
Chapter 8

Simple algebras and involutions

In this chapter, we examine further connections between quaternion algebras, simple
algebras, and involutions.

8.1 � The Brauer group and involutions

An involution on an F-algebra B induces an isomorphism : B ∼−→ Bop, for example
such an isomorphism is furnished by the standard involution on a quaternion algebra B.
More generally, if B1, B2 are quaternion algebras, then the tensor product B1 ⊗F B2 has
an involution provided by the standard involution on each factor giving an isomorphism
to (B1 ⊗F B2)op � Bop

1 ⊗F Bop
2 —but this involution is no longer a standard involution

(Exercise 8.1). The algebra B1 ⊗F B2 is a central simple algebra over F called a
biquaternion algebra. In some circumstances, we may have

B1 ⊗F B2 � M2(B3) (8.1.1)

where B3 is again a quaternion algebra, and in other circumstances, we may not;
following Albert, we begin this chapter by studying (8.1.1) and biquaternion algebras
in detail.

To this end, we look at the set of isomorphism classes of central simple algebras
over F, which is closed under tensor product; if we think that the matrix ring is
something that is ‘no more complicated than its base ring’, it is natural to introduce an
equivalence relation on central simple algebras that identifies a division ring with the
matrix ring (of any rank) over this division ring. More precisely, if A, A′ are central
simple algebras over F we say A, A′ are Brauer equivalent if there exist n, n′ ≥ 1 such
that Mn(A) � Mn′ (A′). In this way, (8.1.1) reads B1 ⊗F B2 ∼ B3. The set of Brauer
equivalence classes [A] has the structure of a group under tensor product, known as the
Brauer group Br(F) of F, with identity element [F] and inverse [A]−1 = [Aop]. The
class [B] ∈ Br(F) of a quaternion algebra B is a 2-torsion element, and therefore so is a
biquaternion algebra. In fact, by a striking theorem of Merkurjev, when char F � 2, all
2-torsion elements in Br(F) are represented by a tensor product of quaternion algebras
(see section 8.3).
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Finally, our interest in involutions in Chapter 3 began with an observation of
Hamilton: the product of a nonzero element with its involute in H is a positive real
number (its norm, or square length). We then proved that the existence of such an
involution characterizes quaternion algebras in an essential way. However, one may
want to relax this setup and instead consider when the product of a nonzero element with
its involute merely has positive trace. Such involutions are called positive involutions
and they arise naturally in algebraic geometry: the Rosati involution is a positive
involution on the endomorphism algebra of an abelian variety, and it is a consequence
that this algebra (over Q) is semisimple, and unsurprisingly quaternion algebras once
again feature prominently (see sections 8.4–8.5).

8.2 Biquaternion algebras

Let F be a field. All tensor products in this section will be taken over F.

8.2.1. Let B1, B2 be quaternion algebras over F. The tensor product B1 ⊗ B2 is a
central simple algebra over F of dimension 42 = 16 called a biquaternion algebra. A
biquaternion algebra may be written as a tensor product of two quaternion algebras in
different ways, so the pair is not intrinsic to the biquaternion algebra.

By the Wedderburn–Artin theorem (Main Theorem 7.3.10), we have exactly one
of the three following possibilities for this algebra:

• B1 ⊗ B2 is a division algebra;
• B1 ⊗ B2 � M2(B3) where B3 is a quaternion division algebra over F; or
• B1 ⊗ B2 � M4(F).

We could combine the latter two and just say that B1 ⊗ B2 � M2(B3) where B3 is a
quaternion algebra over F, since M2(M2(F)) � M4(F) as F-algebras.

Example 8.2.2. By Exercise 8.2, when char F � 2 we have(
a, b1
F

)
⊗
(
a, b2
F

)
� M2(B3)

where B3 =

(
a, b1b2

F

)
. In particular,

(
a, b
F

)
⊗
(
a, b
F

)
� M4(F), since

(
a, b2

F

)
� M2(F).

Example 8.2.2 is no accident, as the following proposition indicates.

Proposition 8.2.3. (Albert). The following are equivalent:

(i) There exists a quadratic field extension K ⊃ F that can be embedded as an
F-algebra in both B1 and B2;

(ii) B1 and B2 have a common quadratic splitting field; and
(iii) B1 ⊗ B2 is not a division algebra.

Proof. The equivalence (i)⇔ (ii) follows from Lemma 5.4.7.
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For the implication (i)⇒ (iii), for i = 1, 2 let αi ∈ Bi generate K so α2
i = tαi − n

with t, n ∈ F. Let
β := α1 ⊗ 1 − 1 ⊗ α2.

Then

β(α1 ⊗ 1 + 1 ⊗ α2 − t) = α2
1 ⊗ 1 − 1 ⊗ α2

2 − tβ
= (tα1 − n) ⊗ 1 − 1 ⊗ (tα2 − n) − tβ = 0.

(8.2.4)

Therefore β is a zerodivisor and B1 ⊗ B2 is not a division algebra.
To finish, we prove (iii)⇒ (i). We have an embedding

B1 ↪→ B1 ⊗ B2

α �→ α ⊗ 1

and similarly B2; the images of B1 and B2 in B1 ⊗B2 commute. Write B2 = (K, b2 | F).
Consider (B1)K = B1 ⊗ K ⊂ B1 ⊗ B2; then (B1)K is a quaternion algebra over K (with
dimF (B1)K = 8). If (B1)K is not a division algebra, then K splits B1 and K ↪→ B1 and
we are done. So suppose that (B1)K is a division algebra. Then

B1 ⊗ B2 = (B1)K + (B1)K j

is free of rank 2 as a left (B1)K -module.
Since B1 ⊗ B2 � M2(B3) is not a division algebra, there exists ε ∈ B1 ⊗ B2 nonzero

such that ε2 = 0. Without loss of generality, we can write ε = α1 ⊗ z+ j where α1 ∈ B1
and z ∈ K . Then

0 = ε2 = α2
1 ⊗ z2 + (α1 ⊗ z) j + (α1 ⊗ z) j + b2. (8.2.5)

From the basis 1, j over (B1)K , if z = t − z with t ∈ F, we conclude that

α1 ⊗ z + α1 ⊗ (t − z) = α1 ⊗ t = 0.

Therefore t = 0, and z2 = c for some c ∈ F×. Then from (8.2.5) cα2
1 + b2 = 0

so α2
1 = −b2/c and B1 contains the quadratic field F(

√−b2c). But so does B2, as
(z j)2 = −b2c as well.

(For an alternate proof, see Jacobson [Jacn2009, Theorem 2.10.3].) �

Remark 8.2.6. In view of Proposition 8.2.3, we say that two quaternion algebras
B1, B2 over F are linked if they contain a common quadratic field extension K ⊇ F.
For further discussion of biquaternion algebras and linkage in characteristic 2 (where
one must treat separable and inseparable extensions differently), see Knus [Knu93],
Lam [Lam2002], or Sah [Sah72]. Garibaldi–Saltman [GS2010] study the subfields of
quaternion algebra over fields with char F � 2.

From now on, we suppose that char F � 2. (For the case char F = 2, see Chapman–
Dolphin–Laghbribi [CDL2015, §6].)
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8.2.7. Motivated by Proposition 8.2.3, we consider the quadratic extensions repre-
sented by B1 and B2 encoded in the language of quadratic forms (recalling Lemma
5.5.4). Let

V = {α1 ⊗ 1 − 1 ⊗ α2 ∈ B1 ⊗ B2 : trd(α1) = trd(α2)}.
Then dimF V = 6, and we may identifyV = B0

1 ⊗1−1⊗B0
2 . The reduced norm on each

factor separately defines a quadratic form on V by taking the difference: explicitly, if
B1 = (a1, b1 | F) and B2 = (a2, b2 | F), then taking the standard bases for B1, B2

Q(B1, B2) � 〈−a1,−b1, a1b1〉� −〈−a2,−b2, a2b2〉
� 〈−a1,−b1, a1b1, a2, b2,−a2b2〉.

The quadratic form Q(B1, B2) : V → F is called the Albert form of the biquaternion
algebra B1 ⊗ B2.

We then add onto Proposition 8.2.3 as follows.

Proposition 8.2.8. (Albert). Let B1 ⊗ B2 be a biquaternion algebra over F (with
char F � 2) with Albert form Q(B1, B2). Then the following are equivalent:

(i) B1, B2 have a common quadratic splitting field;
(iv) Q(B1, B2) is isotropic.

Proof. The implication (ii) ⇒ (iv) follows by construction 8.2.7. To prove (iv) ⇒
(ii), without loss of generality, we may suppose B1, B2 are division algebras; then
an isotropic vector of Q corresponds to elements α1 ∈ B1 and α2 ∈ B2 such that
α2

1 = α2
2 = c ∈ F×. Therefore K = F(

√
c) is a common quadratic splitting field. �

Remark 8.2.9. Albert’s book [Alb39] on algebras still reads well today. The proof of
Proposition 8.2.3 is due to him [Alb72]. (“I discovered this theorem some time ago.
There appears to be some continuing interest in it, and I am therefore publishing it
now.”) Albert used Proposition 8.2.8 to show that

B1 =

(−1,−1
F

)
and B2 =

(
x, y
F

)

over F = R(x, y) have tensor product B1 ⊗F B2 a division algebra by verifying that
the Albert form Q(B1, B2) is anisotropic over F. See Lam [Lam2005, Example VI.1]
for more details. For the fields of interest in this book (local fields and global fields),
a biquaternion algebra will never be a division algebra—the proof of this fact rests on
classification results for quaternion algebras over these fields, which we will take up
in earnest in Part II.

8.3 Brauer group

Motivated to study the situation where B1 ⊗ B2 � M2(B3) among quaternion algebras
B1, B2, B3 more generally, we now turn to the Brauer group.

Let CSA(F) be the set of isomorphism classes of central simple F-algebras. The
operation of tensor product on CSA(F) defines a commutative binary operation with
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identityF, but inverses are lacking (for dimension reasons). So we define an equivalence
relation ∼ on CSA(F) by

A ∼ A′ if Mn′ (A) � Mn(A′) for some n, n′ ≥ 1 (8.3.1)

and we say then that A, A′ are Brauer equivalent. In particular, A ∼ Mn(A) for all
A ∈ CSA(F) as needed above.

Lemma 8.3.2. The set of equivalence classes of central simple F-algebras under the
equivalence relation ∼ has the structure of an abelian group under tensor product,
with identity [F] and inverse [A]−1 = [Aop].

Proof. By Exercise 8.5, the operation is well-defined: if A, A′ ∈ CSA(F) and A′ ∼
A′′ ∈ CSA(F) then A⊗ A′ ∼ A⊗ A′′. To conclude, we need to show that inverses exist.
This is furnished by Lemma 7.5.4: if dimF A = n and Aop is the opposite algebra of A
(3.2.2) then the map

A ⊗F Aop → EndF (A) � Mn(F)
α ⊗ β �→ (μ �→ αμβ)

is an isomorphism of F-algebras, so [A]−1 = [Aop] provides an inverse to [A]. �

So we make the following definition.

Definition 8.3.3. TheBrauer group of F is the set Br(F) of Brauer equivalence classes
of central simple F-algebras (8.3.1) under the group operation of tensor product.

8.3.4. Let B be a quaternion algebra overF. We have B � M2(F) if and only if [B] = [F]
is the identity. Otherwise, B is a division algebra. Then the standard involution gives
an F-algebra isomorphism B ∼−→ Bop, and hence in Br(F) we have [B]−1 = [B] and
so [B] is an element of order 2. Since Br(F) is abelian, it follows that biquaternion
algebras, or more generally tensor products B1 ⊗ · · · ⊗ Bt of quaternion algebras Bi ,
are also elements of order at most 2 in Br(F).

Theorem 8.3.5. (Merkurjev). Let char F � 2. Then Br(F)[2] is generated by quater-
nion algebras over F, i.e., every (finite-dimensional) central division F-algebra with
involution is Brauer equivalent to a tensor product of quaternion algebras.

Remark 8.3.6. More generally, Merkurjev [Mer82] proved in 1981 that a division
algebra with an involution is Brauer equivalent to a tensor product of quaternion
algebras; more precisely, if D is a division F-algebra with (not necessarily standard)
involution, then there exists n ∈ Z≥1 such that Mn(D) is isomorphic to a tensor
product of quaternion algebras. His theorem, more properly, says that the natural
map K2(F) → Br(F)[2] is an isomorphism. (Some care is required in this area: for
example, Amitsur–Rowen–Tignol [ART79] exhibit a division algebra D of degree 8
with involution that is not a tensor product of quaternion algebras, but M2(D) is a tensor
product of quaternion algebras.) For an elementary proof of Merkurjev’s theorem, see
Wadsworth [Wad86].
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Remark 8.3.7. Just as quaternion algebras are in correspondence with conics (Corollary
5.5.2), with a quaternion algebra split if and only if the corresponding conic has a
rational point (Theorem 5.5.3), similarly the Brauer group of a field has a geometric
interpretation (see e.g. Serre [Ser79, §X.6]): central simple algebras correspond to
Brauer–Severi varieties—for each degree n ≥ 1, both are parametrized by the Galois
cohomology set H1(Gal(Fsep | F), PGLn).

8.4 Positive involutions

We now turn to study algebras with involution more general than a standard involution.
Throughout this section, let F ⊆ R be a subfield of R and B a finite-dimensional
F-algebra. We define the trace map Tr : B → R by the trace of left multiplication.

Definition 8.4.1. An involution ∗ : B → B is positive if Tr(α∗α) > 0 for all α ∈ B�{0}.

Since the map (α, β) �→ Tr(α∗β) is bilinear, an involution ∗ on B is positive if and
only if Tr(α∗α) > 0 for α in a basis for B and so is positive if and only if its extension
to B ⊗F R is positive.

Example 8.4.2. The standard involutions on R, C, and H, defined by α �→ trd(α) − α,
are positive involutions. The standard involution on R × R is not positive since for
α = (x1, x2) ∈ R × R we have Tr(αα) = 2x1x2. The standard involution on M2(R) is
also not positive, since for α ∈ M2(R) we have Tr(αα) = 4 det(α).

8.4.3. Let D be one of R, C, or H. Let B = Mn(D). The standard involution on D
extends to an involution on B, acting on coordinates. The conjugate transpose (or,
perhaps better the standard involution transpose) map

∗ : B → B

α �→ α∗ = αt

also defines an involution on B, where t is the transpose map. If α = (ai j)i, j=1,...,n then

Tr(α∗α) = n(dimR D)
n∑

i, j=1
ai jai j > 0; (8.4.4)

thus ∗ is positive, and the norm α �→ Tr(α∗α) is (an integer multiple of) the Frobenius
norm on B.

We will soon see that every positive involution can be derived from the conjugate
transpose as in 8.4.3. First, we reduce to the case where B is a semisimple algebra.

Lemma 8.4.5. Suppose that B admits a positive involution ∗. Then B is semisimple.

Proof. We give two proofs. First, we appeal to Theorem 7.9.4: since the trace pairing
is positive definite, it is nondegenerate and immediately B is semisimple.
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For a second (more general) proof, let J = rad B be the Jacobson radical of B.
By Lemma 7.4.2, B is semisimple if and only if rad B = {0}, and by Lemma 7.4.8,
J = rad B is nilpotent. Suppose for purposes of contradiction that J � {0}. Then there
exists n > 0 such that Jn � {0} but Jn+1 = {0}. Let ε ∈ J be such that εn � 0 but
εn+1 = 0. The involution gives an isomorphism B → Bop taking maximal left ideals
to maximal right ideals and therefore by Corollary 7.4.6 we conclude J∗ = J. Thus
εnε∗ = 0 so Tr(εn(ε∗)n) = Tr(εn(εn)∗) = 0, contradicting that ∗ is positive. �

8.4.6. Suppose B is semisimple with a positive involution ∗, and let Bi be a simple
factor of B. Then ∗ preserves Bi: for if B∗i = Bj � Bi , then Bj is a simple factor and
BiBj = 0 so Tr(BiB∗i ) = Tr(BiBj) = {0}, a contradiction.

Putting Lemma 8.4.5 with 8.4.6, we see it is enough to classify positive involutions
on simple R-algebras. By the theorem of Frobenius (Corollary 3.5.8), a simple algebra
over R is isomorphic to Mn(D) with D = R,C,H, so 8.4.3 applies.

Proposition 8.4.7. Let B � Mn(D) be a simple R-algebra and let ∗ be the conjugate
transpose involution on B. Let † : B → B be another positive involution on B. Then
there exists an element μ ∈ B× with μ∗ = μ such that

α† = μ−1α∗μ

for all α ∈ B.
Proof. First suppose B is central over R. Then the involutions † and ∗ give two
R-algebra maps B → Bop. By the Skolem–Noether theorem (Main Theorem 7.7.1),
there exists μ ∈ B× such that α† = μ−1α∗μ. Since

α = (α†)† = (μ−1α∗μ)† = μ−1(μ−1α∗μ)∗μ = (μ−1μ∗)α(μ−1μ∗)−1 (8.4.8)

for all α ∈ B, we have μ−1μ∗ ∈ Z(B) = R, so μ∗ = cμ for some c ∈ R. But
(μ∗)∗ = μ = (cμ∗)∗ = c2μ, thus c = ±1. But if c = −1, then μ is skew-symmetric so
its top-left entry is μ11 = 0; but then for the matrix unit e11 we have

Tr(e11e
†
11) = Tr(e11μ

−1e∗11μ) = Tr(μ−1e11μe11) = Tr(μ−1μ11) = 0, (8.4.9)

a contradiction.
A similar argument holds if B has center Z(B) = C. The restriction of an involution

to Z(B) is either the identity or complex conjugation; the latter holds for the conjugate
transpose involution, as well as for †: if z ∈ Z(B) then Tr(zz†) = n2(zz†) > 0, and
we must have z† = z. So the map α �→ (α∗)† is a C-linear automorphism, and
again there exists μ ∈ B× such that α† = μ−1α∗μ. By the same argument, we have
μ∗ = zμ with z ∈ C, but now μ = (μ∗)∗ = zzμ so |z | = 1. Let w2 = w/w = z; then
(wμ)∗ = wμ∗ = wzμ = wμ. Replacing μ by wμ, we may take z = 1. �

Corollary 8.4.10. The only positive involution on a real division algebra is the standard
involution.

Proof. Apply Proposition 8.4.7 with n = 1, noting that μ∗ = μ = μ implies μ ∈ R.
�
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8.4.11. Let μ ∈ B× with μ∗ = μ. Then μ is self-adjoint with respect to the pairing
(α, β) �→ Tr(α∗β):

(μα, β) = Tr((μα)∗β) = Tr(α∗μ∗β) = Tr(α∗μβ) = (α, μβ).

It follows from the spectral theorem that the R-linear endomorphism of B given by
left-multiplication by μ on B as an R-algebra is diagonalizable (with real eigenvalues)
via a symmetric matrix. We say μ is positive definite (for ∗) if all eigenvalues of μ
are positive. The map α �→ Tr(α∗μα) defines a quadratic form on B, and μ is positive
definite if and only this quadratic form is positive definite.

Lemma 8.4.12. Let μ∗ = μ. Then the involution α† = μ−1α∗μ is positive if and only if
either μ or −μ is positive definite.

Proof. Diagonalize the quadratic form α �→ Tr(α∗μα) to get 〈a1, . . . , am〉 in a nor-
malized basis e1, . . . , em, and suppose without loss of generality that ai = ±1. If all
ai = −1, then we can replace μ with −μ without changing the involution to suppose
they are all +1.

Suppose μ is not positive, and without loss of generality a1 < 0 and a2 > 0, then
Tr((e1 + e2)∗μ(e1 + e2)) = −1 + 1 = 0, a contradiction. Conversely, if μ is positive
definite, then all eigenvalues are +1. Let ν = √μ be such that ν∗ = ν, and then

Tr(α∗μ−1αμ) = Tr(α∗ν−2αν2) = Tr((να∗ν−1)(ν−1αν))
= Tr((ν−1αν)∗(ν−1αν)) > 0

(8.4.13)

for all α ∈ B, so † is positive. �

Example 8.4.14. If n = 1, and B = D, then the condition μ∗ = μ implies μ ∈ R, and
the condition μ positive implies μ > 0; rescaling does not affect the involution, so we
can take μ = 1 and there is a unique positive involution on D given by ∗.

Example 8.4.15. Let B = M2(R). Then μ =
(
2a b
b 2c

)
is positive definite if and only if

a > 0 and b2 − 4ac < 0. Combining Proposition 8.4.7 with Lemma 8.4.12, we see that
all positive involutions † on B are given by α† = μ−1α∗μ where μ is positive definite.

We can instead relate positive involutions to the standard involution α instead of
the transpose; to this end, it is enough to find j ∈ B× = GL2(R) such that α = j−1α∗ j,

and the element j =
(

0 1
−1 0

)
does the trick, because

(
0 1
−1 0

) (
a c
b d

) (
0 −1
1 0

)
=

(
d −b
−c a

)
. (8.4.16)

From the product
(

0 1
−1 0

) (
2a b
b 2c

)
=

(
b 2c
−2a −b

)
, we conclude that all positive

involutions are given by α† = μ−1αμ where μ2 ∈ R<0.
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Remark 8.4.17. Beyond the application to endomorphism algebras, Weil [Weil60]
has given a more general point of view on positive involutions, connecting them to
the classical groups. For more on involutions on finite-dimensional algebras over real
closed fields, see work of Munn [Mun2004].

8.5 ∗Endomorphism algebras of abelian varieties

We conclude this chapter with an advanced (optional) application: we characterize
endomorphism algebras of (simple) abelian varieties in terms of algebras with invo-
lutions. We borrow from the future the notions from section 43.4. Briefly, a complex
torus of dimension g is a complex manifold of the form A = V/Λ for g ≥ 0, where
Λ ⊂ V � C

g is a lattice (discrete subgroup) and Λ � Z
2g. A complex abelian variety

is a certain kind of complex torus. A complex abelian variety A is simple if A has no
abelian subvariety other than {0} and A.

An endomorphism of A is a C-linear map α : V → V such that α(Λ) ⊆ Λ. Let
End(A) be the ring (Z-algebra) of endomorphisms of A.

Proposition 8.5.1. B = End(A)⊗Q is a finite-dimensional algebra over Q that admits
a positive involution † : B → B.

Proof. The algebra B acts faithfully on Λ⊗Q � Q
2g, so is isomorphic to a subalgebra

of M2g(Q) hence is finite-dimensional over Q. For positivity, see Proposition 43.4.24
(for the case when A is principally polarized). �

Remark 8.5.2. The involution † : B → B is called the Rosati involution (and depends
on a choice of polarization λ : A→ A∨, where A∨ is the dual abelian variety).

Now Lemma 8.4.5 and Proposition 8.5.1 imply that B is semisimple as a Q-algebra,
with

B �
r∏
i=1

Mni (Di)

where each Di ⊆ B is a division algebra. It follows that A is isogenous to a product

An1
1 × · · · × Anr

r

where n1, . . . , nr > 0 and A1, . . . , Ar are simple pairwise nonisogenous abelian subva-
rieties of A such that Di = End(Ai) ⊗Z Q.

We therefore reduce to the case where A is simple, and D := End(A) ⊗ Q is a
division algebra. Let K := Z(D) be the center of D and let

K0 := K〈†〉 = {a ∈ K : a† = a}
be the subfield of K where † acts by the identity.

Lemma 8.5.3. K0 is a totally real number field, i.e., every embedding K0 ↪→ C factors
through R, and if † acts nontrivially on K , then K is a CM field, i.e., K is a totally
imaginary extension of K0.
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Proof. The positive involution † restricts to complex conjugation on Z(D) by Propo-
sition 8.4.7, so for all embeddings K0 ↪→ C, the image lies in R. For the same reason,
we cannot have † acting nontrivially on K and have an embedding K ↪→ R. �

The following theorem of Albert classifies the possibilities for D.

Theorem 8.5.4. (Albert). Let D be a (finite-dimensional) division algebra overQwith
positive involution † and center K = Z(D), let K0 := K〈†〉 and n := [K0 : Q]. Then K0
is a totally real number field, and one of the four following possibilities holds:

(I) D = K = K0 and † is the identity;
(II) K = K0 and D is a quaternion algebra over K0 such that

D ⊗Q R � M2(R)n,

and there exists μ ∈ D× such that μ2 = d ∈ K×0 is totally negative and α† =

μ−1αμ for all α ∈ D;
(III) K = K0 and D is a quaternion algebra over K0 such that

D ⊗Q R � H
n,

and † is the standard involution; or
(IV) K � K0 and

D ⊗Q R � Md(C)n

for some d ≥ 1, and † extends to the conjugate transpose ∗ on each factorMd(C).

Proof. We have assembled many of the tools needed to prove this theorem, and hope-
fully motivated its statement sufficiently well—but unfortunately, a proof remains just
out of reach: we require some results about quaternion algebras over number fields
not yet in our grasp. For a proof, see Mumford [Mum70, Application I, §21] or
Birkenhake–Lange [BL2004, §§5.3–5.5].

To connect a few dots as well as we can right now, we give a sketch in the case
where K = K0 for the reader who is willing to flip ahead to Chapter 14. In this case,
D is a central division algebra over K = K0 and has a K0-linear involution giving
an isomorphism D ∼−→ Dop of K0-algebras. Looking in the Brauer group Br(K0), we
conclude that [D] = [Dop] = [D]−1, so [D] ∈ Br(K0) has order at most 2. By class
field theory (see Remark 14.6.10), we conclude that either D = K0 or D is a (division)
quaternion algebra over K0. If D = K0, we are in case (I), so suppose D is a quaternion
algebra over K0. We have D⊗Q R �∏

v|∞ Dv a direct product of n quaternion algebras
Dv over R indexed by the real places v of K0. We have Dv � M2(R) or Dv � H, and our
positive involution induces a corresponding positive involution on each Dv . If there
exists v such that Dv � H, then by Corollary 8.4.10, the positive involution on Dv is the
standard involution, so it is so on D, and then all components must have Dv � H as the
standard involution is not positive on M2(R)—and we are in case (II). Otherwise, we
are in case (III), with Proposition 8.4.7 and Example 8.4.15 characterizing the positive
involution. �
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Exercises

Let F be a field.

1. Let B1, B2 be quaternion algebras over F, with standard involution written in
both cases. Let A := B1 ⊗ B2.

(a) Show that the mapσ : A→ A defined by α1⊗α2 �→ α1⊗α2 for α1 ∈ B1 and
α2 ∈ B2 extends to an involution on A, but it is not a standard involution.
[Hint: consider sums.]

(b) Suppose that char F � 2. Diagonalize A = A+ ⊕ A− into +1 and −1
eigenspaces for σ. Show that

A+ = F ⊕ (B−1 ⊗ B−2 ) and A− = (B−1 ⊗ F) ⊕ (F ⊗ B−2 ).

� 2. Suppose char F � 2 and let B1 :=
(
a, b1
F

)
and B2 :=

(
a, b2
F

)
be quaternion

algebras over F.

(a) Let B3 be the F-span of 1, i3 := i1⊗1, j3 := j1⊗ j2, and k3 := i3 j3 = i1 j1⊗ j2
inside B1 ⊗ B2. Show that B3 �

(
a, b1b2

F

)
as F-algebras.

(b) Similarly, let B4 be the F-span of 1, i4 := 1 ⊗ j2, j4 := (i1 ⊗ k2)/a, and

k4 := i4 j4. Show that B4 �
(
b2,−b2

F

)
� M2(F).

(c) Show that
B1 ⊗ B2 � B3 ⊗ B4 � M2(B3).

[Hint: Show that B3 and B4 are commuting subalgebras, or consider the
map B3 ⊗ B4 → B1 ⊗ B2 given by multiplication.]

(d) Restore symmetry and repeat (a)–(c) to find algebras B′3 � B3 and B′4 �(
b1,−b1

F

)
with B1 ⊗ B2 � B′3 ⊗ B′4 � M2(B′3).

3. Suppose char F � 2. Show that B1 ⊗ B2 � M4(F) if and only if the Albert form
Q(B1, B2) is totally hyperbolic.

4. Let G be a finite group. Show that the map induced by g �→ g−1 for g ∈ G
defines an positive involution on R[G]. Then show that this map composed with
coordinatewise complex conjugation defines a positive involution on C[G] (as
an R-algebra).

� 5. Show that if∼ is the equivalence relation (8.3.1) on CSA(F), then∼ is compatible
with tensor product, i.e., if A, A′ ∈ CSA(F) and A′ ∼ A′′ ∈ CSA(F) then
A ⊗ A′ ∼ A ⊗ A′′.

6. Show that every class in the Brauer group Br(F) contains a unique division
F-algebra, up to isomorphism.

7. Show that Br F = {1} if F is separably closed, and that Br(R) � Z/2Z and
Br(Fq) = {1}.
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8. Let B ∈ CSA(F) and suppose that B has an involution (not necessarily standard).
Show that [B] has order at most 2 in Br F.

9. Let K ⊇ F be a field extension. Show that the map A �→ A⊗F K induces a group
homomorphism Br F → BrK . Conclude that the set of isomorphism classes of
central division F-algebras D such that D ⊗F K � Mn(K) for some n ≥ 1 forms
a subgroup of Br F, called the relative Brauer group Br(K | F).

10. In this exercise, we give an example of a central simple algebra of infinite
dimension, called the Weyl algebra.
Suppose char F = 0, let F[x] be the polynomial ring over F in the variable x.
Inside the enormous algebra EndF F[x] is the operator f (x) �→ x f (x), denoted
also x, and the differentiation operator δ : F[x] → F[x]. These two operators
are related by the product rule:

δ(x f (x)) − xδ( f (x)) = f (x).

Accordingly, the subalgebra of EndF F[x] generated by δ, x is isomorphic to an
algebra given in terms of generators and relations:

W := F〈δ, x〉/〈δx − xδ − 1〉,
the quotient of the “noncommutative polynomial ring” in two variables F〈δ, x〉
by the two-sided ideal generated by δx − xδ − 1.

(a) Show that every element of W can be written in the form
∑n

i=0 fi(x)δi
where fi(x) ∈ F[x] for all i, i.e., W has F-basis elements xiδ j for i, j ≥ 0.

(b) Show that Z(W) = F.
(c) Let I be a two-sided ofW . Show that if there exists nonzero f (x) ∈ F[x]∩I,

then I = W . Similarly, show that if δn ∈ I for some n ≥ 0, then I = W .
(d) Show that W is simple. [Hint: argue by induction.]

11. Let B be a finite-dimensional R-algebra with positive involution ∗ : B → B. Let

P(B, ∗) := {μ ∈ B : μ∗ = μ and μ is positive definite for ∗}.
(a) Show that B× acts on P(B, ∗) by β · μ := β∗μβ.
(b) Show that P(B, ∗) is a convex open subset of {α ∈ B : α∗ = α}, an R-vector

subspace of B.
(c) Let ψ : B → B be an R-algebra automorphism or anti-automorphism.

Show that α† := ψ−1(ψ(α)∗) defines a positive involution for α ∈ B, and
that ψ maps P(B, †) bijectively to P(B, ψ).
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This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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