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Abstract Calculating the variance of a family of tensors, each represented by a sym-
metric positive semi-definite second order tensor/matrix, involves the formation of a
fourth order tensor Rabcd . To form this tensor, the tensor product of each second order
tensor with itself is formed, and these products are then summed, giving the tensor
Rabcd the same symmetry properties as the elasticity tensor in continuummechanics.
This tensor has been studied with respect to many properties: representations, invari-
ants, decomposition, the equivalence problem et cetera. In this paper we focus on the
two-dimensional case where we give a set of invariants which ensures equivalence
of two such fourth order tensors Rabcd and ˜Rabcd . In terms of components, such an
equivalence means that components Ri jkl of the first tensor will transform into the
components ˜Ri jkl of the second tensor for some change of the coordinate system.

1 Introduction

Positive semi-definite second order tensors arise in several applications. For instance,
in image processing, a structure tensor is computed from greyscale images that cap-
tures the local orientation of the image intensity variations [10, 17] and is employed
to address a broad range of challenges. Diffusion tensor magnetic resonance imaging
(DT-MRI) [1, 5] characterizes anisotropic water diffusion by enabling the measure-
ment of the apparent diffusion tensor, whichmakes it possible to delineate the fibrous
structure of the tissue. Recent work has shown that diffusion MR measurements of
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restricted diffusion obscures the fine details of the pore shape under certain exper-
imental conditions [11], and all remaining features can be encoded accurately by a
confinement tensor [19].

All such second order tensors share the same mathematical properties, namely,
they are real-valued, symmetric, and positive semi-definite. Moreover, in these dis-
ciplines, one encounters a collection of such tensors, e.g., at different locations of
the image. Populations of such tensors have also been key to some studies aiming to
model the underlying structure of the medium under investigation [8, 12, 18].

Irrespective of the particular application, let Rab denote such tensors,1 and we
shall refer to the set of n tensors as {R(i)

ab }i . Our desire is to find relevant descriptors
or models of such a family. One relevant statistical measure of this family is the
(population) variance

1

n

n
∑

i=1

(R(i)
ab − ̂Rab)(R

(i)
cd − ̂Rcd) =

(

1

n

n
∑

i=1

R(i)
ab R

(i)
cd

)

− ̂Rab ̂Rcd ,

where ̂Rab = 1
n

∑n
i=1 R

(i)
ab is the mean. (For another approach, see e.g., [8]). In this

paper,we are interested in thefirst term, i.e.,we study the fourth order tensor (skipping
the normalization)

Rabcd =
n

∑

i=1

R(i)
ab R

(i)
cd , R(i)

ab ≥ 0, (1)

where R(i)
ab ≥ 0 stands for R(i)

ab being positive semi-definite. It is obvious that Rabcd

has the symmetries Rabcd = Rbacd = Rabdc and Rabcd = Rcdab, i.e., Rabcd has the
same symmetries as the elasticity tensor [14] from continuum mechanics. The elas-
ticity tensor is well studied [13], e.g. with respect to classification, decompositions,
and invariants. In most cases this is done in three dimensions. The same (w.r.t. sym-
metries) tensor has also been studied in the context of diffusion MR [2].

In this paper we will focus on the corresponding tensor Rabcd in two dimensions.
First, there are direct applications in image processing, and secondly, the problems
posed will be more accessible in two dimensions than in three. In particular we study
the equivalence problem, namely, we ask the question: given the components Ri jkl

and ˜Ri jkl of two such tensors do they represent the same tensor in different coordinate
systems (see Sects. 2.1.2 and 4)?

1.1 Outline

Section 2 contains tensorial matters. We will assume some basic knowledge of ten-
sors, although some definitions are given for completeness. The notation(s) used is

1For the notation of tensors used here, see Sect. 2.1.
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commented on and in particular the three-dimensional Euclidean vector space V(ab)

is introduced.
In Sect. 2.1.2, we make some general remarks concerning the tensor Rabcd and

specify the problem we focus on. Section 2.1 is concluded with some remarks on the
Voigt/Kelvin notation and the corresponding visualisation in R3.

Section 2.2 gives examples of invariants, especially invariants which are easily
accessible from Rabcd . Also, more general invariant/canonical decompositions of
Rabcd are given.

In Sect. 3, we discuss how the tensor Rabcd can (given a careful choice of basis)
be expressed in terms of a 3 × 3 matrix, and how this matrix is affected by a rotation
of the coordinate system in the underlying two-dimensional space on which Rabcd is
defined.

In Sect. 4 we return to the equivalence problem and give the main result of this
work. In Sect. 4.1.1 we provide a geometric condition for equivalence, while in
Sect. 4.1.2, we present the equivalence in terms of a 3 × 3 matrix. Both these char-
acterisations rely on the choice of particular basis elements for the vector spaces
employed. In Sect. 4.1.3 the same equivalence conditions are given in a form which
does not assume a particular basis.

2 Preliminaries

In this section we clarify the notation and some concepts which we need. Section 2.1
deals with the (alternatives of) tensor notation and some representations. The equiv-
alence (and related) problems are also briefly addressed. Section 2.2 accounts for
some natural invariants, traces and decompositions of Rabcd .

Wewill assume some familiaritywith tensors, but to clarify the view on tensorswe
recall some facts.We start with a (finite dimensional) vector space V with dual V ∗. A
tensor of order (p,q) is then amulti-linear mapping V × V · · · × V

︸ ︷︷ ︸

q

× V ∗ × · · · × V ∗
︸ ︷︷ ︸

p

→ R. Moreover, a (non-degenerate) metric/scalar product g : V × V → R gives an
isomorphism from V to V ∗ through v → g(v, ·), and it is this isomorphism which
is used to ‘raise and lower indices’, see below. Indeed, for a fixed v ∈ V , g(v, ·) is a
linear mapping V → R, i.e., an element of V ∗.

2.1 Tensor Notation and Representations

There is a plethora of notations for tensors. Here, we follow thewell-adopted conven-
tion [16] that early lower case Latin letters (T a

bc) refer to the tensor as a geometric
object, its type being inferred from the indices and their positions (the abstract index
notation). gab denotes the metric tensor.When the indices are lower case Latin letters
from the middle of the alphabet, T i

jk , they refer to components of T a
bc in a certain
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frame. The super-index i denotes a contravariant index while the sub-indices j, k
are covariant. For instance, a typical vector (tensor of type (1, 0)) will be written
va with components vi , while the metric gab (tensor of type (0, 2)) has components
gi j . At a number of occasions, it will also be useful to express quantities in terms of
components with respect to orthonormal frames, i.e., Cartesian coordinates. This is
sometimes referred to as ‘Cartesian tensors’, and the distinction between contra- and
covariant indices is obscured. In these situations, it is possible (but not necessary) to
write all indices as sub-indices, and sometimes the symbol

·= is used to indicate that
an equation is only valid in Cartesian coordinates. For example Ti

·= Ti jkδ jk instead
of T i = T i

jkg jk = T ik
k . Often this is clear form the context, but we will sometimes

use
·= to remind the reader that a Cartesian assumption is made. Here, the Einstein

summation convention is implied, i.e., repeated indices are to be summed over, so

that for instance T i = T i
jkg jk = T ik

k =
n
∑

j=1

n
∑

k=1
T i

jkg jk =
n
∑

k=1
T ik

k if each index

ranges from 1 to n. We have also used the metric gi j and its inverse gi j to raise and
lower indices. For instance, since gi j vi is an element of V ∗, we write gi j vi = v j .

We also remind of the notation for symmetrisation. For a two-tensor T(ab) =
1
2 (Tab + Tba), while more generally for a tensor Ta1a2···an of order (0, n) we have

T(a1a2···an) = 1

n!
∑

π

Taπ(1)aπ(2)···aπ(n)

where the sum is taken over all permutations π of 1, 2, . . . , n. Naturally, this conven-
tion can also be applied to subsets of indices. For instance, Ha(bc) = 1

2 (Habc + Hacb).

2.1.1 The Vector Space of Symmetric Two-Tensors

In any coordinate frame a symmetric tensor Rab (i.e., Rab = Rba) is represented by
a symmetric matrix Ri j (2 × 2 or 3 × 3 depending on the dimension of the underly-
ing space). In the two-dimensional case, with the underlying vector space V a ∼ R

2

, this means that Rab lives in a three-dimensional vector space, which we denote
by V(ab). V(ab) is equipped with a natural scalar product: < Aab, Bab >= AabBab,
making it into a three-dimensional Euclidean space. Here AabBab = AabBcdgacgbd ,
i.e, the contraction of AabBcd over the indices a, c and b, d, and the tensor prod-
uct AabBcd itself is the tensor of order (0, 4) given by (AabBcd)vaubwcmd =
(Aabvaub)(Bcdw

cmd) together with multi-linearity.

2.1.2 The Tensor Rabcd and the Equivalence Problem

As noted above, Rabcd given by (1) has the symmetries Rabcd = R(ab)cd = Rab(cd)

and Rabcd = Rcdab, and it is not hard to see that this gives Rabcd six degrees of
freedom in two dimensions. (See also Sect. 2.1.3.) It is also interesting to note that
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Rabcd provides a mapping V(ab) → V(ab) through

Rab �→ Rabcd R
cd ,

and that this mapping is symmetric (due to the symmetry Rabcd = Rcdab). Given
Rabcd there are a number of questions one can ask, e.g.,

• Feasibility—given a tensor Rabcd with the correct symmetries, can it be written in
the form (1)?

• Canonical decomposition—given Rabcd of the form (1), can you write Rabcd as a
canonical sum of the form (1), but with a fixed number of terms (cf. eigenvector
decomposition of symmetric matrices)?

• Visualisation—since fourth order tensors are a bit involved, how can one visualise
them in ordinary space?

• Characterisation/relevant sets of invariants—what invariants are relevant from an
application point of view?

• The equivalence problem—in terms of components, how do we know if Ri jkl and
˜Ri jkl represent the same tensor when they are in different coordinate systems?

We will now focus on the equivalence problem in two dimensions. This problem
can be formulated as above: given, in terms of components, two tensors (with the
symmetries we consider) Ri jkl and ˜Ri jkl , do they represent the same tensor in the
sense that there is a coordinate transformation taking the components Ri jkl into the
components ˜Ri jkl? In other words, does there exist an (invertible) matrix Pm

i so that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l?

This problem can also be formulated when Ri jkl and ˜Ri jkl are expressed in Cartesian
frames. Then the coordinate transformationmust be a rotation, i.e., given by a rotation
matrix Qi

j ∈ SO(2). Hence, the problem of (unitary) equivalence is: Given Ri jkl and
˜Ri jkl , both expressed in Cartesian frames, is there a matrix (applying the ‘Cartesian
convention’) Qi j ∈ SO(2) so that

Ri jkl = ˜RmnopQmi Qnj QokQ pl?

2.1.3 The Voigt/Kelvin Notation

Since (in two dimensions) the space V(ab) is three-dimensional, one can introduce

coordinates, for example Ri j = ( x y
y z

) ∼
( x

y
z

)

and use vector algebra on R
3. This is

used in the Voigt notation [15] and the related Kelvin notation [6]. As always, one

must be careful to specify with respect to which basis in V(ab) the coordinates
( x

y
z

)

are taken. For instance, in the correspondence Ri j = ( x y
y z

) ∼
( x

y
z

)

, the understood

basis for V(ab) (in the understood/induced coordinate system) is {( 1 0
0 0

)

,
(

0 1
1 0

)

,
(

0 0
0 1

)}.



8 M. Herberthson et al.

Fig. 1 Left: the symmetricmatrices e(1)
ab , e(2)

ab , e(3)
ab (red) and e(1)

ab + e(3)
ab , e(2)

ab + e(3)
ab (blue) as vectors

inR3. The positive semi-definitematrices correspond to vectorswhich are inside/above the indicated
cone (including the boundary). Right: the fourth order tensors (e(1)

ab + e(3)
ab )(e(1)

cd + e(3)
cd ) and (e(2)

ab +
e(3)
ab )(e(2)

cd + e(3)
cd ) depicted in blue, and e(3)

ab e
(3)
cd shown in red are viewed as quadratic forms and

illustrated as ellipsoids (made a bit ‘fatter’ than they should be for the sake of clarity)

These elements are orthogonal (viewed as vectors in V(ab)) to each other, but not (all
of them) of unit length.

Since the unit matrix plays a special role, we make the following choice. Starting
with an orthonormal basis {ξ̂ , η̂} for V , (i.e., {ξ̂ a, η̂a} for V a) a suitable orthonormal
basis for V(ab) is {e(1)

ab , e(2)
ab , e(3)

ab } where e(1)
ab = 1√

2
(ξaξb − ηaηb), e

(2)
ab = 1√

2
(ξaηb +

ηaξb), e
(3)
ab = 1√

2
(ξaξb + ηaηb), i.e., in the induced basis we have

e(1)
i j = 1√

2

(

1 0
0 −1

)

∼ x̂, e(2)
i j = 1√

2

(

0 1
1 0

)

∼ ŷ, e(3)
i j = 1√

2

(

1 0
0 1

)

∼ ẑ. (2)

In this basis, we write an arbitrary element Mab ∈ V(ab) as Mi j = ( z+x y
y z−x

)

, which

means that Mab gets the coordinates Mi = √
2
( x

y
z

)

. Note that Mi j is positive definite

if z2 − x2 − y2 ≥ 0 and z ≥ 0. In terms of the coordinates of the Voigt notation, the
tensor Rabcd corresponds to a symmetric mapping R

3 → R
3, given by a symmetric

3 × 3 matrix, which also shows that the degrees of freedom for Rabcd is six.

2.1.4 Visualization in R
3

Through the Voigt notation, any symmetric two-tensor (in two dimensions) can be
visualised as a vector in R

3. Using the basis vector given by (2), we note that e(1)
i j

and e(2)
i j correspond to indefinite quadratic forms, while e(3)

i j is positive definite. We

also see that e(1)
i j + e(3)

i j and e(2)
i j + e(3)

i j are positive semi-definite.
In Fig. 1 (left) these matrices are illustrated as vectors in R

3. The set of positive
semi-definite matrices corresponds to a cone, cf. [4], indicated in blue. When the
symmetric 2 × 2 matrices are viewed as vectors in R

3, the outer product of such
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a vector with itself gives a symmetric 3 × 3 matrix. Hence we get a positive semi-
definite quadratic form onR3, which can be illustrated by an (degenerate) ellipsoid in
R

3. In Fig. 1 (right) (e(1)
ab + e(3)

ab )(e(1)
cd + e(3)

cd ), (e(2)
ab + e(3)

ab )(e(2)
cd + e(3)

cd ) and e(3)
ab e

(3)
cd are

visualised in this manner. Note that all these quadratic forms correspond to matrices
which are rank one. (Cf. the ellipsoids in Fig. 2.)

2.2 Invariants, Traces and Decompositions

By an invariant, we mean a quantity that can be calculated from measurements,
and which is independent of the frame/coordinate system with respect to which the
measurements are performed, despite the fact that components, e.g., T i

jk themselves
depend on the coordinate system. It is this property that makes invariants important,
and typically they are formed via tensor products and contractions, e.g., T i

jkT k
il g jl .

Sometimes, the invariants have a direct geometrical meaning. For instance, for a
vector vi , the most natural invariant is its squared length vi vi . For a tensor T i

j of
order (1,1) in three dimensions, viewed as a linear mapping R

3 → R
3, the most

well known invariants are perhaps the trace T i
i and the determinant det(T i

j ). The
modulus of the determinant gives the volume scaling under the mapping given by
T i

j , while the trace equals the sum of the eigenvalues. If T i
j represents a rotation

matrix, then its trace is 1 + 2 cosφ, whereφ is the rotation angle. In general, however,
the interpretation of a given invariant may be obscure. (For an account relevant to
image processing, see e.g., [9]. A different, but relevant, approach in the field of
diffusion MRI is found in [20].)

2.2.1 Natural Traces and Invariants

From (1), and considering the symmetries of Rabcd , two (and only two) natural traces
arise. For a tensor of order (1, 1), e.g., Ri

j , it is natural to consider this as an ordinary
matrix, and consequently use stem letters without any indices at all. To indicate this

slight deviation from the standard tensor notation, we denote e.g., Ri
j by ¯̄R. Using

[·] for the trace, so that [ ¯̄R] = Tr( ¯̄R) = Ra
a , we then have

Tab = Rabc
c =

n
∑

i=1

R(i)
ab R

(i)
c

c =
n

∑

i=1

R(i)
ab [ ¯̄R(i)], (3)

and

Sab = Racb
c =

n
∑

i=1

R(i)
ac R

(i)
b

c
. (4)
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Hence, in a Cartesian frame, where the index position is unimportant, we have for

the matrices ¯̄T = Ti j ,
¯̄S = Si j

¯̄T =
n

∑

i=1

¯̄R(i)[ ¯̄R(i)], ¯̄S =
n

∑

i=1

¯̄R(i) ¯̄R(i).

To proceed there are two double traces (i.e., contracting Rabcd twice):

T = Ta
a = Ra

a
c
c =

n
∑

i=1

R(i)
a

a
R(i)
c

c =
n

∑

i=1

[ ¯̄R(i)]2 (5)

and

S = Sa
a = Rac

ac =
n

∑

i=1

R(i)
ac R

(i)ac =
n

∑

i=1

[( ¯̄R(i))2]. (6)

In two dimensions, the difference Tab−Sab is proportional to the metric gab. Namely,

Lemma 1 With Tab and Sab given by (3) and (4), it holds that (in two dimensions)

Tab − Sab =
n

∑

i=1

det( ¯̄R(i))gab.

Proof By linearity, it is enough to prove the statementwhen n = 1, i.e., when the sum
has just one term.Raising the second index, and using components, the statement then

is Ti j − Si j = det( ¯̄R(1))δi
j . Putting ¯̄R(1) = A, we see that Ti j − Si j = A[A] − A2

while det( ¯̄R(1))δi
j = det(A)I , and by the Cayley-Hamilton theorem in two dimen-

sions, A[A] − A2 is indeed det(A)I . �

From lemma 1, it follows that T − S = 2
∑n

i=1 det(
¯̄R(i)) ≥ 0. In fact the following

inequalities hold.

Lemma 2 With T and S defined as above, it holds that S ≤ T ≤ 2S. If T = S, all
tensors R(i)

ab have rank 1. If T = 2S, all tensors R(i)
ab are isotropic, i.e., proportional

to the metric gab.

Proof Again, by linearity it is enough to consider one tensor ¯̄R(1) = A. In an
orthonormal frame which diagonalises A, we have A = (

a 0
0 c

)

(with a ≥ 0, c ≥ 0,
a + c > 0). Hence

S = a2 + c2 ≤ a2 + c2 + 2ac = (a + c)2 = T = 2(a2 + c2) − (a − c)2 ≤ 2S.

The first inequality becomes equality when ac = 0, i.e., when A has rank one. The
second inequality becomes equality when a = c, i.e., when A is isotropic. �
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Definition 1 We define the mean rank, rm , by rm = T/S, with T and S as above.

Hence, in two dimensions, 1 ≤ rm ≤ 2.

2.2.2 A Canonical Decomposition

It is customary [3, 7] to decompose a tensor with the symmetries of Rabcd into a sum
where one term is the completely symmetric part:

Rabcd = Habcd + Wabcd , where Habcd = R(abcd),Wabcd = Rabcd − Habcd .

It is also customary to split Habcd into a trace-free part and ‘trace part’. We start by
defining Hab = Habc

c, H = Ha
a and then the trace-free part of Hab: H̊ab = Hab −

1
2Hgab so that Hab = H̊ab + 1

2Hgab. (These decompositions can be made in any
dimension, but the actual coefficients, e.g., 1

2 above and 1
8 and 3

8 et cetera below
depend on the underlying dimension.) It is straightforward to check that

H̊abcd = Habcd − g(abHcd) + 1
8Hg(abgcd) = Habcd − g(ab H̊cd) − 3

8Hg(abgcd)

is also trace-free. Hence we have the decomposition

Habcd = H̊abcd + g(abHcd) − 1
8Hg(abgcd) = H̊abcd + g(ab H̊cd) + 3

8Hg(abgcd).

Moreover, due to the symmetry of Rabcd , we find that

Habcd = 1
3 (Rabcd + Racbd + Radbc)

and therefore that
Wabcd = 1

3 (2Rabcd − Racbd − Radbc) (7)

which implies thatHab = Habc
c = 1

3 (Tab + 2Sab) andWab = Wabc
c = 2

3 (Tab − Sab).
The degres of freedom, which for Rabcd is six, is distributed, where Rabcd ∼

{H̊abcd , Hab,Wabcd}, as

Rabcd
(6)

∼ {H̊abcd
(2)

, Hab
(3)

,Wabcd
(1)

} ∼ {H̊abcd
(2)

, H̊ab
(2)

, H
(1)

,Wabcd
(1)

}.

For Hab (or the pair H̊ab, H ) this is clear. The total symmetry of H̊abcd leaves only
five components (in a basis), H̊1111, H̊1112, H̊1122, H̊1222, H̊2222. However, the trace-
free condition H̊abcdgcd = 0 imposes three conditions. (In an orthonormal frame,
H̊1122 = −H̊1111, H̊2222 = −H̊1122 and H̊1112 = −H̊1222.) That Wabcd has only one
degree of freedom follows from the following lemma.

Lemma 3 Suppose that Wabcd is given by (7), and put Wab = Wabcdgcd , W =
Wabgab. Then (in two dimensions)
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Wabcd = W
4 (2gabgcd − gacgbd − gadgbc)

Proof By linearity, it is enough to consider the case when Rabcd = Aab Acd for some
(symmetric) Aab. In terms of eigenvectors (to Aa

b) we can write Aab = αxaxb +
βya yb, where xaxa = ya ya = 1, xa ya = 0. In particular gab = xaxb + ya yb. From
(7) we then get

Wabcd = 1
3 (2Rabcd − Racbd − Radbc)

= 1
3 (2Aab Acd − Aac Abd − Aad Abc)

= 1
3 (2(αxaxb + βya yb)(αxcxd + βyc yd)

− (αxaxc + βya yc)(αxbxd + βyb yd)

−(αxaxd + βya yd)(αxbxc + βyb yc)) .

(8)

Expanding the parentheses, the components xaxbxcxd and ya yb yc yd vanish, leaving

αβ

3
(2xaxb yc yd + 2ya ybxcxd − xaxc yb yd

− ya ycxbxd − xaxd yb yc − ya yd xbxc)

=αβ

3
(2gabgcd − gacgbd − gadgbc) ,

(9)

where the last equality can be seen by inserting gab = xaxb + ya yb (for all indices)
and expanding. Taking one trace, i.e., contracting with gcd gives Wab = 2αβ

3 gab, and
another trace gives W = 4αβ

3 , which proves the lemma. �

3 Rabcd as a Quadratic Form on R
3

Through the orthonormal basis for the space of symmetric two-tensors (in two dimen-
sions) given by (2), the tensor Rabcd viewed as a quadratic form can be represented
by a 3 × 3-matrix. Here, we will restrict ourselves to an orthonormal basis for V(ab),
namely the basis {e(1)

ab , e(2)
ab , e(3)

ab } from Sect. 2.1.3, defined in terms of the orthonor-
mal basis {ξ a, ηa} for V a . Thus, given Rabcd , we associate the symmetric matrix Mi j ,
where (the choice of an orthonormal basis justifies the mismatch of the indices i, j)

Mi j
·= Rab

cde
(i)
ab (e

( j))cd , 1 ≤ i, j ≤ 3.

It is instructive to see how the various derived tensors show up in Mi j . In terms of
the basis (2) it is natural to look at the various parts of Mi j as follows

Mi j
·=

( × ×× × ××
× × ×

)

·=
(

A v
vt a

)

. (10)
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This splitting is natural for reasons which will become apparent in the next sections.
Note, however, that with this representation it is tempting to consider coordinate
changes in R

3, which is not natural in this case. Rather, of interest is the change of
basis in V a and the related induced change of coordinates in the representation (10).
See Sect. 3.2.

3.1 Representation of the Canonically Derived Parts of Rabcd

It is helpful to see how the components of the various tensors Tab, Sab, T , S, H̊abcd ,
H̊ab, H and W show up as components of Mi j . As for H̊ab, e.g., T̊ab denotes the
trace-free part of Tab. Immediate is M33:

M33
·= Rab

cde
(3)
ab (e(3))cd

·= 1

2
Rab

cdgabg
cd = 1

2
Tcdg

cd = 1

2
T . (11)

Similarly, for i = 1, 2 we have

Mi3
·= 1√

2
Rab

cde
(i)
ab g

cd ·= 1√
2
T abe(i)

ab
·= 1√

2
T̊ abe(i)

ab , (12)

where the last equality follows form the trace-freeness of e(1)
ab and e(2)

ab . This means
that the components of T̊ab (properly rescaled) goes into Mi j as the components
of v (and vt ) in (10). The same holds for S̊ab and H̊ab, as S̊ab = T̊ab by Lemma 1,
which then implies that also H̊ab = T̊ab = S̊ab. This latter relation follows from the
trace-free part of the relation Hab = 1

3 (Tab + 2Sab). Hence

Mi j
·=

⎛

⎝

A
−→̊
T

−→̊
T

t
1
2T

⎞

⎠

·=
⎛

⎝

σ
2 I + Å

−→̊
T

−→̊
T

t
1
2T

⎞

⎠ , (13)

where
−→̊
T =

−→̊
S =

−→̊
H encodes the two degrees of freedom in T̊ab = S̊ab = H̊ab. The

matrix A is decomposed as A = σ
2 I + Å where I is the (2 × 2) identity matrix and

Å is trace-free part of A. In particular, [A] = σ .
To investigate [Mi j ] = M11 + M22 + M33, i.e., the trace of Mi j we note that

for a general symmetric matrix Ri j
·= (

a b
b c

)

we have Ri j e
(1)
i j

·= a−c√
2
, Ri j e

(2)
i j

·=
2b√
2
, Ri j e

(3)
i j

·= a+c√
2
. When Mi j is constructed from Rabcd which is an outer prod-

uct RabRcd the trace is given by M11 + M22 + M33 = ( a−c√
2
)2 + ( 2b√

2
)2 + ( a+c√

2
)2 =

a2 + 2b2 + c2 and from (6) this is S. Together with linearity, this shows that
[M] = M11 + M22 + M33 = S also when Rabcd is formed as in (1). Taking trace
in (13), this gives

S = σ + 1
2T, i.e., σ = S − 1

2T .
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In addition, the relations below Eq. (7) show that

{

H = 1
3 (T + 2S)

W = 2
3 (T − S)

i.e.,

{

T = H + W

S = H − 1
2W

so that σ = 1
2H − W.

The two degres of freedom in Å corresponds to the two degrees of freedom in H̊abcd .

3.2 The Behaviour of Mi j Under a Rotation of the
Coordinate System in V a

The components ofMi j are expressed in terms of the orthonormal basis tensors given
by (2), and these in turn are based on the ON basis {ξ̂ , η̂} for V . Putting the basis
vectors in a row matrix

(

ξ̂ η̂
)

and the coordinates in a column matrix
(

ξ
η

)

so that

a vector u = ξ ξ̂ + ηη̂ = (

ξ̂ η̂
) (

ξ
η

)

, and considering only orthonormal frames, the

relevant change of basis is given by a rotationmatrix Q(v) = Qv =
(

cos v − sin v
sin v cos v

)

,

i.e., we consider the change of basis

(

ξ̂ η̂
) →

( ˆ̃
ξ ˆ̃η

)

= (

ξ̂ η̂
)

(

cos v − sin v
sin v cos v

)

= (

ξ̂ η̂
)

Q(v).

Thismeans that for a vectoru =
( ˆ̃
ξ ˆ̃η

)

(

ξ̃

η̃

)

= (

ξ̂ η̂
)

(

ξ

η

)

, the coordinates transform

as
(

ξ

η

)

→
(

ξ̃

η̃

)

= Q−1(v)

(

ξ

η

)

= Qt (v)

(

ξ

η

)

= Q(−v)

(

ξ

η

)

.

For the components of the basis vectors e(1)
ab , e(2)

ab , e(3)
ab we find (omitting the factor

1/
√
2)

(

1 0
0 −1

)

→
(

cos v sin v
− sin v cos v

)(

1 0
0 −1

)(

cos v − sin v
sin v cos v

)

=
(

cos 2v − sin 2v
− sin 2v − cos 2v

)

(

0 1
1 0

)

→
(

cos v sin v
− sin v cos v

)(

0 1
1 0

) (

cos v − sin v
sin v cos v

)

=
(

sin 2v cos 2v
cos 2v − sin 2v

)

(

1 0
0 1

)

→
(

cos v sin v
− sin v cos v

)(

1 0
0 1

) (

cos v − sin v
sin v cos v

)

=
(

1 0
0 1

)

,

(14)
and this means that the components Mi j transform as

Mi j
·=

(

A v
vt a

)

→ ˜Mi j
·=

(

Qt
2v AQ2v Qt

2vv
vt Q2v a

)

. (15)
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But this latter expression is just

(

Qt
2v 0

0
t

1

)

(

A v
vt a

)

(

Q2v 0

0
t

1

)

,

hence we have the following important remark/observation:

Remark 1 Viewing the matrix Mi j as an ellipsoid in R3, the effect of a rotation by
an angle v in V a corresponds to a rotation of the ellipsoid by an angle 2v around the
z-axis in R3 (where the z-axis corresponds to the ‘isotropic direction’ given by gab).

4 The Equivalence Problem for Rabcd

The equivalence problem for Rabcd can be formulated in different ways (for an
account in three dimensions, we refer to [3]). Given two tensors Rabcd and ˜Rabcd ,
bothwith the symmetries implied by (1), the questionwhether they are the sameor not
is straightforward as one can compare the components in any basis. However, Rabcd

and ˜Rabcd could live in different (but isomorphic) vector spaces, e.g. two tangent
spaces at different points, and the concept of equality becomes less clear. On the
other hand, in terms of components Ri jkl and ˜Ri jkl , one could ask whether there is a
change of coordinates which takes one set of components into the other. If so, one
can find a (invertible) matrix Pi

j so that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l ,

and the tensors are then said to be equivalent. As already mentioned, it is convenient
to restrict the coordinate systems to orthonormal coordinates. This means that two
different coordinate systems differ only by their orientation, i.e., the change of coor-
dinates are given by a rotation matrix Q ∈ SO(2). Under the ’Cartesian convention’
that all indices are written as subscripts, Rabcd and ˜Rabcd are equivalent if there is a
matrix Q ∈ SO(2) so that (their Cartesian components satisfy)

Ri jkl = ˜RmnopQmi Qnj QokQ pl .

4.1 Different Ways to Characterize the Equivalence of Rabcd

and ˜Rabcd

In this section, we will discuss three ways to determine whether two tensors Rabcd

and ˜Rabcd are equivalent or not. In Sects. 4.1.1 and 4.1.2we present two suchmethods
briefly, while Sect. 4.1.3, which is more complete, contains the main result of this
work.
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Fig. 2 Three identical (truncated) ellipsoids in R
3 with different orientations. The two leftmost

ellipsoids can be carried over to each other through a rotation around the (vertical in the figure)
z-axis, which implies that they represent the same tensor Rabcd (up to the meaning discussed). The
right ellipsoid, despite identical eigenvalues with the two others, represent a different tensor since
the rotation which carries this ellipsoid to any of the others is not around the z-axis

As mentioned in Sect. 1.1, the results of Sects. 4.1.1 and 4.1.2, which may be
used in their own rights, rely on particular choices of basis matrices for V(ab). The
formulation in Sect. 4.1.3 on the other hand, is expressed in the components of Rabcd

(in any coordinate system) directly.

4.1.1 Orientation of the Ellipsoid in R
3

Anecessary condition for Rabcd and ˜Rabcd to be equivalent is that their corresponding
3 × 3-matrices Mi j and ˜Mi j have the same eigenvalues. On the other hand, this is
not sufficient since the representation in R

3 should reflect the freedom in rotating
the coordinate system in V a ∼ R

2. With the coordinates adopted, this corresponds
to a rotation of the associated ellipsoid around the z-axis in R

3 (see Remark 1 in
Sect. 3.2). This is illustrated in Fig. 2 where three ellipsoids, all representing positive
definite symmetric mappings having identical eigenvalues, are shown. The two first
ellipsoids can be rotated into each other by a rotation around the z-axis. This implies
that the corresponding tensors Rabcd and ˜Rabcd are equivalent. The third ellipsoid
can also be rotated into the two others, but these rotations are around directions other
than the z-axis, which means that this ellipsoid represents a different tensor.

In the generic case, with all eigenvalues different, it is easy to test whether two
different ellipsoids can be transfered into each other through a rotation around the
z-axis. This will be the case if the corresponding eigenvectors (of Mi j and ˜Mi j ) have
the same angle with the z-axis. Hence it is just a matter of checking the z-components
of the three normalized eigenvectors and see if they are equal up to sign.

4.1.2 Components in a Canonical Coordinate System

In a sense, this is the most straightforward method. In a coordinate system which
respects e(3)

ab as the z-axis in V(ab) ∼ R
3, two tensors Rabcd and ˜Rabcd are equivalent

if there is a rotation matrix (in two dimensions) Q such that
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⎛

⎝

A
−→̊
T−→̊

T t 1
2T

⎞

⎠ =
⎛

⎝

Qt
˜AQ Qt

−→̊
˜T−→̊

˜T t Q 1
2
˜T

⎞

⎠ . (16)

Hence, equivalence can be easily tested by first checking that T = ˜T and that ||
−→̊
T || =

||
−→̊
˜T ||. If this is the case, (and if ||

−→̊
T || > 0) one determines the rotation matrix Q

which gives
−→̊
T = Qt

−→̊
˜T , and equivalence is then determined by if A = Qt

˜AQ or

not. If ||
−→̊
T || = ||

−→̊
˜T || = 0, the equivalence of A and ˜A can be determined directly,

i.e., by checking whether [A] = [˜A] and [A2] = [˜A2] or not.

4.1.3 Equivalence Through (algebraic) Invariants of Rabcd

If a solution is found, this is perhaps the most satisfactory way to establish equiva-
lence, in particular if the invariants are constructed by simple algebraic operations
only. (For instance, to a symmetric 3 × 3-matrix A one can take the three eigenvalues
as invariants or else for instance the traces of A, A2 and A3. The former set requires
some calculations, but the latter is immediate.)

Examples of invariants are T = Rabcdgabgcd , S = Rabcdgacgbd and the invariants
H = Habgab,W = Wabgab. To produce the invariants, we use the tensor Rabcd and
the metric gab. However, if we regard V a ∼ R

2 as oriented, so that the orthonormal
basis {ξ̂ , η̂} for V a also is oriented, then invariants can also be formed in another way.
Namely, since the space of symmetric 2 × 2 matrices is 3-dimensional, and since the
metric gab singles out a 1-dimensional subspace, it also determines a 2-dimensional
subspace L; all elements orthogonal to gab. This subspace is the set of all symmetric
2 × 2 matrices which are also trace-free. L can be given an orientation through an
area form, which in turn inherits the orientation from V a .

In general, with right-handed Cartesian coordinates x1, x2, the area form ε is
given by ε = dx1 ∧ dx2 where (ω ∧ μ)ab = ωaμb − ωbμa . With the orthonormal
basis {ξ̂ , η̂} ( for V a ) also right handed, we define, cf. (2),

e(1)
ab = 1√

2
(ξ̂ a ξ̂ b − η̂a η̂b), e(2)

ab = 1√
2
(ξ̂ a η̂b + η̂a ξ̂ b). (17)

The area form on L is then ε ∼ e(1) ∧ e(2), or

ε ∼ Eabcd = e(1)
ab e

(2)
cd − e(2)

ab e
(1)
cd . (18)

It is not hard to see that this definition is independent of the orientation of {ξ̂ , η̂}.
We observe that 2Eabcd = (ξ̂ a ξ̂ b − η̂a η̂b)(ξ̂ cη̂d + η̂c ξ̂ d) − (ξ̂ a η̂b + η̂a ξ̂ b)(ξ̂ c ξ̂ d −
η̂cη̂d). By replacing ξ̂ by ω̂ = cos v ξ̂ + sin v η̂ and η̂ by μ̂ = − sin v ξ̂ + cos v η̂,
i.e., a rotated orthonormal basis, it is straightforward to check that
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(ω̂aω̂b − μ̂aμ̂b)(ω̂cμ̂d + μ̂cω̂d) − (ω̂aμ̂b + μ̂aω̂b)(ω̂cω̂d − μ̂cμ̂d)

=(ξ̂ a ξ̂ b − η̂a η̂b)(ξ̂ cη̂d + η̂c ξ̂ d) − (ξ̂ a η̂b + η̂a ξ̂ b)(ξ̂ c ξ̂ d − η̂cη̂d)
(19)

so that Eabcd is well defined. We recollect that area form Eabcd is defined, through
the induced metric, on the plane L (which in turn is also defined through the metric
gab) and the orientation on V a . Hence Eabcd can be used when forming invariants.

We will now state the result of this work, namely the existence of six invariants
which can be used to investigate equivalence of two tensors Rabcd and ˜Rabcd . We
start by defining

S =Rabcdg
acgbd

T =Rabcdg
abgcd

J0 =Rabcd R
abcd

J1 =T abTab

J2 =RabcdT
abT cd

J3 =T abRabcd E
cde f Tef .

(20)

where Eabcd is defined by (17) and (18). Similarly, we define ˜S, ˜T , ˜J0, ˜J1, ˜J2 and
˜J3 as the corresponding invariants formed from ˜Rabcd . We make the remark that for
most of these invariants, their immediate interpretations still remain to be found.
Rather, their value lie in the fact that they form a set which can be used to establish
the equivalence in Theorem 1 below. On the other hand, some interpretations are
possible. In particular, the quotient T/S (see Definition 1) lies in the interval [1, 2]
and has the meaning given by Lemma 2.

Theorem 1 Suppose that Rabcd = ∑n
i=1 R

(i)
ab R

(i)
cd , with R(i)

ab ≥ 0 and that Ri jkl are
the components of Rabcd in some basis. Suppose also that ˜Rabcd = ∑ñ

i=1
˜R(i)
ab

˜R(i)
cd ,

with ˜R(i)
ab ≥ 0 and that ˜Ri jkl are the components of ˜Rabcd in some, possibly unrelated,

basis. If (and only if) S = ˜S, T = ˜T , J0 = ˜J0, J1 = ˜J1, J2 = ˜J2, J3 = ˜J3, then there
is a transformation matrix Pi

j such that

Ri jkl = ˜Rmnop P
m
i P

n
j P

o
k P

p
l .

Proof Since the invariants are defined without reference to any basis, it is sufficient
to consider the components expressed in an orthonormal frame, and in that case we
must prove the existence of a rotation matrix Q ∈ SO(2) so that

Ri jkl = ˜RmnopQmi Qnj QokQ pl .

Since
Rabcd = Mi je

(i)
abe

( j)
cd , (21)

we can consider the invariants formed from the components of
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Mi j =
(

A u
ut c

)

and ˜Mi j =
(

˜A ˜u
˜u
t
c̃

)

(22)

and we must demonstrate the existence of a rotation matrix Q = Q2v such that

˜A = Qt
2v AQ2v, ˜u = Qt

2vu, c̃ = c. (23)

We make the ansatz

Mi j =
⎛

⎝

σ
2 + a b
b σ

2 − a
x
y

x y c

⎞

⎠ , ˜Mi j =
⎛

⎝

σ̃
2 + ã ˜b

˜b σ̃
2 − ã

x̃
ỹ

x̃ ỹ c̃

⎞

⎠ . (24)

Through (21) it is straightforward to see that

S = σ + c, T = 2c, J0 = 2(a2 + b2) + c2 + σ 2/2 + 2(x2 + y2),
J1 = 2(c2 + x2 + y2)

so if S = ˜S, T = ˜T , J0 = ˜J0, J1 = ˜J1, it follows that σ = σ̃ , c = c̃, a2 + b2 = ã2 +
˜b2 and x2 + y2 = x̃2 + ỹ2. Since the isotropic part of A, i.e., σ

2 I is unaffected by

a rotation of the coordinate system, we consider the traceless parts Å = (

a b
b −a

)

,
˚̃A =

(

ã ˜b
˜b −ã

)

, and the task is to assert a rotation matrix Q such that

(

a b
b −a

)

= Qt

(

ã ˜b
˜b −ã

)

Q,

(

x
y

)

= Qt

(

x̃
ỹ

)

,

if also J2 = ˜J2, J3 = ˜J3. Again it is straightforward to calculate the remaining invari-
ants, and we find

J2 = 4bxy + 2a(x2 − y2) + 2c3 + (4c + σ)(x2 + y2)
J3 = 4axy − 2b(x2 − y2) .

and similarly for ˜J2, ˜J3. Hence, (since σ = σ̃ , c = c̃)

a2 + b2 = ã2 +˜b2

x2 + y2 = x̃2 + ỹ2

2bxy + a(x2 − y2) = 2˜bx̃ ỹ + ã(̃x2 − ỹ2)
2axy − b(x2 − y2) = 2̃ax̃ ỹ −˜b(̃x2 − ỹ2) .

(25)

Suppose first that x2 + y2 > 0. The equality x2 + y2 = x̃2 + ỹ2 then guarantees the
existence of the rotationmatrix Q which is determined via the relation

( x
y
) = Qt

(

x̃
ỹ

)

.
This can also be expressed as Qt

1

( x
y
) = Qt

2

(

x̃
ỹ

)

for some rotation matrices Q1, Q2,
where Q = Q2Qt

1. We now choose the rotation matrix Q1 so that in the untilded
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coordinates, y = 0. Similarly we choose Q2 so that for the tilded coordinates, we
get a frame where ỹ = 0. The equalities between the invariants in (25) then become

a2 + b2 = ã2 +˜b2

x2 = x̃2

ax2 = ã x̃2

−bx2 = −˜bx̃2 ,

so that a = ã, b = ˜b. This proves the theorem when x2 + y2 > 0. When x2 + y2 =
x̃2 + ỹ2 = 0, i.e., x = y = x̃ = ỹ = 0, the remaining equality a2 + b2 = ã2 +˜b2 is
sufficient since we can again choose frames in which b = ˜b = 0 and a > 0, ã > 0.
It then follows that a = ã. �

5 Discussion

In this work, we started with a family of symmetric positive (semi-)definite tensors
in two dimensions and considered its variance. This lead us to a fourth order tensor
Rabcd with the same symmetries as the elasticity tensor in continuum mechanics.
After listing a number of possible issues to address, we focused on the equivalence
problem. Namely, given the components of two such tensors Rabcd and ˜Rabcd , how
can one determine if they represent the same tensor (but in different coordinate
systems) or not? In Sect. 4, we saw that this could be investigated in different ways.
The result of Theorem 1 is most satisfactory in the sense that it is expressible in terms
of the components of the fourth order tensors directly.

There are two natural extensions and/or ways to continue this work. The first is to
apply the result to realistic families of e.g., diffusion tensors in two dimensions. The
objective is then, apart from establishing possible equivalences, to investigate the
geometric meaning of the invariants. The other natural continuation is to investigate
the corresponding problem in three dimensions. The degrees of freedom of Rabcd will
then increase from 6 to 21, leaving us with a substantially harder, but also perhaps
more interesting, problem.
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