Gmult, Gcopy be n-share
gadgets for the addition, multiplication and copy on K. Let CC be the standard
circuit compiler with sharing order n and base gadgets Gadd, Gmult, Gcopy. Let
CC(k) be the expanding circuit compiler with base compiler CC. If the base gadgets
Gadd, Gmult and Gcopy are (t, f)-RPE then CC(k) is (p, 2·f (k)(p))-random probing
secure.

5.5 Relaxing the Expandability Notion

The requirement of the RPE property that the failure events F1 and F2 are
mutually independent might seem too strong. In practice it might be easier to
show or verify that some gadgets satisfy a weaker notion. We say that a gadget
is (t, f)-weak random probing expandable (wRPE) if the failure events verify
Pr(F1) ≤ ε, Pr(F2) ≤ ε and Pr(F1 ∧ F2) ≤ ε2 instead of (13) in Definition 9.
Although being easier to achieve and to verify this notion is actually not much
weaker as the original RPE. We have the following reduction of RPE to wRPE;
see the full version for the proof.

Proposition 3. Let f = R → [0, 0.14]. Let G : Kn × K
n → K

n be an n-share
gadget. If G is (t, f)-wRPE then G is (t, f ′)-RPE with f ′(·) = f(·) + 3

2f(·)2.
Assume that we can show or verify that a gadget is wRPE with the following

failure event probabilities

Pr(F1) = f1(p) , Pr(F2) = f2(p) and Pr(F1 ∧ F2) = f12(p) ,

for every p ∈ [0, 1]. Then the above proposition implies that the gadget is (p, f)-
RPE with

f : p 
→ fmax(p) +
3
2
fmax(p)2 with fmax = max(f1, f2,

√
f12) .

We shall base our verification of the RPE property on the above equation as we
describe hereafter.
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5.6 Verification of Gadget Expandability

We can easily adapt our automatic tool to verify the weak random probing
expandability for base gadgets (Definition 9). Basically, the verification is split
into two steps that we first describe for the case of addition and multiplication
gadgets with fan-in 2 and fan-out 1.

In a first step, our tool computes the function f to check the (t, f)-wRPE
property for output sets of shares of cardinal at most t. For 2-input gadgets, this
step leads to the computation of coefficients ci corresponding to three failure
events F1, F2, and F1 ∧ F2 as defined above but restricted to output sets of
shares of cardinal less than t. The process is very similar to the verification of
random probing composability but requires to separate the failure events counter
into failure events for the first input (|I1| > t), for the second input (|I2| > t) or
for both ((|I1| > t) ∧ (|I2| > t)). In the following, we denote the three functions
formed from the corresponding coefficients as f

(1)
1 , f

(1)
2 , and f

(1)
12 .

Then, in a second step, our tool verifies that there exists at least one set of
n−1 shares for each output, such that the simulation failure is limited by f(p) for
some probability p ∈ [0, 1]. In that case, it still loops on the possible output sets
of shares (of cardinal n−1) but instead of computing the maximum coefficients,
it determines whether the simulation succeeds for at least one of such sets. A
failure event is recorded for a given tuple if no output sets of cardinal n − 1 can
be simulated together with this tuple from at most t shares of each input. As
for the first verification step, we record the resulting coefficients for the three
failure events to obtain functions f

(2)
1 , f

(2)
2 , and f

(2)
12 .

From these two steps, we can deduce f such that the gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f1(p), f2(p),
√

f12(p))

with

fα(p) = max(f (1)
α (p), f (2)

α (p)) for α ∈ {1, 2, 12}

The computation of f for a gadget to satisfy (t, f)-weak random probing
expandability is a bit trickier for copy gadgets which produce two outputs.
Instead of two verification steps considering both possible ranges of cardinals
for the output set of shares J , we need to consider four scenarios for the two
possible features for output sets of shares J1 and J2. In a nutshell, the idea is
to follow the first verification step described above when both J1 and J2 have
cardinal equal or less than t and to follow the second verification step described
above when both J1 and J2 have greater cardinals. This leads to functions f (1)

and f (2). Then, two extra cases are to be considered, namely when (|J1| ≤ t)
and (|J2| > t) and the reverse when (|J1| > t) and (|J2| ≤ t). To handle these
scenarios, our tool loops over the output sets of shares of cardinal equal or less
than t for the first output, and it determines whether there exists a set of n − 1
shares of the second output that a simulator can perfectly simulate with the
leaking wires and the former set. This leads to function f (12) and reversely to
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function f (21). From these four verification steps, we can deduce f such that the
copy gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f (1)(p), f (2)(p), f (12)(p), f (21)(p)).

Once gadgets have been proven (t, f)-weak RPE, they are also proven to be
(t, f ′)-RPE from Proposition 3 with f ′ : p 
→ f(p) + 3

2f(p)2. Examples of such
computations for 3-share gadgets are provided in Sect. 6.

6 New Constructions

In this section, we exhibit and analyze (1, f)-wRPE gadgets for the addition,
multiplication, and copy (on any base field K) to instantiate the expanding
circuit compiler. These gadgets are sound in the sense that their function f has
amplification order strictly greater than one. As explained in previous sections,
an amplification order strictly greater than one guarantees that there exists a
probability pmax ∈ [0, 1] such that ∀p ≤ pmax, f(p) ≤ p, which is necessary to
benefit from the expansion. For 2-input gadgets, f is defined as the maximum
between f1, f2, and

√
f12. Therefore, the constraint on the amplification order

also applies to the functions f1, f2, and
√

f12. For the function f12, this means
that the amplification order should be strictly greater than two.

We start hereafter with an impossibility result, namely there are no (2-share,
2-to-1) (1, f)-RPE gadgets such that f has an amplification order greater than
one. Then, we provide concrete instantiations of addition, multiplication, and
copy gadgets based on 3 shares which successfully achieve (1, f)-RPE for ampli-
fication order greater than one and can be used in the expansion compiler.

6.1 About 2-Share Gadgets

Consider a gadget G with a 2-share single output z = (z0, z1) and two 2-share
inputs x = (x0, x1) and y = (y0, y1). We reasonably assume that the latter are
the outputs of gates with fan-in at most two (and not direct input shares). For G
to be (1, f)-RPE with f of amplification order strictly greater than one, then f12
must be of amplification strictly greater than two. In other words, we should be
able to exhibit a simulator such that one share of each input is enough to simulate
anyone of the output shares and an arbitrary couple of leaking wires. But the
output wire z0 and both input gates of the second output share z1 represent the
full output and require the knowledge of both inputs to be simulated. Therefore,
f12 has a non-zero coefficient in p and is thus not of amplification order strictly
greater than two. We thus restrict our investigation to n-share gadgets, with
n ≥ 3 to instantiate our compiler.

In the upcoming gadget descriptions, notice that variables ri are fresh random
values, operations are processed with the usual priority rules, and the number
of implicit copy gates can be deduced from the occurrences of each intermediate
variable such that n occurrences require n−1 implicit copy gates. Also, the func-
tion expression below each gadget corresponds to the function obtained from our
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verification tool when verifying weak random probing expandability. It implies
that the gadget is (t, f)-wRPE for t usually equal to one except when defined
otherwise. A more complete description of each function (with more coefficients)
is available in the full version of this paper.

6.2 Addition Gadgets

The most classical masked addition schemes are sharewise additions which satisfy
the simpler probing security property. Basically, given two input n-sharings x
and y, such an addition computes the output n-sharing z as z1 ← x1 + y1,
z2 ← x2 + y2, . . . , zn ← xn + yn. Unfortunately, such elementary gadgets do not
work in our setting. Namely consider an output set of shares J of cardinality t.
Then, for any n, there exists sets W of leaking wires of cardinality one such that
no set I of cardinality ≤ t can point to input shares that are enough to simulate
both the leaking wire and the output shares of indexes in J . For instance, given
a set J = {1, . . . , t}, if W contains xt+1, then no set I of cardinal ≤ t can define
a set of input shares from which we can simulate both the leaking wire and
z1, . . . , zt. Indeed, each zi for 1 ≤ i ≤ t requires both input shares xi and yi

for its simulation. Thus, a simulation set I would contain at least {1, . . . , t} and
t + 1 for the simulation of the leaking wire. I would thus be of cardinal t + 1
which represents a failure event in the random probing expandability definition.
As a consequence, such a n-share addition gadget could only be (t, f)-RPE with
f with a first coefficient c1 as defined in Sect. 3 strictly positive. In other words,
f would be of amplification order one such that ∀p ∈ [0, 1], f(p) ≥ p.

In the following, we introduce two 3-share addition gadgets. From our auto-
matic tool, both are (1, f)-wRPE with f of amplification order strictly greater
than one. Basically, in our first addition gadget G1

add, both inputs are first
refreshed with a circular refreshing gadget as originally introduced in [6]:

G1
add : z0 ← x0 + r0 + r1 + y0 + r3 + r4

z1 ← x1 + r1 + r2 + y1 + r4 + r5 fmax(p) =
√

10p3/2 + O(p2)
z2 ← x2 + r2 + r0 + y2 + r5 + r3

The second addition gadget G2
add simply rearranges the order of the refreshing

variables:

G2
add : z0 ← x0 + r0 + r4 + y0 + r1 + r3

z1 ← x1 + r1 + r5 + y1 + r2 + r4 fmax(p) =
√

69p2 + O(p3)
z2 ← x2 + r2 + r3 + y2 + r0 + r5

In each gadget, x and y are the input sharings and z the output sharing; fmax

additionally reports the maximum of the first non zero coefficient (as defined in
Sect. 3) of the three functions f1, f2, and f12, as defined in the previous section,
obtained for the random probing expandability automatic verifications. A further
definition of these functions can be found in the full version of this paper. Note
that both gadgets G1

add and G2
add are built with 15 addition gates and 6 implicit

copy gates.



Random Probing Security 361

6.3 Multiplication Gadget

We start by proving an impossibility result: no 3-share multiplication gadget
composed of direct products between input shares satisfies (1, f)-RPE with
amplification order strictly greater than one. Consider such a gadget G with
two 3-input sharings x and y whose shares are directly multiplied together. Let
(xi · yj) and (xk · y�) be two such products such that i, j, k, � ∈ [3] and i �= k
and j �= �. If both results are leaking, then the leakage can only be simulated
using the four input shares. Namely, {i, k} ⊆ I1 and {j, �} ⊆ I2. This scenario
represents a failure since cardinals of I1 and I2 are both strictly greater than
one. As a consequence, function f12 which records the failures for both inputs
is defined with a coefficient c2 at least equal to one. Hence f12 is not of ampli-
fication greater than two and f cannot be of amplification order greater than
one. Regular 3-share multiplication gadgets consequently cannot be used as base
gadgets of our compiler.

To circumvent this issue, we build a 3-share multiplication gadget G1
mult

whose both inputs are first refreshed, before any multiplication is performed:

u0 ← x0 + r5 + r6; u1 ← x1 + r6 + r7; u2 ← x2 + r7 + r5

v0 ← y0 + r8 + r9; v1 ← y1 + r9 + r10; v2 ← y2 + r10 + r8

z0 ← (
u0 · v0 + r0

)
+

(
u0 · v1 + r1

)
+

(
u0 · v2 + r2

)

z1 ← (
u1 · v0 + r1

)
+

(
u1 · v1 + r4

)
+

(
u1 · v2 + r3

)

z2 ← (
u2 · v0 + r2

)
+

(
u2 · v1 + r3

)
+

(
u2 · v2 + r0

)
+ r4

fmax(p) =
√

83p3/2 + O(p2)

6.4 Copy Gadget

We exhibit a 3-share (1, f)-wRPE copy gadget G1
copy with f of amplification

order strictly greater than one:

v0 ← u0 + r0 + r1; w0 ← u0 + r3 + r4

v1 ← u1 + r1 + r2; w1 ← u1 + r4 + r5 fmax(p) = 33p2 + O(p3)
v2 ← u2 + r2 + r0; w2 ← u2 + r5 + r3

It simply relies on two calls of the circular refreshing from [6] on the input. This
last gadget is made of 6 addition gates and 9 implicit copy gates.

6.5 Complexity and Tolerated Probability

Following the asymptotic analysis of Sect. 5.2, our construction yields the fol-
lowing instantiation of the matrix M

M =

⎛

⎜⎜⎝

15 12 28 0
6 9 23 0
0 0 9 0
6 6 11 3

⎞

⎟⎟⎠ (17)
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with

Mac =
(

15 12
6 9

)
and Nmult,m = 9 .

The eigenvalues of Mac are 3 and 21, which gives Nmax = 21. We also have
a random probing expandability with function f of amplification order d = 3

2 .
Hence we get

e =
log Nmax

log d
=

log 21
log 1.5

≈ 7.5

which gives a complexity of |Ĉ| = O(|C| · κ7.5
)
. Finally, it can be checked from

the coefficients of the RPE functions given in the full version of this paper that
our construction tolerates a leakage probability up to

pmax ≈ 0.0045 > 2−8 .

This corresponds to the maximum value p for which we have f(p) < p which
is a necessary and sufficient condition for the expansion strategy to apply with
(t, f)-RPE gadgets.

The full version of this paper displays the new gate count vectors for each
of the compiled gadgets G

2(k)
add , G

1(k)
copy, G

1(k)
mult by computing the matrix Mk and

plots the values taken by the function f such that the base gadgets are (t, f)-
RPE. For instance, for level k = 9 the number of gates in the compiled gadgets
is around 1012 and assuming a leakage probability of p = 0.0045 (which is the
maximum we can tolerate), we achieve a security of ε ≈ 2−76.

7 Comparison with Previous Constructions

In this section, we compare our scheme to previous constructions. Specifically,
we first compare it to the well-known Ishai-Sahai-Wagner (ISW) construction
and discuss the instantiation of our scheme from the ISW multiplication gadget.
Then we exhibit the asymptotic complexity (and tolerated leakage probability) of
the Ananth-Ishai-Sahai compiler and compare their results to our instantiation.

7.1 Comparison with ISW

The classical ISW construction [18] is secure in the t-probing model when the
adversary can learn any set of t intermediate variables in the circuit, for n =
2t + 1 shares. This can be extended to t probes per gadget, where each gadget
corresponds to a AND or XOR gate in the original circuit. Using Chernoff bound,
security in the t-probing model per gadget implies security in the p-random
probing model, where each wire leaks with probability p, with p = O(t/|G|),
where |G| is the gadget size. Since in ISW each gadget has complexity O(t2),
this gives p = O(1/t). Therefore, in the p-random probing model, the ISW
construction is only secure against a leakage probability p = O(1/n), where the
number of shares n must grow linearly with the security parameter κ in order
to achieve security 2−κ. This means that ISW does not achieve security under a
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constant leakage probability p; this explains why ISW is actually vulnerable to
horizontal attacks [7], in which the adversary can combine information from a
constant fraction of the wires.

ISW-based instantiation of the expanding compiler. In our instantiation,
we choose to construct a new 3-share multiplication gadget instead of using the
ISW multiplication gadget from [18]. In fact, ISW first performs a direct product
of the secret shares before adding some randomness, while we proved in Sect. 6
that no such 3-share multiplication gadget made of direct products could satisfy
(1, f)-RPE with amplification order strictly greater than one. Therefore the ISW
gadget is not adapted for our construction with 3 shares.

Table 1 displays the output of our tool when run on the ISW gadget for up to
7 shares with different values for t. It can be seen that an amplification order
strictly greater than one is only achieved for t > 1, with 4 or more shares. And an
order of 3/2 is only achieved with a minimum of 4 shares for t = 2, whereas we
already reached this order with our 3-share construction for t = 1. If we use the
4-share ISW gadget with appropriate 4-share addition and copy gadgets instead
of our instantiation, the overall complexity of the compiler would be greater,
while the amplification order would remain the same, and the tolerated leakage
probability would be worse (recall that our instantiation tolerates a maximum
leakage probability p ≈ 2−8, while 4-share ISW tolerates p ≈ 2−9.83). Clearly, the
complexity of the 4-share ISW gadget (Na, Nc, Nm, Nr) = (24, 30, 16, 6) is higher
than that of our 3-share multiplication gadget (Na, Nc, Nm, Nr) = (28, 23, 9, 11).
In addition, using 3-share addition and copy gadgets (as in our case) provides
better complexity than 4-share gadgets. Hence to reach an amplification order
of 3/2, a 4-share construction with the ISW gadget would be more complex and
would offer a lower tolerated leakage probability.

For higher amplification orders, the ISW gadgets with more than 4 shares
or other gadgets can be studied. This is a open construction problem as many
gadgets can achieve different amplification orders and be globally compared.

7.2 Complexity of the Ananth-Ishai-Sahai Compiler

The work from [2] provides a construction of circuit compiler (the AIS compiler)
based on the expansion strategy described in Sect. 5 with a (p, ε)-composable
security property, analogous to our (t, f)-RPE property. To this purpose, the
authors use an (m, c)-multi-party computation (MPC) protocol Π. Such a pro-
tocol allows to securely compute a functionality shared among m parties and
tolerating at most c corruptions. In a nutshell, their composable circuit compiler
consists of multiple layers: the bottom layer replaces each gate in the circuit by
a circuit computing the (m, c)-MPC protocol for the corresponding functionality
(either Boolean addition, Boolean multiplication, or copy). The next k−1 above
layers apply the same strategy recursively to each of the resulting gates. As this
application can eventually have exponential complexity if applied to a whole cir-
cuit C directly, the top layer of compilation actually applies the k bottom layers



364 S. Beläıd et al.

Table 1. Complexity, amplification order and maximum tolerated leakage probabil-
ity of the ISW multiplication gadgets. Some leakage probabilities were not computed
accurately by VRAPS for performances reasons. An interval on these probabilities is
instead given by evaluating lower and upper bound functions finf and fsup of f(p).

# shares Complexity
(Na, Nc, Nm, Nr)

t Amplification
order

log2 of maximum tolerated
leakage probability

3 (12, 15, 9, 3) 1 1 −

4 (24, 30, 16, 6)
1 1 −
2 3/2 −9.83

5 (40, 50, 25, 10)

1 1 −
2 3/2 −11.00

3 2 −8.05

6 (60, 75, 36, 15)

1 1 −
2 3/2 −13.00

3 2 [−9.83, −7.87]

4 2 [−9.83, −5.92]

7 (84, 105, 49, 21)

1 1 −
2 3/2 [−16.00, −14.00]

3 2 [−12.00, −7.87]

4 5/2 [−12.00, −2.27]

5 2 [−12.00, −3.12]

to each of the gates of C independently and then stitches the inputs and outputs
using the correctness of the XOR-encoding property. Hence the complexity is in

O(|C| · Nk
g ) , (18)

where |C| is the number of gates in the original circuit and Ng is the number of
gates in the circuit computing Π. The authors of [2] prove that such compiler
satisfies (p, ε)-composition security property, where p is the tolerated leakage
probability and ε is the simulation failure probability. Precisely:

ε = N c+1
g · pc+1 (19)

Equations (18) and (19) can be directly plugged into our asymptotic analysis of
Sect. 5.2, with Ng replacing our Nmax and where c+1 stands for our amplification
order d. The obtained asymptotic complexity for the AIS compiler is

O(|C| · κe
)

with e =
log Ng

log c + 1
. (20)

This is to be compared to e = log Nmax
log d in our scheme. Moreover, this compiler

can tolerate a leakage probability

p =
1

N2
g

.
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The authors provide an instantiation of their construction using an existing
MPC protocol due to Maurer [20]. From their analysis, this protocol can be
implemented with a circuit of Ng = (4m − c) · ((

m−1
c

)2
+ 2m

(
m
c

))
gates. They

instantiate their compiler with this protocol for parameters m = 5 parties and
c = 2 corruptions, from which they get Ng = 5712. From this number of gates,
they claim to tolerate a leakage probability p = 1

57122 ≈ 2−25 and our asymptotic
analysis gives a complexity of O(|C| ·κe

)
with e ≈ 7.87 according to (20). In the

full version of this paper, we give a detailed analysis of the Maurer protocol [20]
in the context of the AIS compiler instantiation. From our analysis, we get the
following number of gates for the associated circuit:

Ng = (6m − 5) ·
((

m − 1
c

)2

+ m(2k − 2) + 2k2

)
where k =

(
m

c

)
.

Using the parameters m = 5 and c = 2 from the AIS compiler instantiation [2],
we get Ng = 8150. This yields a tolerated leakage probability of p ≈ 2−26 and
an exponent e = log 8150/log 3 ≈ 8.19 in the asymptotic complexity O(|C| · κe

)

of the AIS compiler.
These results are to be compared to the p ≈ 2−8 and e ≈ 7.5 achieved by our

construction. In either case (Ng = 5712 as claimed in [2] or Ng = 8150 according
to our analysis), our construction achieves a slightly better complexity while
tolerating a much higher leakage probability. We stress that further instantiations
of the AIS scheme (based on different MPC protocols) or of our scheme (based on
different gadgets) could lead to better asymptotic complexities and/or tolerated
leakage probabilities. This is an interesting direction for further research.

8 Implementation Results

We developed an implementation in python of a compiler CC, that given three n-
share gadgets Gadd, Gmult, Gcopy and an expansion level k, outputs the compiled
gadgets G

(k)
add, G

(k)
copy, G

(k)
mult, each as a C function. The source code (with an

example of AES implementation) is publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

The variables’ type is given as a command line argument. Table 2 shows the
complexity of the compiled gadgets from Sect. 6 using the compiler with several
expansion levels k, as well as their execution time in milliseconds when run
in C on randomly generated 8-bit integers. All implementations were run on
a laptop computer (Intel(R) Core(TM) i7-8550U CPU, 1.80GHz with 4 cores)
using Ubuntu operating system and various C, python and sage libraries. For the
generation of random variables, we consider that an efficient external random
number generator is available in practice, and so we simply use the values of an
incremented counter variable to simulate random gates.

https://github.com/CryptoExperts/poc-expanding-compiler
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Table 2. Complexity and execution time (in ms, on an Intel i7-8550U CPU) for com-

piled gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult from Sect. 6 implemented in C.

k # shares Gadget Complexity (Na, Nc, Nm, Nr) Execution time

1 3

G
2(1)
add (15, 6, 0, 6) 1, 69.10−4

G
1(1)
copy (12, 9, 0, 6) 1, 67.10−4

G
1(1)
mult (28, 23, 9, 11) 5, 67.10−4

2 9

G
2(2)
add (297, 144, 0, 144) 2, 21.10−3

G
1(2)
copy (288, 153, 0, 144) 2, 07.10−3

G
1(2)
mult (948, 582, 81, 438) 9, 91.10−3

3 27

G
2(3)
add (6183, 3078, 0, 3078) 9, 29.10−2

G
1(3)
copy (6156, 3105, 0, 3078) 9, 84.10−2

G
1(3)
mult (23472, 12789, 729, 11385) 3, 67.10−1

It can be observed that both the complexity and running time grow by almost
the same factor with the expansion level, with multiplication gadgets being the
slowest as expected. Base gadgets with k = 1 roughly take 10−4 ms, while these
gadgets expanded 2 times (k = 3) take between 10−2 and 10−1 ms. The difference
between the linear cost of addition and copy gadgets, and the quadratic cost of
multiplication gadgets can also be observed through the gadgets’ complexities.
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