Skip to main content

Accurate Numerical Eigenstates of the Gross-Pitaevskii Equation

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

  • 1718 Accesses

Abstract

We consider a bosonic gas of N bosons. Hartree-Fock approximation allows for a product wave function of single particle solutions \({\Psi (\vec {x_i})}\)

$$\displaystyle \Psi (x_1, x_2, \cdots , x_N) = \prod _i^N \Psi (\vec {x}_i) $$

Using a pseudo-potential to account for the condensate self-interaction, the Hamiltonian is found to be

$$\displaystyle H=\sum _{{i=1}}^{N}\left (-{\hbar ^{2} \over 2m}{\partial ^{2} \over \partial {\mathbf {x}}_{i}^{2}}+V({\mathbf {x}}_{i})\right )+\sum _{{i< j}}{4\pi \hbar ^{2}a_{s} \over m}\delta ({\mathbf {x}}_{i}-{\mathbf {x}}_{j}), $$

In this setting m is the mass of the particles, a s is the scattering length of the bosons and \(\hbar = \frac {h}{2\pi }\). If all single particle solutions satisfy the governing equation, we arrive at

$$\displaystyle \begin{aligned} \underbrace {\left (-{\frac {\hbar ^{2}}{2m}}{\partial ^{2} \over \partial {\mathbf {x}}^{2}}+V({\mathbf {x}})+\gamma \vert \psi ({\mathbf {x}})\vert ^{2}\right )}_{H_{\text{GPE}}[\psi ]({\mathbf {x}})} \psi ({\mathbf {x}})=\mu \psi ({\mathbf {x}}),{} \end{aligned} $$
(1)

where μ is the chemical potential. Equation (1) is the non-linear Gross-Pitaevskii equation and \(\gamma ={4\pi \hbar ^{2}a_{s} \over m}\). We use a spectral element method to discretise (1). To compute the eigenstates {ψ(x)} of the nonlinear Hamiltonian H GPE, we use two different methods the first is an iterative eigenstate solver and in the second we use a constrained Newton method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L., Lifshitz, E.: Quantum Mechanics, Non-Relativistic Theory. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin Heidelberg (1988)

    Book  Google Scholar 

  3. Marojevic, Z., Goklu, E., Lammerzahl, C.: Energy eigenfunctions of the 1D Gross-Pitaevskii equation. Comp. Phys. Comm. 184, 1920–1930 (2013)

    Article  MathSciNet  Google Scholar 

  4. Nicolin, A., Carretero-Gonzalez, R.: Nonlinear dynamics of Bose-condensed gases by means of a Gaussian variational approach. Phys. A. 184 (24), 6032–6044 (2008)

    Article  MathSciNet  Google Scholar 

  5. van Zoest, T., Gaaloul, N., Singh, Y., Ahlers, H. et al: Bose-Einstein Condensation in Microgravity. Science. 328 (5985), 1540–1543 (2010)

    Google Scholar 

  6. Abele, H., Baessler, S., Westphal, A.: Quantum states of neutrons in the gravitational field and the limits for non-Newtonian interaction in the range between 1 μm and 10 μm. In: Giulini, D., Kiefer, C., Lammerzahl, C. (Eds.) Lecture Notes in Physics, vol 631, pp 355–366. Springer, Heidelberg (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gervang, B., Bach, C. (2021). Accurate Numerical Eigenstates of the Gross-Pitaevskii Equation. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_43

Download citation

Publish with us

Policies and ethics