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Abstract Porous or biological materials comprise a multitude of micro-domains
containing water. Diffusion-weighted magnetic resonance measurements are sensi-
tive to the anisotropy of the thermal motion of such water. This anisotropy can be
due to the domain shape, as well as the (lack of) dispersion in their orientations.
Averaging over measurements that span all orientations is a trick to suppress the
latter, thereby untangling it from the influence of the domains’ anisotropy on the
signal. Here, we consider domains whose anisotropy is modeled as being the result
of a Hookean (spring) force, which has the advantage of having a Gaussian diffusion
propagator while still confining the spatial range for the diffusing particles. In fact,
this confinementmodel is the effectivemodel of restricted diffusionwhen diffusion is
encoded via gradients of long durations, making the model relevant to a broad range
of studies aiming to characterize porous media with microscopic subdomains. In this
study, analytical expressions for the powder-averaged signal under this assumption
are given for so-called single and double diffusion encoding schemes, which sensi-
tize the MR signal to the diffusive displacement of particles in, respectively, one or
two consecutive time intervals. The signal for one-dimensional diffusion is shown
to exhibit power-law dependence on the gradient strength while its coefficient bears
signatures of restricted diffusion.
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1 Introduction

Magnetic resonance has proved to be an extremely effective tool to peer intomaterials
and tissues noninvasively. It manipulates the magnetic orientation of molecules per-
vading the material into a natural precession which emits radio waves. By imposing
a spatially-varying magnetic field (hence frequency of precession), the emitted radio
frequency signal is made to encode in its spectrum the coordinates of the molecules
that emit it. This way, the signal can be spectrally decomposed to trace backwhat pro-
portion of it originates from where, that is, from which ‘voxel.’ Commonly achieved
voxel sizes are in the neighborhood of a millimeter.

Another use of a spatially-varying precession rate involves sensitizing the signal
to the motion of the molecules; diffusion in particular. When the molecules trace
out random (Brownian) paths where different locations they visit impart different
precessional angles on them, their precessions lose coherence, attenuating the sum of
their emitted radio waves. This attenuation of MR signal, specifically its response to
the direction of the gradient in precession rate, can reveal or quantify howmobile the
molecules are along different directions. The difference of mobility can arise from
pore boundaries, impurities, cell membranes, etc. Hence the diffusion-attenuated
signal encodes the influence of structures that can be significantly smaller than voxel
dimensions. Tracing out axon bundles in human brain white matter is for instance a
widely employed application of this principle. This modality of magnetic resonance
imaging, which we refer to as diffusion MR, is the subject of this contribution.

While the anisotropy (i.e., variance under a rotation transformation) of a single
pore or a cell may be easily visualized, one would be mistaken to make a one-to-
one connection with that and the anisotropy of the signal (i.e., the response of the
signal to orientations of the specimen or the apparatus). For instance, the signal of a
voxel consisting of an unaligned mixture of cylindrical aqueous compartments will
be less sensitive to rotations than one consisting of an aligned bundle of cylinders.
The anisotropy of the individual compartments is common in the two examples, but
the aligned case has more ensemble anisotropy.

In some sense, then, ensemble anisotropy confounds compartment anisotropy
at the signal level, and eliminating it pronounces features at the subvoxel level.
One way to achieve this is to take an average of the signal over all orientations. If
the material allows it, it can be ground into a powder to that effect; hence the term
powder averaging. However this is generally impossible in bio-medical applications.
Then, repeated applications of a measurement protocol in different orientations is
the avenue to follow.

In this contribution, we are concerned with two particular diffusion MR schemes,
single and double diffusion encoding (SDE and DDE), orientationally averaged in
the aforementioned fashion to eliminate ensemble anisotropy. The single encoding
scheme [44] is the bread and butter of most applications, employing a magnetic
field gradient that remains on for a specified duration in one direction, and then
the opposite direction after a specified delay (Fig. 1). The signal then encodes the
probability of Brownian displacement between the application of the two pulses.
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Fig. 1 The pulse sequence for single diffusion encoding, with time running along the horizontal
direction

Fig. 2 The pulse sequence for double diffusion encoding

SDE has been the encoding scheme employed since some of the earliest studies
of the powder averaged signal [5]. However, very recent theoretical [13] as well
as experimental [1] studies have considered the orientationally-averaged signal for
more general gradient waveforms.

The double diffusion encoding (DDE) scheme employs two single-encoding
blocks in succession [9], in different directions in general, before the signal is read
(Fig. 2). This method has been studied extensively in recent years mostly because it
allows the anisotropy of the microdomains to be quantified [8], which has important
implications for medical imaging. The reader is referred to the reviews [4, 11, 27,
40, 42] for in-depth presentation of the method. In a nutshell, the DDE technique
encodes into the signal the joint probability of two Brownian displacements taking
place between the two pulses of each block. For freely diffusing molecules, the two
displacements are uncorrelated [36]. However, when restrictions, and arguably inho-
mogeneities and forces, are present, this is no longer the case [24], hence imparting
signatures of compartment size onto the signal. As mentioned above, DDE employ-
ing gradient blocks in different directions is sensitive to anisotropy of subdomains
inside the voxel [6, 8], but not independently of ensemble anisotropy [29].

While we do not consider restricted diffusion in the strict sense of restriction by
hard walls in this article, we do respect the finite range of motion of the molecules by
the aid of a harmonic attractive force [7, 20, 25, 46, 49]. This is an effective model
which can mimic restrictive walls with reasonably tractable mathematics, and is
actually approached when the gradient pulses are long [34].



206 C. Yolcu et al.

This chapter is organized as follows. We first present the signal arising from an
effectively confined domain under double diffusion encoding. Afterwards we derive
analytical expressions for its powder average and consider the “stick” geometry,
wherein diffusion is fully confined in two dimensions.We then treat the case of single
diffusion encoding as an extreme case of double encoding and give its corresponding
powder average expressions. The special cases of “stick” and “pancake” geometry
are compared to their counterparts for free diffusion. The article is concluded after
discussions based on the results of the previous sections.

2 Double Diffusion Encoding at the Compartment Level

Here we derive the double-encoded diffusionMR signal arising from a compartment
which is characterized by an effective spring force attracting the molecules toward
the center. Such a force mimics the confining effect of walls, membranes, etc., with
minimal mathematical burden.

The spring (Hookean) force influences themotion of themolecules via a quadratic
potential1

V (x) = 1
2 x

ᵀCx , (1)

defining the confinement tensor C, which can be taken to have Cᵀ = C without
loss of generality. However, in order for the steady state molecule number density
pst(x) ∝ e−V (x) to be normalizable, C must be positive (semi)definite.2 Under this
(or any) potential, the magnetization density ρ(x, t) evolves according to

∂tρ(x, t) = (D∇) · e−V (x)∇eV (x)ρ(x, t) − ig(t) · xρ(x, t) . (2)

Here, we have assumed that diffusion is governed by a spatially-uniform, possibly
anisotropic diffusivity tensorD and that diffusion encoding is achieved by amagnetic
field gradient waveform g(t). Note that we absorb the gyromagnetic ratio γ into g(t)
so that it has dimensions of time−1 length−1.3

The signal Sc = ∫
d3x ρ(x, t) arising from a single such confined compartment

under a general encoding waveform g(t) can be found thanks to the Brownian paths
having a Gaussian probability measure under the potential (2) [49]:

Sc = exp

(

− 1
2q

ᵀ
c (0)D�−1qc(0) −

∫ te

0
dτ qᵀ

c (τ )Dqc(τ )

)

, (3)

1In units of the thermal energy scale kBT , where kB is the Boltzmann constant and T is the absolute
temperature.
2Vanishing confinement (i.e., free diffusion) has an unnormalizable steady state, but it can be
handled.
3Alternatively, g(t) can be called a precession rate gradient waveform.
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with the generalized encoding wave vector

qc(t) =
∫ te

t
dτ e−�(τ−t)g(τ ). (4)

Here, te is the duration of the encoding protocol, and

� = DC (5)

is a matrix of equilibration rates. According to an equivalence between the signals of
diffusion under a Hookean confinement and under restricting walls [34], a restriction
of linear size L should have a confinement value of aroundC ≈ 11/L2. For instance,
the confinement value within walls 5 µm apart would be about C ≈ 0.44 µm−2.
With water diffusing at D = 3 µm2/ms, this would imply an equilibration rate of
� ≈ 1.3ms−1. In other words, it would take random walkers a few milliseconds to
spread out roughly to their eventual distribution.

As depicted in Fig. 2, double-diffusion encoding is achieved by a gradient wave-
form consisting of two pairs of bipolar rectangular pulses, each with a given duration
δ and separation �, and magnitudes g1 and −g2; the minus sign is customary. The
time between the leading edges of the second pulse of the first pair and the first pulse
of the second pair, tm, is called the mixing time. The calculation of the signal (3)
therefore entails very simple integrals, but in a cumbersome piecewise fashion. Upon
significant simplification one finds

Sc(g1, g2) = exp
(−gᵀ

1T◦g1 − gᵀ
2T◦g2 − 2gᵀ

1T×g2
)

. (6)

One may refer to the tensors

T◦ = D�−3 [
(1 − e−��)(1 − e−�δ)2e�δ − (1 − e−2�δ)e�δ + 2�δ

]
, (7a)

2T× = D�−3e−�(tm−δ)(1 − e−�δ)2(1 − e−��)2 , (7b)

respectively, as the self-coupling and cross-coupling tensors between encoding
blocks.4 For the orientational average below, we consider |g1| = |g2| = g, with a
fixed angle ψ between them.

As the free diffusion limit is approached, one can see that the cross-coupling of
encoding blocks vanishes, as T× ∼ (D/2)�δ2�2(1 + �δ − �tm), due to displace-
ments in separate time intervals being uncorrelated in pure Brownian motion [36].
The dependence on the mixing time tm does not enter until second order in confine-
ment, in line with approximate calculations done for a spherical wall [29].

4T◦ is the same tensor that appears in the single-encoding signal Sc = e−gᵀT◦ g [49]. In the free
diffusion (� → 0), it is easily shown that T◦ → Dδ2(� − δ/3), which recovers the free diffusion
signal [43, 44]. .
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3 Double Diffusion Encoding: Powder Average

The orientational (powder) average of the compartment signal (6) is performed as
follows: The vectors g1 and g2 form a plane with unit normal vector

n̂ = g1 × g2
|g1 × g2|

. (8)

One constructs the average by integrating over all orientations of (the plane normal
to) n̂, and for each of these integrate over all orientations of the pair {g1, g2} within
the plane, with their relative angle ψ fixed. The procedure hence described can be
written as5

S̄ =
∫

dn̂
4π

∫
dβ

2π
Sc

(
gn̂(β), gn̂(β + ψ)

)
. (9)

Here, gn̂(β) is a vector of magnitude g in the plane normal to n̂, whose orientation
is parameterized by the (in-plane) azimuthal angle β, according to which we can
identify g1 → gn̂(β) and g2 → gn̂(β + ψ).

We first take the in-plane integral

S̃(n̂)
def=

∫
dβ

2π
Sc

(
gn̂(β), gn̂(β + ψ)

) def=
∫

dβ

2π
e−σn̂(β) , (10)

which serves as the definitions for the intermediate quantities S̃(n̂) and σn̂(β).
According to Eq. (6), the latter is given by

σn̂(β) = gᵀ
n̂(β)T◦gn̂(β) + gᵀ

n̂(β + ψ)T◦gn̂(β + ψ) + 2gᵀ
n̂(β)T×gn̂(β + ψ) .

(11)

To anchor the angle coordinate β, we define the in-plane cartesian coordinates u, v
such that û ‖ gn̂(0) and v̂ = n̂ × û, yielding

gn̂(β) = ûg cosβ + v̂g sin β . (12)

After an exercise in trigonometric simplification, and denoting û
ᵀ
T◦v̂ = T ◦

uv etc.,
one finds

σn̂(β) = ςn̂ + ρn̂ cos 2β − �n̂ sin 2β , (13)

5We suppress the obvious limits of these integrals.
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with

ςn̂

g2
= (

T ◦
uu + T ◦

vv

) + (
T×
uu + T×

vv

)
cosψ , (14a)

ρn̂

g2
= (

T ◦
uu − T ◦

vv

)1 + cos 2ψ

2
+ T ◦

uv sin 2ψ + (
T×
uu − T×

vv

)
cosψ + 2T×

uv sinψ ,

(14b)

�n̂

g2
= (

T ◦
uu − T ◦

vv

) sin 2ψ

2
− T ◦

uv

(
1 + cos 2ψ

) + (
T×
uu − T×

vv

)
sinψ − 2T×

uv cosψ .

(14c)

These depend on n̂ through û and v̂, of course. Hence via Eq. (10),

S̃(n̂) = e−ςn̂

∫
dβ

2π
e−ρn̂ cos 2β+�n̂ sin 2β

= e−ςn̂ I0

(√
ρ2n̂ + �2n̂

)

, (15)

where an integral representation of the modified Bessel function of order 0 was
recognized [10]. The argument of the square root can be found after a semi-tedious
calculation as

ρ2n̂ + �2n̂ = g4
[(
T ◦
uu − T ◦

vv

)
cosψ + (

T×
uu − T×

vv

)]2 + 4g4
(
T ◦
uv cosψ + T×

uv

)2
, (16)

and we rewrite the powder-averaged double-encoding signal (9) via Eqs. (10) and
(15) as

S̄ =
∫

dn̂
4π

e−ςn̂ I0

(√
ρ2n̂ + �2n̂

)

. (17)

For the actual evaluation of the integral, explicit expressions in terms of the polar
and azimuthal angles (θ,ϕ) of n̂ need to be substituted,6 which are steps we omit
here. Eyeballing how entries ofT◦ andT× appear in Eq. (17) via Eqs. (14a) and (16),
one notes that it is useful to define the intermediate tensors

M = g2
(
T◦ cosψ + T×

)
(18a)

M̃ = g2
(
T◦ + T× cosψ

)
. (18b)

Referring to their eigenvalues, in any preferred order (but the same for both), as mi

and m̃i , and using the following shorthand

6n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), û = (cos θ cosϕ, cos θ sinϕ,− sin θ), and v̂ = (− sinϕ,

cosϕ, 0).
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m−
i j = mi − m j , (19a)

m̃−
i j = m̃i − m̃ j , (19b)

m̃+
i j = m̃i + m̃ j , (19c)

the powder-averaged signal (17) attains the form

S̄ = e−m̃+
12

∫
dcos θ dϕ

4π
e−(m̃−

31+m̃−
12 sin

2ϕ) sin2θ (20)

× I0
(√(

m−
12

)2 + 2m−
12

[
m−

31 + (m−
13 + m−

23) sin
2ϕ

]
sin2θ + (

m−
13 + m−

21 sin
2ϕ

)2
sin4θ

)
,

upon substantial algebraic manipulation.
Reference [13] found series expansions for this form in a different context. We

can use its results. Namely,

S̄ = e−m̃+
12

∞∑

k=0

k∑

m=0

qmkYmk , where (21a)

Ymk =
∞∑

n=0

n∑

l=0

√
π(−1)n

l!(n − l)!
(
m̃−

31

)n−l(
m̃−

12

)l

22(m+l)+1

(
2m + 2l

m + l

)
(n + k)!

(
n + k + 1

2

)! , and

(21b)

qmk =
(
m−

31

)k−m

(k−m)!
k/2∑

j=0

(
m−

12

) j
Ik− j

(
m−

12

)

2 j j !(m−
13+m−

23

)2 j−m 2F̃1

(
m−k,−2 j;m+1−2 j;m−

13+m−
23

m−
12

)
,

(21c)

with the following three alternatives for Eq. (21b):

Y (1)
mk =

√
π

22m+1

(
2m

m

) ∞∑

n=0

(
m̃−

13

)n
(k + n)!

n!(k + n + 1
2

)! 2F1

(
m + 1

2 ,−n;m + 1; m̃−
21

m̃−
31

)
, (22a)

Y (2)
mk =

√
π

22m+1

∞∑

n=0

(
m̃−

21

)n
(k + n)!(2n+2m

n+m

)

22nn!(k + n + 1
2

)! 1F1
(
k + n + 1; k + n + 3

2 ; m̃−
13

)
,

(22b)

Y (3)
mk =

√
π

22m+1

(
2m

m

) ∞∑

n=0

(
m̃−

13

)n
(k+n)!

n!(k+n+ 1
2

)! 2F2
(
m+ 1

2 , k+n+1;m+1, k+n+ 3
2 ; m̃−

21

)
.

(22c)

Here, i Fj (. . .) are the confluent hypergeometric functions [3], tilde denoting regu-
larization. Note that these expressions apply to the most general case, in which the
confinement tensor (and thus the tensors that are functions of it) have three distinct
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eigenvalues. Special cases associated with coinciding eigenvalues are discussed in
the appropriate occasion later.

Which alternative among Eq. (22) yields better convergence is a matter of how the
eigenvalues m̃i are chosen to be ordered, by way of the sizes and signs of m̃−

i j . As a
general guideline it would be wise to order the eigenvalues so as to avoid a sequence
that alternates in sign, and with a large expansion parameter. Take Eq. (22b) for
instance. Given that 1F1(k+l+1; k+l+ 3

2 ; m̃−
13) > 0 and increasing for all m̃−

13, it
would be beneficial to make m̃−

13 negative (and large if possible), while keeping m̃
−
21

positive (and small if possible). For a given set of eigenvalues m̃i , ordering them
in the fashion m̃1 < m̃2 < m̃3 would be along this guideline, whereas the ordering
m̃2 < m̃3 < m̃1 would result in a sequence with larger terms and alternating sign.

Note however that while T◦ is a monotonic (decreasing) function of �, T× is
not; see Eq. (7). Through Eq. (18) this means that their mixtures M and M̃ are not
necessarilymonotonic in the confinement�. Hencewhat ordering of the confinement
eigenvalues �i achieves what ordering in the eigenvalues mi and m̃i is a question
which has an answer only on a case-by-case basis. Furthermore, the ordering of �i

that yields a desirable ordering of m̃i for a particular one of Eq. (22) may not produce
an ordering of mi as desirable for the convergence of qmk in Eq. (21c).

3.1 Axisymmetric Confinement

We refer to the condition when two of the eigenvalues �i of the confinement tensor
coincide as axisymmetric confinement. Under this condition, the series expansions
above undergo simplifications.

The most drastic simplification occurs when �1 = �2. That is, given that two
eigenvalues coincide, assigning first and second place to them is the wisest choice
as far as the evaluation of the series expansions (21) is concerned.

First, the coefficient qmk simplifies as7

7For this, it needs to be noted [13, supplementary information] that the way qmk arises in the
calculation—before ever arriving at Eq. (21c)—is that it is the coefficient in the (double) series
expansion of the Bessel function in Eq. (20):

I0(. . .) =
∞∑

k=0

k∑

m=0

qmk sin
2mϕ sin2kθ .

Upon all coefficients in the argument except for m−
13 vanishing due to axisymmetry, one has

I0
(
m−

13 sin
2θ

) =
∞∑

k=0

(
m−

13

)
2k

(k!)222k sin2kθ ,

which, comparing to the previous (double) expansion, implies Eq. (23).
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qmk =
{

δm0(m
−
13)

k

( k
2 )!( k

2 )!2k , even k

0 , odd k
. (23)

The coefficient Ymk , on the other hand, loses the interior summation in Eq. (21b)
due to m−

12 vanishing. The remaining summation can be identified according to the
definition of hypergeometric functions [3] as

Ymk =
√

π

2m+1

(
2m

m

)
k!

(
k + 1

2

)! 1F1
(
k + 1; k + 3

2 ; m̃−
13

)
, (24)

which yields via Eq. (23) and Eq. (21a)

S̄axy = √
πe−m̃+

12

∞∑

n=0

(
2n

n

)(
m−

13

)
2n

22n+1

1F1
(
2n + 1; 2n + 3

2 ; m̃−
13

)

(
2n + 1

2

)! . (25)

This expansion is not so sensitive to the ordering of eigenvalues number 1 and
3, as the expansion parameter (m−

13) is squared, and the hypergeometric function
1F1(2n+1; 2n+3/2; m̃−

13) > 0 for all arguments.
We depict in Fig. 3 the evaluation of the powder averaged signal (25) for axisym-

metric confinement for representative values of encoding parameters. In Fig. 3a, the
confinement is anisotropic (prolate), whereas in Fig. 3b, it is (nearly) isotropic. The
bell-shaped dependence on the relative angle ψ between the gradient directions is
seen in both cases, which is a sign that diffusion is not free [29]. This dependence
is due mainly to the exponential prefactor in Eq. (25) that has nothing to do with
the difference between the confinement eigenvalues (anisotropy). When the mixing
time is increased, the bell-shaped modulation, indicating confinement regardless of
anisotropy , stops overwhelming the relatively smaller influence of the rest of the
expression (25): see Fig. 3awhere the confinement is anisotropic. In an isotropic con-
finement, on the other hand, angular modulation simply disappears when the mixing
time is increased (Fig. 3b), illustrating that the angular modulation that survives the
increase in mixing time is due only to compartmental anisotropy, and not due to the
fact of confinement (or to ensemble anisotropy, which was already eliminated by
powder averaging).

3.2 Insights from Two Dimensions

The signal expressions for double encoding are a bit unwieldy to get a conceptual
handle on. However, some insight can be gleaned from considering the orientational
averaging in two dimensions.

Obviously, in the spirit of Eq. (9), the 2D orientationally averaged signal can be
written as
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Fig. 3 Dependence of powder averaged signal (25) on the angle ψ between double-encoding gra-
dient directions. a Prolate confinement �, with eigenvalues {1, 1, 0.1} in arbitrary units. � = 10
and δ = 1, in units of �−1

1 . The mixing time tm was set to the following multiples {1, 2, 6, 30} of
δ. The gradient strength is set such that D0g2/�3

1 = 0.16, with D0 being the unit of diffusivity.
b Isotropic confinement �, with eigenvalues {1, 1, 1} in arbitrary units. � = 3 and δ = 2/3, in
units of�−1

1 . The mixing time tm was set to the following multiples {1, 3/2, 3, 6} of δ. The gradient
strength is set such that D0g2/�3

1 = 1. c Free diffusion with varying anisotropy (prolate) for com-
parison, with diffusivity D eigenvalues {D0, eD0, eD0}. Across the three groups of plots, diffusion
weighting b = g2δ2(� − δ/3) takes the values {0.4, 1.4, 10} in units of D−1

0 , whereas each group
of plots have the eccentricity parameter set to {0.01, 0.1, 0.2}

S̄2D =
∫

dβ

2π
Sc(g(β), g(β + ψ)) . (26)

That is, there is no normal vector to integrate over; everything takes place in an (x, y)
plane. The same steps Eq. (10) through Eq. (15) apply, and one has

S̄2D = e−g2Tr
(
T◦+T× cosψ

)
I0

(
g2(T ◦

1 − T ◦
2 ) cosψ + g2(T×

1 − T×
2 )

)
. (27)

The dependence on the relative angle ψ of the gradient directions occurs both in the
exponential attenuation factor and in the Bessel function. The angular dependence
in the Bessel function has to do with anisotropy (T ◦

1 − T ◦
2 ) which the exponential

factor is insensitive to due to the trace. In the exponent, on the other hand, the angular
dependence is controlled by TrT×, whose presence is due to confinement (since
T× → 0 in the free diffusion limit). For large mixing times (tm�i � 1) the latter
drops out and the angular modulation due to anisotropy is liberated. However, for
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smallermixing time, it turns out that the angular dependence of the exponential factor
dominates, which is due to confinement, suppressing the signature of anisotropy.

An interesting double-encoding scheme is its “symmetrized” version [35], which
fixesψ = π/2, but varies themagnitudes g1 = g cosα and g2 = g sinα as a function
of some parameter α. In that scenario, one can easily calculate that

S̄sym2D = e− g2

2 Tr(T◦) I0

(
g2

2
√
2

√(
�T 2◦ + �T 2×

) + (
�T 2◦ − �T 2×

)
cos 4α

)

, (28)

showing that the modulation due to confinement in the exponential factor drops out,
and one of pure anisotropy remains (with �T◦ denoting T ◦

1 − T ◦
2 etc.). The result

is a ‘cleaner’ version of the signal modulation wherein the confinement anisotropy
is the only source of angular modulation characterized by the cos 4α dependence.
It should be remembered though that the confinement model is purely Gaussian, as
such does not account for compartmental kurtosis. When truly restricted diffusion is
considered, the compartment anisotropy and compartmental kurtosis both yield the
same type of angular dependence compromising the interpretation of such angular
dependence except when the compartments are isotropic [35].

3.3 One-Dimensional Diffusion Under High Gradient: g−2

Scaling

A special case of interest is when the compartment has an extremely elongated shape,
resembling a “stick”. Such extremely anisotropic shapes combined with an asymp-
totically large gradient strength (g → ∞) tend to exhibit power-law dependence on
the gradient strength g or the wave vector q = δg. In what follows, we confirm that
the orientationally averaged signal (25) is no exception. Physical interpretation of
the limits or extremes involved is remarked on at the end.

The two transverse confinement eigenvalues �1 = �2 = �⊥ approach infinity
while �3 = �‖ is finite. Accordingly, m1 = m2 = m⊥ = 0 and m3 = m‖ is finite
(similarly for m̃i ). Combined with a gradient g → ∞, noting that m‖ ∼ g2 and
m̃‖ ∼ g2 due to the definition (18), the orientationally averaged signal (25) assumes
the asymptotic form

S̄stick ∼
⎛

⎝2m̃‖

√

1 −
(
m‖
m̃‖

)2
⎞

⎠

−1

; (29)
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see footnote 8 for details.8 When we substitute from Eq. (18), the power-law depen-
dence (∼ g−2) becomes obvious:

S̄stick ∼
⎛

⎜
⎝2g2

(
T ◦

‖ + T×
‖ cosψ

)

√√
√
√1 −

(
T ◦

‖ cosψ + T×
‖

T ◦
‖ + T×

‖ cosψ

)2
⎞

⎟
⎠

−1

. (30)

This result should be compatible with the findings of Ref. [13] in the free diffusion
limit (� → 0). It is easy to see that Eq. (7) implies T×

‖ → 0 and T ◦
‖ → D‖δ2(� −

δ/3) as � → 0, yielding

S̄freestick ∼ (
2g2δ2D‖

(
� − δ

3

)
sinψ

)−1
, (31)

which is in fact the powder averaged signal of a rank-1 diffusivity tensor
( D‖ 0 0

0 0 0
0 0 0

)

under the rank-2 measurement matrix g2δ2
(
� − δ

3

)
(

1+cosψ 0 0
0 1−cosψ 0
0 0 0

)

of DDE, as

predicted by Ref. [13]. This scaling (∼ g−2) of the signal of stick-compartments
under rank-2 measurements (planar encoding) has been recently confirmed in vivo
[1]. Note that the expression is invalid for ψ = 0 and ψ = π where the two encoding
directions coincide, and the corresponding measurement matrix is rank-1.

Lastly, we address the physical interpretation of the limits of large confinement
(�) and gradient (g) values. Note that the final expressions such as Eqs. (21)–(22)
and (25) come out in terms of the eigenvalues of the matrices M and M̃, which are
in turn defined in Eqs. (18) and (7). The sense in which a confinement eigenvalue �

and gradient strength g is large follows in particular from Eq. (7): In the same order
as the limits have been carried out, infinite (transverse) confinement (�⊥ → ∞)
is to be interpreted physically as g2D⊥�−3

⊥  1, while infinite gradient (g → ∞)

8At the extreme of m1 = m2 = m⊥ = 0, the signal (25) becomes

S̄stick ∼ √
π

∞∑

n=0

(
2n

n

)
m‖2n

22n+1
1F1

(
2n + 1; 2n + 3

2 ; −m̃‖
)

(
2n + 1

2

)! .

The hypergeometric function can be rewritten by a so-called Kummer transformation as

1F1(2n + 1; 2n + 3
2 ; −m̃‖) = e−m̃‖

1F1(
1
2 ; 2n + 3

2 ; m̃‖) ∼ (
2n + 1

2

)!/√π m̃2n+1
‖ ,

where the second step uses the asymptotic form (m̃‖ → ∞) of the Hypergeometric function [10].
Hence, the signal attains the form

S̄stick ∼
∞∑

n=0

(
2n

n

) m2n‖
22n+1m̃2n+1

‖
,

converging to Eq. (29) for |m‖/m̃‖| < 1, which can be verified by carefully considering the func-
tional dependences arising from the explicit form (18) of the matricesM and M̃ (with the exception
of the encoding angles ψ = 0 and ψ = π where the two encoding directions coincide).
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is to be taken to mean g2D‖�−3
‖ � 1. One may write D−1

‖ �3
‖  g2  D−1

⊥ �3
⊥ in

short. It should be noted that this order-of-magnitude treatment ignores potential
exceptions or extremes which may arise from very particular combinations of the
protocol parameters δ, �, tm, and ψ.

4 Single Diffusion Encoding

The powder-averaged single-encoding signal can be obtained by way of “hacking”
its double-encoded counterpart. One notes that Sc = e−gᵀT◦ g is the single-encoding
signal at the compartment level [49]. Then the features of the form (6) to get rid of
are (i) the presence of a second vector g2 unequal to the first, (i i) the presence of
cross-coupling (T×), and (i i i) the double occurrence of self-coupling. The first is
hacked away by setting ψ = 0. For the second, one simply sets T× = 0.9 The result
is Sc = e−2gᵀT◦ g , suffering from the third problem above, which is fixed by replacing
g → g/

√
2. All this yields via Eq. (18)

M = 1
2g

2T◦ = M̃ , (32)

which is the substitution that converts the powder-average expressions for double-
encoding into those of single-encoding.

With this condition applied, the m̃−
i j ’s appearing in Eq. (21) turn into m

−
i j ’s. How-

ever this alone does not produce drastic simplifications such as reducing summations.
Rather than using Eq. (21), in fact, it is better to note that other results in Ref. [13] are
quite suitable in the case of single-encoding. Since the compartment signal has the
form Sc = e−Tr(T◦ ggᵀ), with the matrix ggᵀ axisymmetric by dint of being rank-1,
the results of Ref. [13] for axisymmetric diffusion or measurement tensor can be
applied. Written in terms of the parameters of the present discussion, the relevant
formulas of Ref. [13] indicate the following alternative expressions

S̄(1) =
√

π

2
e−g2T ◦

3

∞∑

n=0

g2n
(
T ◦
3 − T ◦

1

)n
(
n + 1

2

)! 2F1

(
1
2 ,−n; 1; T ◦

1 −T ◦
2

T ◦
1 −T ◦

3

)
, (33a)

S̄(2) = e−g2T ◦
3

∞∑

n=0

g2n
(
T ◦
1 − T ◦

2

)n

n!(2n + 1)! 1F1
(
n + 1; n + 3

2 ; g2(T ◦
3 − T ◦

1 )
)
, (33b)

S̄(3) =
√

π

2
e−g2T ◦

3

∞∑

n=0

g2n
(
T ◦
3 − T ◦

1

)n
(
n + 1

2

)! 2F2
(
1
2 , n + 1; 1, n + 3

2 ; g2(T ◦
1 − T ◦

2 )
)
,

(33c)

9Physically, this can be imagined as the limit tm → ∞. However, physics is not necessary. We
simply have a set of expressions, e.g. Eq. (21), containing T◦ and T× via Eq. (18) via Eq. (19), and
we want to remove instances of T×.
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S̄(4) =
√

π

2
e−g2T ◦

3

∞∑

n=0

(2n
n

)
g4n

(
T ◦
1 − T ◦

2

)2n

16n
(
2n+ 1

2

)! 1F1
(
2n+1; 2n+ 3

2 ; g2

2 (2T ◦
3 −T ◦

2 −T ◦
1 )

)
,

(33d)

for fully anisotropic � (hence T◦); the axisymmetric case is taken up below. These
summations are subject to the same guidelines that followed Eq. (22) except that the
caveats about conflicting eigenvalue ordering do not apply here. The single-encoding
expressions here only involve the self-coupling tensor T◦ which is a monotonically
decreasing function of �; see Eq. (7). Therefore the ordering of the eigenvalues T ◦

i
and �i are certain to be in exactly the opposite sense of each other.

4.1 Axisymmetry and the Power-Laws for Confined diffusion

The first alternative in Eq. (33) needs special care when T ◦
1 = T ◦

3 and the argu-
ment of the hypergeometric function 2F1(. . .) diverges. Invoking a property of the
hypergeometric function,10 and renaming T ◦

1 = T ◦
⊥ and T ◦

2 = T ◦
‖ , one finds11

S̄axy =
√

π

2
e−g2T ◦⊥(δ,�)

erf
(
g
√
T ◦

‖ (δ,�) − T ◦
⊥(δ,�)

)

g
√
T ◦

‖ (δ,�) − T ◦
⊥(δ,�)

. (34)

Here, we have also explicitly denoted the dependence on the encoding protocol’s
timing parameters as per Eq. (7). Note that in the free diffusion limit (� → 0, see
footnote 4), the known single-encoding powder-average signal [2, 18, 48]

10

lim
x→0

xn2F1
(
m+ 1

2 ,−n;m+1; y
x

) = (−y)n
(
m + n − 1

2

)!m!
(
m − 1

2

)! (m + n)! .

.
11Alternatively to using the results of Ref. [13] here, one may go back to the integral expression
(20). First, we note that axisymmetry, with the choice �1 = �2, makes the integrand independent
of ϕ, yielding

S̄ = 1
2 e

−m̃+
12

∫
dcos θ em̃

−
13 sin

2θ I0
(
m−

13 sin
2θ

)
.

We are not aware of a closed-form evaluation of this integral. However, its special case (32) relevant
here, making the arguments of the exponential and Bessel function match, has the result [12, 6.625–
4]

S̄ =
√

π

2
e−2m1

erf
(√

2m−
31

)

√
2m−

31

=
√

π

2
e−g2T ◦

1

erf
(
g
√
T ◦
3 − T ◦

1

)

g
√
T ◦
3 − T ◦

1

.

.
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S̄axy =
√

π

2
e−q2(�− δ

3 )D⊥
erf

(
q
√(

� − δ
3

)(
D‖ − D⊥

))

q
√(

� − δ
3

)(
D‖ − D⊥

) , (35)

with q = gδ, is recovered.
Two special limiting cases follow.

4.1.1 Stick: S̄ ∝ g−1 Scaling

When particles have negligible latitude to move in the transverse direction, the
orientationally-averaged signal (34) assumes a special form. In terms of the con-
finement model, this corresponds to�⊥ → ∞, which implies T ◦

⊥ → 0 via Eq. (7).12

The signal (34) then becomes

S̄stick =
√

π

2

erf
(
g
√
T ◦

‖ (δ,�)
)

g
√
T ◦

‖ (δ,�)

g→∞∼
√

π

2g
√
T ◦

‖ (δ,�)

�‖→0∼
√

π

2q
√(

� − δ
3

)
D‖

.

(36)

The large gradient regime has been important in identifying stick-like compartments
via the q−1 scaling, which has been observed in white-matter areas of the brain and
has been interpreted with the assumption of a free one-dimensional diffusion [23],
which is adequate for channels of straight long channels of infinitesimal diameter.
A notable exception is Ref. [33], which has incorporated the effects of finite size
and curvature to offer an explanation for any deviation from the q−1 scaling, most
apparent within gray matter. Ref. [33] also pointed out that such a scaling is not the
true asymptotic behavior of the signal; the latter is rather dictated by theDebye-Porod
law yielding q−4 scaling for narrow pulses [38], while an even steeper attenuation is
predicted when the pulses are wide.

The above expression suggests that a similar decay is expected for the gradient
magnitude rather than the q-value. The crucial difference is in the dependence on
the timing parameters {δ,�} of the SDE sequence, see Fig. 1. It would thus be
interesting, e.g. in white-matter, to investigate whether the dependence on the timing
parameters is more like 1/

√
� − δ/3 (free difusion along the fiber) or 1/

√
T ◦

‖ (δ,�)

(confined diffusion along the fiber), which would inform about the diffusion process
along the axons.

12The limits �⊥ → ∞ and g → ∞ are to be interpreted in the same sense as Sect. 3.3.
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4.1.2 Pancake: S̄ ∝ g−2 Scaling

For completeness, we consider the opposite case where particles are able to spread in
a plane, but not along the normal. Here, �‖ → ∞, implying T ◦

‖ → 0 via Eq. (7).13

One then has14

S̄pancake =
√

π

2
e−g2T ◦⊥(δ,�)

erfi
(
g
√
T ◦⊥(δ,�)

)

g
√
T ◦⊥(δ,�)

g→∞∼ 1

2g2T ◦⊥(δ,�)

�⊥→0∼ 1

2q2
(
� − δ

3

)
D⊥

.

(37)

Thus, the orientationally-averaged signal attenuates at a faster rate than in the case
of sticks. Similarly though, the dependence on the timing parameters are different in
free and confined diffusion scenarios.

5 Discussion

We have provided, for the first time, explicit expressions for the orientationally-
averaged SDE and DDE MR signal intensity for structures represented by confine-
ment tensors [49]. The latter is the effectivemodel of restricted diffusion when pulses
are long enough for the diffusing particles to traverse distances larger than the pore
size [34]. As such, our findings are relevant for a broad range of porous materials
featuring isolated, small pores.

The counterpart of these results for compartments of free anisotropic diffusion
were given in Ref. [13] for arbitrary encoding waveforms. Reference [13] showed
inter alia that the absence of axisymmetry could be discerned from the decay of the
orientationally-averaged signal by employing themost general formulas. Though not
rigorously studied here, we expect such arguments to be valid in the case of confined
geometries as well by employing Eqs. (21)–(22) and (33).

For the time being, considering arbitrary waveforms for confined compartments
seems extremely challenging. However, taking confinement into account is impor-
tant, since the free diffusion model lacks features (such as the dependence on relative
angle in double encoding) that a realistic signal will bear, see Fig. 3. Such bell-shaped
angular modulation was related to the radius of gyration of the pores [24] and has
since been used to estimate the apparent size of pores [4, 17, 29, 30, 41] via DDE
measurements. The underlying reason was thought to be a restriction effect [11] that
not only leads to an anisotropy of the diffusion process at a length scale smaller
than the pore size [26, 29, 31, 32], but also makes the apparent diffusion coefficient
depend on the diffusion time [15]. Thus, this effect is absent when free diffusion is
thought to take place within individual pores, see Fig. 3c. Our results indicate that

13The limits �‖ → ∞ and g → ∞ are to be interpreted in a sense analogous to Sect. 3.3, with ⊥
and ‖ interchanged.
14The imaginary error function has the properties i erfi(z) = erf(iz), and erfi(z) ∼ ez

2
/z

√
π.
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the confinement tensor framework is capable of capturing such angular modulation,
which makes it a suitable representation of diffusion within microdomains [22, 34,
49]. This is important in applications like q-space trajectory imaging [47] and dif-
fusion tensor distribution imaging [45], which aim to characterize the structure of
subdomains using general gradient waveforms.

Another angular modulation that is apparent in Fig. 3 is w-shaped, which was
pointed out by Mitra [24] for randomly distributed sticks. Later, it was proved that
the dominant contribution to such angular modulation had the functional form cos 2ψ
for fully restricted structures and cylinders of finite diameter [28]. Such modulation
thatmanifests itself at twice the “angular frequency” [19, 24, 28] is present evenwhen
diffusionwithin the subdomains is envisioned to be free as long as it is anisotropic, see
Fig. 3c. Thus, suchmodulation is truly indicative of the anisotropy of the subdomains,
be it free (Fig. 3c), confined (Fig. 3a, b), or truly restricted [28, 32]. For more
information on such anisotropy, the reader is referred to the review on this topic by
Ianuş et al. [14] in this book series.

From a mathematical point of view, the expressions in Ref. [13] provided the
Laplace transform of a tensor distribution, which includes rotated copies of a given
diffusion tensor wherein all orientations are equally likely, thus extending the mod-
eling approach that employs parametric diffusion tensor distributions [16, 21, 37,
39] to a new type of tensor distribution. Evaluating the signal, in a similar fashion,
for confinement rather than diffusion tensors can be regarded as the evaluation of a
transform whose kernel is the compartmental signal given in (6) instead of the kernel
of the matrix Laplace transform e−BD.

6 Conclusion

We have given analytical expressions for the orientationally averaged diffusion MR
signal originating from confined anisotropic compartments for two relatively simple
encoding schemes.Anumber of observations related to signalmodulation and power-
law tails were made for such confined pores. These findings complement and extend
the exact expressions for locally free diffusion provided in Ref. [13] to confined
diffusion albeit for SDE and DDE measurements.

Acknowledgments We acknowledge the following sources for funding: Swedish Foundation for
Strategic Research AM13-0090, the Swedish Research Council 2016-04482, Linköping University
Center for Industrial Information Technology (CENIIT), VINNOVA/ITEA3 17021 IMPACT, and
National Institutes of Health P41EB015902 and R01MH074794.



Magnetic Resonance Assessment of Effective Confinement Anisotropy … 221

References

1. Afzali, M., Aja-Fernández, S., Jones, D.K.: Direction-averaged diffusion-weighted MRI sig-
nal using different axisymmetric B-tensor encoding schemes. Magn. Reson. Med. (in press)
(2020). https://doi.org/10.1002/mrm.28191, https://onlinelibrary.wiley.com/doi/abs/10.1002/
mrm.28191

2. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution
diffusion imaging.Magn. Reson.Med. 54(5), 1194–1206 (2005). https://doi.org/10.1002/mrm.
20667

3. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, San Diego
(2001)

4. Callaghan, P.T.: Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gra-
dient Spin Echo NMR. Oxford University Press, New York (2011)

5. Callaghan, P.T., Jolley, K.W., Lelievre, J.: Diffusion of water in the endosperm tissue of wheat
grains as studied by pulsed field gradient nuclear magnetic resonance. Biophys. J. 28, 133–142
(1979)

6. Callaghan, P.T., Komlosh, M.E.: Locally anisotropic motion in a macroscopically isotropic
system: displacement correlations measured using double pulsed gradient spin-echo NMR.
Magn. Reson. Chem. 40, S15–S19 (2002)

7. Callaghan, P.T., Pinder, D.N.: Dynamics of entangled polystyrene solutions studied by pulsed
field gradient nuclear magnetic resonance. Macromolecules 13, 1085–1092 (1980)

8. Cheng, Y., Cory, D.G.:Multiple scattering byNMR. J. Am. Chem. Soc. 121, 7935–7936 (1999)
9. Cory, D.G., Garroway, A.N., Miller, J.B.: Applications of spin transport as a probe of local

geometry. Polym. Preprints 31, 149 (1990)
10. NISTDigital Library ofMathematical Functions. http://dlmf.nist.gov/, Release 1.0.24 of 2019-

09-15. http://dlmf.nist.gov/. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I.,
Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.)

11. Finsterbusch, J.: Multiple-wave-vector diffusion-weighted NMR. Ann. Rep. NMR Spectrosc.
72, 225–299 (2011)

12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic
Press, London (2000)

13. Herberthson, M., Yolcu, C., Knutsson, H., Westin, C.F., Özarslan, E.: Orientationally-averaged
diffusion-attenuatedmagnetic resonance signal for locally-anisotropic diffusion. Sci. Rep. 9(1),
4899 (2019). https://doi.org/10.1038/s41598-019-41317-8
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