
Chapter 17

Classes of quaternion ideals

Having investigated the structure of lattices and ideals in Chapter 16, we now turn to
the study of their isomorphism classes.

17.1 � Ideal classes

For motivation, let K be a quadratic number field and S ⊆ K an order. We say that
two invertible fractional ideals a, b ⊂ K of S are in the same class, and write a ∼ b,
if there exists c ∈ K× such that ca = b; we denote the class of a fractional ideal a as
[a]. We have a ∼ b if and only if a and b are isomorphic as S-modules. The set Cl S of
invertible fractional ideals is a group under multiplication, measuring the failure of S
to be a PID. The class group Cl S is a finite abelian group, by Minkowski’s geometry of
numbers: every class in Cl S is represented by an integral ideal a ⊆ S whose absolute
norm is bounded (depending on S, but independent of the class), and there are only
finitely many such ideals. For an introduction to orders in quadratic fields and their
class numbers, with further connections to quadratic forms, see Cox [Cox89, §7].

The first treatment of isomorphism classes of quaternion ideals was given by Brandt
[Bra28]. Let B be a quaternion algebra overQ. In the consideration of classes of lattices
I ⊂ B, we make a choice and consider lattices as right modules—considerations on
the left are analogous, with the map I �→ I allowing passage between left and right.
We say that lattices I, J ⊆ B are in the same right class, and write I ∼R J, if there
exists α ∈ B× such that αI = J; equivalently, I ∼R J if and only if I is isomorphic to
J as right modules over OR(I) = OR(J). The relation ∼R is evidently an equivalence
relation, and the class of a lattice I is denoted [I]R.

Let O ⊂ B be an order. We define the right class set of O as

ClsR O := {[I]R : I ⊂ B invertible and OR(I) = O};
equivalently, ClsR O is the set of isomorphism classes of invertible right O-modules
in B. The standard involution induces a bijection between ClsR O and the analogously
defined left class set ClsL O; working on the right from now on, we will often abbreviate
ClsO := ClsR O.
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Unfortunately, the class set ClsO does not have the structure of a group: only
a pointed set, with distinguished element [O]R. One problem is the compatibility
of multiplication discussed in the previous chapter. But even if we allowed products
between incompatible lattices, the product need not be well-defined: the lattices I J and
IαJ for α ∈ B× need not be in the same class, because of the failure of commutativity.
(This is the reason we write ‘Cls’ instead of ‘Cl’, as a reminder that it is only a class set.)
In Chapter 19, we will describe the structure that arises naturally instead: a partially
defined product on classes of lattices, a groupoid.

In any case, using the same method of proof (geometry of numbers) as in the
commutative case, we will show that there exists a constant C (depending on O) such
that every class in ClsO is represented by an integral ideal I ⊆ Owith N(I) = #(O/I) ≤
C. As a consequence, we have the following fundamental theorem.

Theorem 17.1.1. Let B be a quaternion algebra over Q and let O ⊂ B be an order.
Then the right class set ClsO is finite.

Accordingly, we call # ClsO ∈ Z≥1 the (right) class number of O.
Right class sets pass between orders as follows. Let O,O′ ⊂ B be orders. If

O � O′ are isomorphic as rings, then of course this isomorphism induces a bijection
ClsO ∼−→ ClsO′. In fact, O � O′ if and only if there exists α ∈ B× such that
O′ = α−1Oα by the Skolem–Noether theorem; for historical reasons, we say that O,O′
are of the same type.

Note that I = Oα = αO′ has OL(I) = O and OR(I) = O′ (recalling 10.2.5).
With this in mind, more generally, we say that O′ is connected to O if there exists
an invertible lattice J with OL(J) = O and OR(J) = O′, called a connecting ideal.
Because invertible lattices are locally principal, two orders are connected if and only
if they are locally of the same type (i.e., locally isomorphic). If O′ is connected to
O, then right multiplying by a O,O′-connecting ideal J yields a bijection

ClsO ∼−→ ClsO′

[I]R �→ [I J]R
(17.1.2)

We define the genus of an order O ⊂ B to be the set GenO of orders in B locally
isomorphic to O, and the type set TypO of O to be the set of R-isomorphism classes
of orders in the genus of O. The map

ClsO→ TypO
[I]R �→ class of OL(I)

(17.1.3)

is a surjective map of sets, so the type set is finite: in other words, up to isomorphism,
there are only finitely many types of orders in the genus of O. All maximal orders in B
are in the same genus, so in particular there are only finitely many conjugacy classes
of maximal orders in B. In this way, the right class set of O also organizes the types of
orders arising from O.

The most basic question about the class number is of course its size (as a function
of O). In the case of quadratic fields, the behavior of the class group depends in a
significant way on whether the field is imaginary or real: for negative discriminant
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d < 0, the Brauer–Siegel theorem provides that # Cl S is approximately of size
√|d |;

in contrast, for positive discriminant d > 0, one typically sees a small class group and
a correspondingly large fundamental unit, but this statement is notoriously difficult to
establish unconditionally.

The same dichotomy is at play in the case of quaternion algebras, and to state the
cleanest results we suppose that O is a maximal order. Let D := disc B = discrd(O)
be the discriminant of B. If B is definite, which is to say ∞ ∈ Ram B, then B is like
an imaginary quadratic field K: the norm is positive definite. In this case, # ClsO is
approximately of size D, a consequence of the Eichler mass formula, the subject of
Chapter 25. On the other hand, if B is indefinite, akin to a real quadratic field, then
# ClsO = 1, this time a consequence of strong approximation, the subject of Chapter
28. Just as in the commutative case, estimates on the size of the class number use
analytic methods and so must wait until we have developed the required tools.

17.2 Matrix ring

To begin, we first consider classes of ideals for the matrix ring; here, we can use
methods from linear algebra before we turn to more general methods in the rest of the
chapter.

17.2.1. Let R be a PID with field of fractions F, and let B = Mn(F). By Corollary
10.5.5, every maximal order of B = Mn(F) is conjugate to Mn(R). Moreover, every
two-sided ideal of Mn(R) is principal, generated by an element a ∈ F× (multiplying
a candidate ideal by matrix units, as in Exercise 7.5(b)), so the group of fractional
two-sided Mn(R)-ideals is canonically identified with the group of fractional R-ideals,
itself isomorphic to the free abelian group on the (principal) nonzero prime ideals of R.

Just as in the two-sided case, the right class set for Mn(R) is trivial.

Proposition 17.2.2. Let R be a PID with field of fractions F, and let B = Mn(F). Let
I ⊆ B be an R-lattice with either OL(I) or OR(I) maximal. Then I is principal, and
both OL(I) and OR(I) are maximal.

Proof. We may suppose I is integral by rescaling by r ∈ R. Replacing I by the
transpose It = {αt : α ∈ I} interchanging left and right orders (Exercise 10.12) if
necessary, we may suppose that OL(I) is maximal. Then, by Corollary 10.5.5, we
have OL(I) = α−1 Mn(R)α with α ∈ B×, so replacing I by α−1I we may suppose
OL(I) = Mn(R).

Now we follow Newman [New72, Theorem II.5]. Let α1, . . . , αm be R-module
generators for I. Consider the nm× n matrix A = (α1, . . . , αm)t. By row reduction over
R (Hermite normal form, proven as part of the structure theorem for finitely generated
modules over a PID), there existsQ ∈ GLnm(R) such thatQA = (β, 0)t and β ∈ Mn(R).
We will show that I = Mn(R)β. Let ν11, . . . , ν1m ∈ Mn(R) be the block matrices in
the top n rows of Q. Then β = ν11α1 + · · · + ν1mαm so β ∈ I and Mn(R)β ⊆ I.
Conversely, let μ11, . . . , μm1 ∈ Mn(R) be the block matrices in the left n columns
of Q−1 ∈ GLnm(R). Since Q−1(β, 0)t = A, we have μi1β = αi so αi ∈ Mn(R)β for
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i = 1, . . . ,m, thus I ⊆ Mn(R)β. Therefore I = Mn(R)β, and so OR(I) is maximal
(16.2.3). �

Returning to the case of quaternion algebras, we have the following corollary of
Proposition 17.2.2.

Corollary 17.2.3. Let R be a Dedekind domain and let B be a quaternion algebra over
F = Frac R. Let I ⊆ B be an R-lattice with either OL(I) or OR(I) maximal. Then I is
locally principal and both OL(I) and OR(I) are maximal.

Proof. For each prime p of R, we have that Rp is a DVR and one of two possibilities:
either Bp � M2(Fp), in which case we can apply Lemma 17.2.2 to conclude Ip is
principal, or Bp is a division algebra, and we instead apply 13.3.10 to conclude that Ip
is principal. �

17.3 Classes of lattices

For the rest of this chapter, let R be a Dedekind domain with field of fractions F =

Frac R, and let B be a simple F-algebra.

Definition 17.3.1. Let I, J ⊆ B be R-lattices. We say I, J are in the same right class,
and we write I ∼R J, if there exists α ∈ B× such that αI = J.

17.3.2. Throughout, we work on the right; analogous definitions can be made on the
left. When B has a standard involution, the map I �→ I interchanges left and right.

Lemma 17.3.3. Let I, J ⊆ B be R-lattices. Then the following are equivalent:

(i) I ∼R J;
(ii) I is isomorphic to J as a right module over OR(I) = OR(J); and
(iii) (J : I)L is a principal R-lattice.

Proof. For (i)⇒ (ii). If I ∼R J then J = αI with α ∈ B×, so OR(J) = OR(I) and the
map left-multiplication by α gives a right O-module isomorphism I ∼−→ J. Conversely,
for (i) ⇐ (ii), suppose that φ : I ∼−→ J is an isomorphism of right O-modules. Then
φF : I ⊗R F = B ∼−→ J ⊗R F = B is an automorphism of B as a right B-module.
Then as in Example 7.2.14, such an isomorphism is obtained by left multiplication by
α ∈ B×, so by restriction φ is given by this map as well.

Next, for (i)⇒ (iii), suppose αI = J with α ∈ B×. Then

(J : I)L = {β ∈ B : βI ⊆ J = αI} = αOL(I)

is principal. The converse follows similarly. �

The relation ∼R defines an equivalence relation on the set of R-lattices in B, and
the equivalence class of an R-lattice I is denoted [I]R. If I is an invertible R-lattice,
then every lattice in the class [I]R is invertible and we call the class invertible.

In view of Lemma 17.3.3(b), we organize classes of lattices by their right orders.
Let O ⊂ B be an R-order.
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Definition 17.3.4. The (right) class set of O is

ClsR O := {[I]R : I an invertible right fractional O -ideal}.
In view of 17.3.2, we will soon abbreviate ClsO := ClsR O and drop the subscript

R from the classes, when no confusion can result.
Remark 17.3.5. The notation ClO is also used for the class set, but it sometimes means
instead the stably free class group or some other variant. We use “Cls” to emphasize
that we are working with a class set.

17.3.6. The set ClsR O has a distinguished element [O]R ∈ ClsR O, so it has the
structure of a pointed set (a set equipped with a distinguished element of the set).
However, in general it does not have the structure of a group under multiplication: for
classes [I]R, [J]R, we have [αJ]R = [J]R for α ∈ B× but we need not have [IαJ]R =

[I J]R, because of the lack of commutativity.

17.3.7. An argument similar to the one in Proposition 17.2.2, either arguing locally or
with pseudobases (9.3.7), yields the following [CR81, (4.13)].

Let R be a Dedekind domain with F = Frac R, and let I ⊆ B be an R-lattice with
OL(I) = Mn(R). Then there exists β ∈ GLn(F) and fractional ideals a1, · · · , an such
that

I = Mn(R) diag(a1, . . . , an)β (17.3.8)

where diag(a1, . . . , an) is the R-module of diagonal matrices with entries in the given
fractional ideal. The representation (17.3.8) is called the Hermite normal form of
the R-module I, because it generalizes the Hermite normal form over a PID (allowing
coefficient ideals).

By 9.3.10, the Steinitz class [a1 · · · an] ∈ Cl R is uniquely defined. Switching to the
right, this yields a bijection

Cl R ∼−→ ClsR(Mn(R))
[a] �→ [diag(a, 1, . . . , 1) Mn(R)]R

(17.3.9)

17.4 Types of orders

Next, we consider isomorphism classes of orders. Let O,O′ ⊆ B be R-orders.

Definition 17.4.1. We say O,O′ are of the same type if there exists α ∈ B× such that
O′ = α−1Oα.

Lemma 17.4.2. The R-orders O,O′ are of the same type if and only if they are iso-
morphic as R-algebras.

Proof. If O,O′ are of the same type, then they are isomorphic (under conjugation).
Conversely, if φ : O ∼−→ O′ is an isomorphism of R-algebras, then extending scalars
to F we obtain φF : OF = B ∼−→ B = O′F an F-algebra automorphism of B. By
the theorem of Skolem–Noether (Corollary 7.7.4), such an automorphism is given by
conjugation by α ∈ B×, so O,O′ are of the same type. �
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17.4.3. IfO,O′ are of the same type, then an isomorphismO ∼−→ O′ induces a bijection
ClsO ∼−→ ClsO′ of pointed sets. By Lemma 17.4.2, such an isomorphism is provided
by conjugation O′ = α−1Oα for some α ∈ B×. The principal lattice I = Oα = αO′
has OL(I) = O and OR(I) = O′.

Generalizing 17.4.3, the class sets of two orders are in bijection if they are con-
nected, in the following sense.

Definition 17.4.4. O is connected to O′ if there exists a locally principal fractional
O,O′-ideal J ⊆ B, called a connecting ideal.

The relation of being connected is an equivalence relation on the set of R-orders.
If two R-orders O,O′ are of the same type, then they are connected by a principal
connecting ideal (17.4.3).

Definition 17.4.5. We say that O,O′ are locally of the same type or locally isomor-
phic if Op and O′p are of the same type (i.e., Op � O′p) for all primes p of R.

Lemma 17.4.6. The R-orders O,O′ are connected if and only if O,O′ are locally
isomorphic.

Proof. Let J be a connecting ideal, a locally principal fractional O,O′-ideal. Then for
all primes p of R we have Jp = Opαp with αp ∈ Bp, and consequently O′p = OR(Ip) =
α−1
p Opαp. Therefore O is locally isomorphic to O′.

Conversely, if O,O′ are locally isomorphic, then for all primes p of R we have
O′p = α−1

p Opαp with αp ∈ Bp. Since R is a Dedekind domain, O′p = Op for all but
finitely many primes p, so we may take αp ∈ Op = O′p for all but finitely many primes
p. Therefore, there exists an R-lattice I with Ip = Opαp by the local-global principle
for lattices, and I is a locally principal fractional O,O′-ideal. �

Lemma 17.4.7. If O,O′ ⊆ B are maximal R-orders, then OO′ is a O,O′-connecting
ideal.

The product in Lemma 17.4.7 is not necessarily compatible.

Proof. Since O,O′ are R-lattices, their product I := OO′ is an R-lattice. We visibly
have O ⊆ OL(I) and the same on the right; but O,O′ are maximal, so equality holds
and I is a fractionalO,O′-ideal. Finally, I is invertible by Proposition 16.6.15(b), hence
locally principal by Main Theorem 16.6.1. �

In analogy with the class set, we make the following definitions.

Definition 17.4.8. Let O ⊂ B be an R-order. The genus GenO of O is the set of R-
orders in B locally isomorphic to O. The type set TypO of O is the set of isomorphism
classes of orders in the genus of O.

17.4.9. The orders in a genus have a common reduced discriminant, since the discrim-
inant can be defined locally and is well-defined on (local) isomorphism classes, by
Corollary 15.2.9.
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17.4.10. Recalling section 15.5, there is a unique genus of maximal R-orders in a
quaternion algebra B—that is to say, every two maximal orders are locally isomorphic—
and this genus has a well-defined reduced discriminant equal to discR B.

The importance of connected orders is attested to by the following result.

Lemma 17.4.11. Let O,O′ be connected R-orders, and let J be a connecting O,O′-
ideal. Then the maps

ClsR O ∼−→ ClsR O′

[I]R �→ [I J]R
[I′J−1]R ←� [I′]R

are mutually inverse bijections. In particular, ifO′ ∈ GenO then # ClsR O = # ClsR O′.

Proof. By definition, J is invertible with OL(J) = O and OR(J) = O′. Therefore the
map I �→ I J induces a bijection between the set of invertible rightO-ideals and the set of
invertible rightO′-ideals (Lemma 16.5.11), with inverse given by I′ �→ I′J−1, and each
of these products is compatible. This map then induces a bijection ClsO ∼−→ ClsO′,
since is compatible with left multiplication in B, i.e., (αI)J = α(I J) for all α ∈ B×.

�

Remark 17.4.12. The equivalence in Lemma 17.4.11 is a form of Morita equivalence:
see Remark 7.2.20.

Lemma 17.4.11 says that the cardinality of the right class set is well-defined on the
genus GenO; and of course the cardinality of the type set is also well-defined on the
genus (as it is the number of isomorphism classes).

Lemma 17.4.13. The map

ClsR O→ TypO
[I]R �→ class of OL(I)

(17.4.14)

is a surjective map of sets.

Proof. If O′ is connected to O, then there is a connecting O′,O-ideal I, and [I]R ∈
ClsR O has OL(I) � O′. �

Remark 17.4.15. The fibers of the map (17.4.14) is given by classes of two-sided
ideals: see Proposition 18.5.10.

17.4.16. Let B = M2(F) and O = M2(R). From the bijection (17.3.9), the classes in

ClR(M2(R)) are represented by Ia =

(
a a
R R

)
for [a] ∈ Cl R. Consequently

OL(Ia) =
(
R a

a−1 R

)
.
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We will see later (28.5.11) that there is a bijection

Cl R/(Cl R)2 ∼−→ Typ M2(R)

class of [a] up to squares �→ class of
(
R a

a−1 R

)
.

(17.4.17)

17.5 � Finiteness of the class set: over the integers

Over the next two sections, we will show that the set ClsO of invertible right (fractional)
O-ideals is finite using the geometry of numbers. In this section, we carry this out for
the simplest case, when B is definite over Q; we consider the general case in the next
section. For further reading on the rich theory of the geometry of numbers, see Cassels
[Cas97], Gruber–Lekkerkerker [GrLe87], and Siegel [Sie89].

Our strategy is as follows: if J is an invertible right O-ideal, we will show there
exists α ∈ J−1 with the property that αJ = I ⊆ O has bounded absolute norm
N(I) = #(O/I) ≤ C where C ∈ R>0 is independent of J. The result will then follow
from the fact that there are only finitely many rightO-ideals of bounded absolute norm.

We begin with some definitions (generalizing Definition 9.3.1 slightly).

Definition 17.5.1. A Euclidean lattice is a Z-submodule Λ ⊆ Rn with Λ � Zn such
that RΛ = Rn. The covolume of a Euclidean lattice Λ is covol(Λ) = vol(Rn/Λ).

17.5.2. Equivalently, a Euclidean lattice Λ ⊂ Rn is the Z-span of a basis of Rn, and if
Λ =

⊕
i Zai , then covol(Λ) = |det(ai j)i, j |.

Lemma 17.5.3. A subgroup Λ ⊂ Rn is a Euclidean lattice if and only if Λ is discrete
and the quotient Rn/Λ is compact.

Proof. Exercise 17.6. �

Definition 17.5.4. Let X ⊆ Rn be a subset.

(a) X is convex if t x + (1 − t)y ∈ X for all x, y ∈ X and t ∈ [0, 1].
(b) X is symmetric if −x ∈ X for all x ∈ X .

The main result of Minkowski’s geometry of numbers is the following convex body
theorem.

Theorem 17.5.5. (Minkowski). Let X ⊆ Rn be a closed, convex, symmetric subset of
Rn, and let Λ ⊂ Rn be a Euclidean lattice. If vol(X) ≥ 2n covol(Λ), then there exists
0 � α ∈ Λ ∩ X .

The following proposition can be seen as a generalization of what was done for the
Hurwitz order (11.3.1).
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Proposition 17.5.6. Let B be a definite quaternion algebra over Q and let O ⊂ B be
an order. Then O× = O1 is a finite group, and every right ideal class in ClsO is
represented by an integral right O-ideal with

N(I) ≤ 8
π2 discrd(O)

and the right class set ClsO is finite.

Proof. Let B =

(
a, b
Q

)
, with a, b ∈ Z<0. Since B is definite, there is an embedding

B ↪→ B∞ = B ⊗Q R � H. Inside B∞ � R4 with Euclidean norm nrd, the order O
sits as a Euclidean lattice. The set O1 is therefore a discrete subset of the compact set
B1∞ � H1, so it is finite.

Explicitly, we identify

B∞ ∼−→ R4

t + xi + y j + zi j �→ √2
(
t, x

√
|a|, y

√
|b|, z

√
|ab|) (17.5.7)

Then 2 nrd(α) = ‖α‖2 for α ∈ B in this identification, and we have covol(O) =

discrd(O) (Exercise 17.7).
Let J ⊂ B be an invertible right fractional O-ideal. To find I with [I] = [J] and

I integral, we look for a small α ∈ J−1 so that I = αJ ⊆ O will do. As a measure of
(co)volume, counting cosets and applying the definition (16.4.9), we obtain

covol(J−1) = [O : J−1]Z covol(O) = N(J−1) discrd(O). (17.5.8)

Let c > 0 satisfy c4 = (32/π2) covol(J−1), and let

X = {x ∈ R4 : ‖x‖ ≤ c}.
Then X is closed, convex, and symmetric, and vol(X) = π2c4/2 = 16 covol(J−1). Then
by Minkowski’s theorem (Theorem 17.5.5), there exists 0 � α ∈ J−1 ∩ X , and

N(αJ) = NmB|Q(α)N(J) = nrd(α)2N(J) =
1
4
‖α‖4N(J)

≤ 1
4
c4N(J) =

8
π2 discrd(O).

(17.5.9)

Since α is nonzero and B is a division algebra, α ∈ B×. Since α ∈ J−1, the integral
right fractional O-ideal I = αJ ⊆ O is as desired.

If I ⊆ O has N(I) = #(O/I) ≤ C for C ∈ Z>0, then CO ⊆ I ⊆ O hence there are
only finitely many possibilities for I, and the second statement follows. �

17.6 � Example

We pause for an extended example. We steal the following lemma from the future.
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Lemma 17.6.1. Let e ∈ Z≥0. Then every principal right M2(Zp)-ideal I with nrd(I) =
pe is of the form I = αM2(Zp) where

α ∈
{(
pu 0
c pv

)
: u, v ∈ Z≥0, u + v = e, andc ∈ Z/pvZ

}
. (17.6.2)

Proof. The lemma follows from the theory of invariant factors: a more general state-
ment is proven in Lemma 26.4.1. �

Example 17.6.3. Let B =

(−1,−23
Q

)
, and let

O = Z + Zi + Z
1 + j

2
+ Zi

1 + j
2
.

We have discrd(O) = disc B = 23, so O is a maximal order, and β = (1+ j)/2 satisfies
β2 − β + 6 = 0. For convenience, let α = i, so O = Z〈α, β〉. Then

αβ + βα = α. (17.6.4)

By Proposition 17.5.6, it is sufficient to compute the (invertible) right O-ideals
I ⊆ O such that

nrd(I)2 = N(I) ≤ 8
π2 (23) ≤ 18.7

so nrd(I) ≤ 4. For nrd(I) = 1, we can only have I = O, and the class [I1] = [O]. Let
O1 = O.

We move to nrd(I) = 2, and refer to Lemma 17.6.1. Since B is split at 2, there is
an embedding

O ↪→ M2(Z2)

α, β �→
(
0 −1
1 0

)
,

(
1 0
0 b0

)
.

where b0 = 2 + 8 + 16 + 32 + · · · ∈ Z2 satisfies b2
0 − b0 + 6 = 0 and b0 ≡ 0 (mod 2).

We have
β, β + 1, (α + 1)β ≡

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
1 0

)
(mod 2)

so we obtain the three right ideals

I(1:0) = 2O + βO, I(0:1) = 2O + (β − 1)O, I(1:1) = 2O + (α + 1)βO (17.6.5)

labelled by the corresponding nonzero column. If one of these three ideals is principal,
then it is generated by an element of reduced norm 2. We have

nrd(t + xα + yβ + zαβ)
= t2 + ty + x2 + xz + 6y2 + 6z2

=

(
t +

1
2
y

)2
+

(
x +

1
2
z
)2

+
23
4
y2 +

23
4
z2.

(17.6.6)
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So nrd(γ) = 2 with γ ∈ O has t, x, y, z ∈ Z and therefore y = z = 0 and t = x = 1, i.e.,
I(1:1) = (α + 1)O is principal, and the ideals I(1:0), I(0:1) are not. But [I(1:0)] = [I(0:1)]
because αI(1:0) = I(0:1) because α ∈ O× and by (17.6.4)

α(2O + (β − 1)O) = 2αO + α(β − 1)O = 2O − βαO = I(0:1)

(We have αI(1:0) � I(1:0) precisely because α � OL(I).) In this way, we have found
exactly one new right ideal class, [I2] = [I(1:0)]. We compute its left order to be

O2 := OL(I2) = Z + βZ +
i(1 + 3 j)

4
Z + (2i j)Z � O

and we also have a new type [O2] � [O1] ∈ TypO.
In a similar way, we find 4 right ideals of reduced norm 3, and exactly one new

right ideal class, represented by the right ideal I3 = 3O + (α + 1)βO. For example, we
find that the right ideal I′ = 3O + βO is not principal using (17.6.6): letting

(I′ : I2)L = I′I−1
2 =

1
2
I′I2

and we find a shortest vector

(1 − β)/2 ∈ (I′ : I2)L,

so [I′] = [I2].
Repeating this with ideals of reduced norm 4 (Exercise 17.8), we conclude that

ClsO = {[I1], [I2], [I3]}
and letting O3 := OL(I3), checking it is not isomorphic to the previous two orders, we
have

TypO = {[O1], [O2], [O3]}.

17.7 Finiteness of the class set: over number rings

We now turn to the general case.

Main Theorem 17.7.1. Let F be a number field, let S ⊆ Pl F be eligible and R = R(S)
be the ring of S-integers in F. Let B be a quaternion algebra over F, and let O ⊆ B be
an R-order in B. Then the class set ClsO and the type set TypO is finite.

We call # ClsO the (right) class number of O. (By 17.3.2, the left class number
suitably defined is equal to the right class number.) This result will be drastically
improved upon in Part III of this text from analytic considerations; the proof in this
section, using the geometry of numbers, has the advantage that is easy to visualize, it
works in quite some generality, and it is the launching point for algorithmic aspects.
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17.7.2. Before we begin, two quick reductions. The finiteness of the type set follows
from finiteness of the right class set by Lemma 17.4.13. And if R = ZF is the ring of
integers of F, then the general case follows from the fact that the map

ClsO→ Cl(O ⊗R R(S))
[I] �→ [I ⊗R R(S)]

(17.7.3)

is surjective for an eligible set S.

Let F be a number field of degree n = [F : Q], let R = ZF be the ring of integers
in F, and let B be a quaternion algebra over F.

17.7.4. Suppose that F has r real places and c complex places, so that n = r +2c. Then

F ↪→ F∞ = F ⊗Q R �
∏
v|∞

Fv � Rr × Cc . (17.7.5)

Taking the basis 1, i for C, we obtain F∞ � Rn, and then in the embedding (17.7.5),
the ring of integers R � Zn sits discretely inside F∞ � Rn as a Euclidean lattice.

17.7.6. Suppose B =

(
a, b
F

)
and let 1, i, j, k be the standard basis for B with k = i j, so

B = F ⊕ Fi ⊕ F j ⊕ Fk � F4 as F-vector spaces. Then

B ↪→ B∞ = B ⊗Q R � B ⊗F F∞ � F4∞ (17.7.7)

in this same basis. Via (17.7.5) in each of the four components, the embedding (17.7.7)
then gives an identification B∞ � (Rn)4 � R4n.

The order R〈i, j, k〉 = R+Ri+Rj+Rk is discrete in B∞ exactly because R is discrete
in F. But then implies that an R-order O is discrete in B∞, since [O : R〈i, j, k〉]Z < ∞.
Therefore O ↪→ R4n has the structure of a Euclidean lattice.

In the previous section, the real vector space B∞ was Euclidean under the reduced
norm. In general, that need no longer be the case. Instead, we find a positive definite
quadratic form Q : B∞ → R that majorizes the reduced norm in the following sense:
we require that

|NmF/Q(nrd(α))| ≤ Q(α)n (17.7.8)

for all α ∈ B ⊆ B∞.
Remark 17.7.9. With respect to possible majorants (17.7.8): in general, there are
uncountably many such choices, and parametrizing majorants arises in a geometric
context as part of reduction theory. As it will turn out, the only “interesting” case to
consider here is 17.7.10, by strong approximation (see Theorem 17.8.3).

17.7.10. Let B be a totally definite (Definition 14.5.7) quaternion algebra over F, a
totally real number field. Then the quadratic form

Q : B → Q

α �→ TrF/Q(nrd(α)) =
∑
v|∞

v(nrd(α)) (17.7.11)
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is positive definite: Bv � H and so v(nrd(α)) ≥ 0 with equality if and only if α = 0. We
call this quadratic form the absolute reduced norm. In this case, by the arithmetic-
geometric mean,

NmF/Q(nrd(α))1/n =

(∏
v

v(nrd(α))

)1/n

≤ 1
n

∑
v

v(nrd(α)) =
1
n
Q(α)

(17.7.12)

(with equality if and only if v(nrdα) agrees for all v).

We pause to note the following important consequence of 17.7.10.

Lemma 17.7.13. Let B be a totally definite quaternion algebra over a totally real field
F and let O ⊆ B be a ZF -order. Then the group of units of reduced norm 1

O1 = {γ ∈ O : nrd(γ) = 1}
is a finite group.

In Lemma 17.7.13, if F = Q then O× = O1, so we have captured the entire unit
group.

Proof. As in 17.7.10, we equip BR := B ⊗Q R � Hn � R4n with the absolute reduced
norm giving O ↪→ BR the structure of a Euclidean lattice (17.7.7). We have

O1 = {γ ∈ O : Q(γ) = n} (17.7.14)

by the arithmetic-geometric mean (17.7.12). But the set {x ∈ BR : Q(x) = n} is an
ellipsoid in R4n so compact, and O is a lattice so discrete. Therefore the intersection
O1 is finite. �

17.7.15. We now generalize 17.7.10 to the general case. For v an infinite place of F,
define

Qv : Bv → R

t + xi + y j + zi j �→ |v(t)|2 + |v(a)||v(x)|2 + |v(b)||v(y)|2 + |v(ab)||v(z)|2;

then Qv is a positive definite quadratic form on Bv , and

|v(nrd(α))| = |v(t2 − ax2 − by2 + abz2)|
≤ |v(t)|2 + |v(a)||v(x)|2 + |v(b)||v(y)|2 + |v(ab)||v(z)|2
= Qv(α).

(17.7.16)

Let mv = 1, 2 depending on if v is real or complex, and define

Q : B∞ �
∏
v|∞

Bv → R

(αv)v �→
∑
v|∞

mvQv(αv).
(17.7.17)
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Then Q is a positive definite quadratic form on B∞, again called the absolute reduced

norm (relative to a, b); it depends on the choice of representation B =

(
a, b
F

)
. Never-

theless, (17.7.16) and the arithmetic-geometric mean yield

|NmF/Q(nrd(α))|1/n ≤ 1
n

∑
v|∞

mv |v(nrd(α))|

≤ 1
n

∑
v|∞

mvQv(α) = Q(α).
(17.7.18)

We are now ready to prove the main result of this section.

Proposition 17.7.19. There exists an explicit constant C ∈ R>0 such that for all R-
orders O, every right ideal class in ClsO is represented by an integral right O-ideal I
with

N(I) ≤ CN(discrd(O)).

Proof. If B � M2(F), then we appeal to 17.3.7, where such a bound comes from the
finiteness of Cl R. So we may suppose that B is a division ring.

Let
X = {(xi)i ∈ R4n : Q(α) ≤ 1}. (17.7.20)

Then X is closed, convex, and symmetric.
Let O be an R-order in B and let J be an invertible right fractional O-ideal. As in

(17.5.8), counting cosets gives

covol(J−1) = N(J)−1 covol(O). (17.7.21)

Let

c := 2
(
covol(J−1)

vol(X)

)1/4n

. (17.7.22)

Then vol(cX) = c4n vol(X) = 24n covol(J−1). By Minkowski’s theorem, there exists
0 � α ∈ J−1 ∩ cX , so Q(α) ≤ c2. By (17.7.18),

|NmF/Q(nrd(α))| ≤ 1
nn

Q(α)n ≤ c2n

nn
.

Consequently

N(αJ) = |NmF/Q(nrd(α))|2N(J) ≤ c4n

n2nN(J)

=
24nN(J)−1 covol(O)

n2n vol(X)
N(J) =

24n covol(O)
n2n vol(X)

= CN(discrd(O))

(17.7.23)

with
C :=

24n

n2n vol(X)
covol(O)

N(discrd(O))
. (17.7.24)
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The ratio covol(O)/N(discrd(O)) is a constant independent of O: if O′ is another
R-order then

N(discrd(O′))
covol(O′)

=
[O : O′]ZN(discrd(O))

[O : O′]Z covol(O)
=

N(discrd(O))
covol(O)

.

Since α is nonzero and B is a division algebra we conclude that α ∈ B×, and since
α ∈ J−1, the ideal I = αJ is as desired. �

Remark 17.7.25. For an explicit version of the Minkowski bound in the totally definite
case, with a careful choice of compact region, see Kirschmer [Kir2005, Theorem
3.3.11].

Lemma 17.7.26. For all C > 0, there are only finitely many integral right O-ideals
with N(I) ≤ C.

Proof. We may suppose C ∈ Z. If I ⊆ O then N(I) = [O : I]Z ≤ C, so CO ⊆ I ⊆
O. But the group O/CO is a finite abelian group and there are only finitely many
possibilities for I. �

We now have the ingredients for our main theorem.

Proof of Main Theorem 17.7.1. Combine Proposition 17.7.19, the reductions in 17.7.2,
and Lemma 17.7.26. �

Remark 17.7.27. The finiteness statement (Main Theorem 17.7.1) can be generalized
to the following theorem of Jordan–Zassenhaus. Let R be a Dedekind domain with
F = Frac(R) a global field, let O ⊆ B be an R-order in a finite-dimensional semisimple
algebra B, and letV be a left B-module. Then there are only finitely many isomorphism
classes I ⊆ B with O ⊆ OL(I). Specializing to V = B a quaternion algebra, we recover
the Main Theorem 17.7.1. For a proof, see Reiner [Rei2003, Theorem 26.4]; see also
the discussion by Curtis–Reiner [CR81, §24].

17.8 Eichler’s theorem

In this section, we state a special but conceptually important case of Eichler’s theorem
for number fields: roughly speaking, the class set of an indefinite quaternion order is
in bijection with a certain class group of the base ring.

Let F be a number field with ring of integers R = ZF and let B be a quaternion
algebra over F.

Definition 17.8.1. We say B satisfies the Eichler condition if B is indefinite.

Definition 17.8.1 introduces a longer (and rather opaque) phrase for something
that we already had a word for, but its use is prevalent in the literature. There are two
options: either B is totally definite (F is a totally real field and all archimedean places
of F are ramified in B) or B is indefinite and satisfies the Eichler condition.
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17.8.2. Recall 14.7.2 that we define Ω ⊆ Ram B to be the set of real ramified places of
B and F×

>Ω0 to be the positive elements for v ∈ Ω.
We now define the group ClΩ R as

the group of fractional ideals of F under multiplication

modulo

the subgroup of nonzero principal fractional ideals
generated by an element in F×

>Ω0

IfΩ is the set of all real places of F, then ClΩ R = Cl+ R is the narrow (or strict) class
group. On the other hand, if Ω = ∅, then ClΩ R = Cl R. In general, we have surjective
group homomorphisms Cl+ R → ClΩ R and ClΩ R → Cl R. In the language of class
field theory, ClΩ R is the class group corresponding to the cycle given by the product
of the places in Ω.

Theorem 17.8.3. (Eichler; strong approximation). Let F be a number field and let B
be a quaternion algebra over F that satisfies the Eichler condition. Let O ⊆ B be a
maximal ZF -order. Then the reduced norm induces a bijection

ClsO ∼−→ ClΩ R
[I] �→ [nrd(I)].

(17.8.4)

where Ω ⊆ Ram B is the set of real ramified places in B.

Proof. Eichler’s theorem is addressed by Reiner [Rei2003, §34], with a global proof
of the key result [Rei2003, Theorem 34.9] falling over several pages. We will instead
prove a more general version of this theorem as part of strong approximation, when
idelic methods allow for a more efficient argument: see Corollary 28.5.17. �

Eichler’s theorem says that when B is not totally definite, the only obstruction for
an ideal to be principal in a maximal order is that its reduced norm fails to be (strictly)
principal in the base ring. In particular, we have the following corollary.

Corollary 17.8.5. If # Cl+ R = 1, then # ClsO = 1: i.e., every right O-ideal of a
maximal order in an indefinite quaternion algebra is principal.

Proof. Immediate from Eichler’s theorem and the fact that Cl+ R surjects onto ClΩ R,
by 17.8.2. �

Corollary 17.8.6. There is a bijection Cls M2(ZF ) ∼−→ ClZF .

Proof. Immediate from Eichler’s theorem; we proved this more generally for a matrix
ring (17.3.9) using the Hermite normal form. �

17.8.7. It is sensible for the class group ClΩ R to appear by norm considerations. Let
v ∈ Ω; then Bv � H, and if α ∈ B× then v(nrd(α)) > 0, as the reduced norm is positive.

The class sets of totally definite orders are not captured by Eichler’s theorem,
and for good reason: they can be arbitrarily large, a consequence of the Eichler mass
formula (Chapter 25).
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Exercises

Unless otherwise specified, throughout these exercises let R be a Dedekind domain
with field of fractions F, let B be a quaternion algebra over F, and let O ⊆ B be an
R-order.

1. Argue for Proposition 17.2.2 directly in a special case as follows. Let I ⊆ M2(F)
be a lattice with OR(I) = M2(R).

(a) By considering I ⊗R F show that

I ⊆
(
F F
0 0

)
M2(R) ⊕

(
0 0
F F

)
M2(R).

(b) Suppose that R is a PID. Conclude that I is principal.

2. Let O,O′ ⊆ B be R-orders. Show that the map in Lemma 17.4.11 is a bijection
of pointed sets if and only if O is isomorphic to O′.

�3. Let O,O′ ⊆ B be R-orders with O ⊆ O′.

(a) If I is an invertible right O-ideal, show that IO′ is an invertible right
O′-ideal. (The product IO′ is not necessarily compatible.)

(b) Show that the map

ClsO→ ClsO′

[I] �→ [IO′]

is well-defined, surjective, and has finite fibers. [Hint: let r ∈ R be nonzero
such that O′ ⊆ r−1O. If IO′ = I′, then I′ = IO′ ⊆ r−1I ⊆ r−1I′ so
r I′ ⊆ I ⊆ I′, and conclude there are only finitely many possibilities for I.]

4 Let O,O′ ⊆ B be maximal R-orders. In this exercise, we prove the following
statement:

There is a unique integral connecting O,O′ ideal I of minimal
reduced norm; moreover, we have nrd(I) = [O : O ∩O′].

(a) Show that this statement is local, i.e., the statement is true over R if and
only if it is true over Rp for all primes p of R.

(b) Suppose R is a DVR. Show that the statement is true if B is a division
algebra.

(c) Suppose R is a DVR with maximal ideal p, and that B � M2(F). Show that
there is a unique α ∈ O�pO such thatO′ = α−1Oα up to left multiplication
by O×, and conclude that I = Oα is the unique integral connecting O,O′
ideal of minimal reduced norm. [Hint: NGL2(F)(M2(R)) = F× GL2(R).]

(d) Continuing (c), show that nrd(α) = [O : O ∩ O′]. [Hint: the statement is
equivalent under left or right multiplication of α by O× � GL2(R), so
consider invariant factors.] [For another perspective, see section 23.5.]



294 CHAPTER 17. CLASSES OF QUATERNION IDEALS

�5. Let O ⊆ B be an R-order and let I be an invertible fractional right O-ideal. Let
a ⊆ R be a nonzero ideal. Show that there exists a representative J ∈ [I]R (in the
same right ideal class as I) such that J ⊆ O and nrd(J) is coprime to a. [Hint:
look for α ∈ (O : I)R and then look locally.]

�6. Prove Lemma 17.5.3: a subgroupΛ ⊂ Rn is a Euclidean lattice if and only ifΛ is
discrete (every point ofΛ is isolated, i.e., every x ∈ Λ has an open neighborhood
U � x such that Λ ∩U = {x}) and the quotient Rn/Λ is compact.

�7. Let B be a definite quaternion algebra over Q and let O ⊂ B be an order.

(a) Let B∞ = B ⊗Q R. Show that nrd is a Euclidean norm on B∞, and O is
discrete in B∞ with covol(O) = 4 discrd(O). [So it is better to take

√
2 nrd

instead, to get covol(O) = discrd(O) on the nose.]
(b) Let K1,K2 ⊆ B be quadratic fields contained in B with K1 ∩ K2 = Q. Let

Si := Ki ∩O and di = disc Si . Show that

(|d1 | − 1)(|d2 | − 1) ≥ 4 discrd(O).

[Hint: write Si = Z[αi] and consider the order Z〈α1, α2〉. ]
(c) Prove that if α1, α2 ∈ O have

nrd(α1), nrd(α2) <
√

discrd(O)
2

then α1α2 = α2α1.

8. Complete Example 17.6.3 by showing explicitly that all rightO-ideals of reduced
norm 4 are in the same right ideal class as one of I1, I2, I3.

9. Let R be a global ring with # Cl R = 1, i.e., every fractional R-ideal is principal
a = aR. Suppose further that # ClsO = 1. Let α ∈ O have nrd(α) � 0, and
factor nrd(α) = π1π2 · · · πr ∈ R where πi ∈ R are pairwise nonassociate nonzero
prime elements (equivalently πiR are pairwise distinct nonzero prime ideals).

(a) Show that there exist 
1, 
2, . . . , 
r ∈ O such that α = 
1
2 · · ·
r and
nrd(
i)R = πiR for all i = 1, . . . , r .

(b) Show that every other such factorization is of the form

α = (
1γ1)(γ−1
1 
2γ2) · · · (γ−1

r−1
r )

where γ1, . . . , γr ∈ O×.
(c) Suppose that nrd(O×) = R×. Refine part (a) and show that the stronger

conclusion that there exist 
i such that nrd(
i) = πi for all i.

[This generalizes Theorem 11.4.8.]

10. We have seen that maximal orders in (definite) quaternion algebras of discrim-
inant 2 (the Hurwitz order) and discriminant 3 (Exercise 11.11) are Euclidean
with respect to the norm, and in particular they have trivial right class set.
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(a) Show that maximal ordersO in quaternion algebras of discriminants 5, 7, 13
have # ClsO = 1.

(b) Conclude that the quaternary quadratic forms

t2 + t x + ty + tz + x2 + xy + xz + 2y2 − yz + 2z2,
t2 + tz + x2 + xy + 2y2 + 2z2,

t2 + ty + tz + 2x2 + xy + 2xz + 2y2 + yz + 4z2

are multiplicative and universal, i.e., represent all positive integers.
(c) Show that for discriminant 7, 13 the maximal orders are not Euclidean with

respect to the norm.
[We discuss the maximal orders of class number 1 in Theorem 25.4.1. The
maximal order for discriminant 5 is in fact norm Euclidean: see Fitzgerald
[Fit2011].]

11. In this exercise, we show that the group of principal two-sided ideals PIdl(O)
need not be normal in the group of invertible fractional O-ideals Idl(O) of an
order.
Let B = (−1,−1 | Q), and let O ⊆ B be the Hurwitz order. Let O′ = Z + 5O =

O(5) (cf. Exercise 18.6). Show that

I′ = 10O′ + (1 − 2i + j)O′

is a two-sided invertible O′-ideal, and that

I′ j(I′)−1 = 5O′ + (i + 3 j + k)O′

is not principal.

12. The finiteness of the class group (see Reiner [Rei2003, Lemma 26.3]) can be
proven replacing the geometry of numbers with just the pigeonhole principle, as
follows. Let B be a division algebra over a number field F with ring of integers
R, and let O ⊆ B be an R-order.

(a) To prove the finiteness of ClsO, show that without loss of generality we
may take F = Q.

(b) Show that NmB|Q(x1α1 + · · · + xnαn) ∈ Q[x1, . . . , xn] is a homogeneous
polynomial of degree n.

(c) Show that there exists C ∈ Z>0 such that for all t > 0 and all x ∈ Zn with
|xi | ≤ t, we have |NmB|F (x1α1 + · · · + xnαn)| ≤ Ctn.

(d) Let I ⊆ O be a lattice. Let s ∈ Z be such that

sn ≤ N(I) = #(O/I) ≤ (s + 1)n.

Using the pigeonhole principle, show that there exists α =
∑

i xiαi ∈ I
with xi ∈ Z and |xi | ≤ 2(s + 1) for all i.

(e) Show that N(αO) ≤ 2n(s + 1)nC, and conclude that

#(I/αO) ≤ 4nC.
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(f) Let M = (4nC)! and show that MI ⊆ αO, whence

MO ⊆ I′ ⊆ O

where I′ = (Mα−1)I. Conclude that the number of possibilities for I′ is
finite, hence the number of right classes of lattices I ⊆ O is finite, and
hence # ClsO < ∞.
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