Skip to main content

Insights on Lactate Metabolism in Skeletal Muscle Based on 13C Dynamic Nuclear Polarization Studies

  • Chapter
  • First Online:
Dynamic Hyperpolarized Nuclear Magnetic Resonance

Part of the book series: Handbook of Modern Biophysics ((HBBT))

  • 440 Accesses

Abstract

Despite the textbook pronouncements about muscle lactate (lac) as a glycolytic end-product, which many use to characterize a hypoxia threshold, and as a precursor for recycling in liver, recent studies have begun to challenge these edicts. Indeed, experiment observations have detected lac formation under aerobic conditions and lac shuttling between muscle fibers and within the myocyte as a metabolic precursor. The observations have spawned novel hypothesis to explain aerobic lac formation as part of a dynamic glycogen shunt during a muscle twitch. Since nuclear magnetic resonance (NMR) has detected a large energy fluctuation during each contraction, the cell must dynamically restore glycogen in order to sustain any extended period of contractions. Because of enhanced signal sensitivity to measure kinetics in seconds, dynamic nuclear polarization (DNP) NMR experiments can test key elements of these models. Both the glycogen shunt and intracellular lac shuttle models require rapid mobilization and utilization of lac. If lac cannot mobilize rapidly, then the results invalidate immediately the hypotheses in both models. Can muscle then use and mobilize lac? Indeed, the DNP experiment results show rapid lac utilization, which appears to support the validity of the glycogen shunt and lac shuttle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreutzer, U., Jue, T.: Critical intracellular oxygen in the myocardium as determined with the 1H NMR signal of myoglobin. Am. J. Phys. 268, H1675–H1681 (1995)

    Google Scholar 

  2. Brooks, G.A., Fahey, T.D., White, T.P., Baldwin, K.M.: Exercise physiology: human bioenergetics and its application. Mayfield Publishing, Mountain View (2000)

    Google Scholar 

  3. Brooks, G.A.: Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed. Proc. 45(13), 2924–2929 (1986)

    Google Scholar 

  4. Wasserman, K.: Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation. 76(6 Pt 2), VI29–VI39 (1987)

    Google Scholar 

  5. Brooks, G.A.: The lactate shuttle during exercise and recovery. Med. Sci. Sports Exerc. 18(3), 360–368 (1986)

    Article  Google Scholar 

  6. Gladden, L.B.: Lactate metabolism: a new paradigm for the third millennium. J. Physiol. 558(Pt 1), 5–30 (2004). https://doi.org/10.1113/jphysiol.2003.058701

    Article  Google Scholar 

  7. Stanley, W.C., Brooks, G.A.: Measuring lactate production. Am. J. Phys. 253(4 Pt 1), E472–E473 (1987)

    Google Scholar 

  8. Stanley, W.C., Gertz, E.W., Wisneski, J.A., Morris, D.L., Neese, R.A., Brooks, G.A.: Systemic lactate kinetics during graded exercise in man. Am. J. Phys. 249(6 Pt 1), E595–E602 (1985)

    Google Scholar 

  9. Stanley, W.C., Gertz, E.W., Wisneski, J.A., Neese, R.A., Morris, D.L., Brooks, G.A.: Lactate extraction during net lactate release in legs of humans during exercise. J. Appl. Physiol. 60(4), 1116–1120 (1986)

    Article  Google Scholar 

  10. Bertocci, L.A., Jones, J.G., Malloy, C.R., Victor, R.G., Thomas, G.D.: Oxidation of lactate and acetate in rat skeletal muscle: analysis by 13C-nuclear magnetic resonance spectroscopy. J. Appl. Physiol. 83(1), 32–39 (1997)

    Article  Google Scholar 

  11. Bertocci, L.A., Lujan, B.F.: Incorporation and utilization of [3-13C]lactate and [1,2-13C]acetate by rat skeletal muscle. J. Appl. Physiol. 86(6), 2077–2089 (1999)

    Article  Google Scholar 

  12. Brooks, G.A.: Intra- and extra-cellular lactate shuttles. Med. Sci. Sports Exerc. 32(4), 790–799 (2000)

    Article  Google Scholar 

  13. Brooks, G.A., Hashimoto, T.: Investigation of the lactate shuttle in skeletal muscle mitochondria. J. Physiol. 584(Pt 2), 705–706 (2007).;author reply 707–708). https://doi.org/10.1113/jphysiol.2007.142992

    Article  Google Scholar 

  14. Sahlin, K., Fernstrom, M., Svensson, M., Tonkonogi, M.: No evidence of an intracellular lactate shuttle in rat skeletal muscle. J. Physiol. 541(Pt 2), 569–574 (2002)

    Article  Google Scholar 

  15. Yoshida, Y., Holloway, G.P., Ljubicic, V., Hatta, H., Spriet, L.L., Hood, D.A., Bonen, A.: Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. J. Physiol. 582(Pt 3), 1317–1335 (2007). https://doi.org/10.1113/jphysiol.2007.135095

    Article  Google Scholar 

  16. Passarella, S., Paventi, G., Pizzuto, R.: The mitochondrial L-lactate dehydrogenase affair. Front. Neurosci. 8, 407 (2014). https://doi.org/10.3389/fnins.2014.00407

    Article  Google Scholar 

  17. Shulman, R.G., Rothman, D.L.: The “glycogen shunt” in exercising muscle: a role for glycogen in muscle energetics and fatigue. Proc. Natl. Acad. Sci. U. S. A. 98(2), 457–461 (2001)

    Article  Google Scholar 

  18. Chung, Y., Sharman, R., Carlsen, R., Unger, S.W., Larson, D., Jue, T.: Metabolic fluctuation during a muscle contraction cycle. Am. J. Phys. Cell Physiol. 274, C846–C852 (1998)

    Article  Google Scholar 

  19. Shulman, R.G.: Glycogen turnover forms lactate during exercise. Exerc. Sport Sci. Rev. 33(4), 157–162 (2005)

    Article  Google Scholar 

  20. Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 100(18), 10158–10163 (2003)

    Article  Google Scholar 

  21. Goodman, M.N., Ruderman, N.B., Aoki, T.T.: Glucose and amino acid metabolism in perfused skeletal muscle. Effect of dichloroacetate. Diabetes. 27(11), 1065–1074 (1978)

    Article  Google Scholar 

  22. Atherton, H.J., Schroeder, M.A., Dodd, M.S., Heather, L.C., Carter, E.E., Cochlin, L.E., Nagel, S., Sibson, N.R., Radda, G.K., Clarke, K., Tyler, D.J.: Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS. NMR Biomed. 24(2), 201–208 (2011). https://doi.org/10.1002/nbm.1573

    Article  Google Scholar 

  23. Juel, C.: Muscle lactate transport studied in sarcolemmal giant vesicles. Biochim. Biophys. Acta. 1065(1), 15–20 (1991)

    Article  Google Scholar 

  24. Poole, R.C., Halestrap, A.P.: Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Phys. 264(4 Pt 1), C761–C782 (1993)

    Article  Google Scholar 

  25. Boron, W.F., Boulpaep, E.: Medical physiology: a cellular and molecular approach, 1st ed. Elsevier, Philadelphia (2003)

    Google Scholar 

  26. Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D.E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., Brindle, K.M.: Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13(11), 1382–1387 (2007)

    Article  Google Scholar 

  27. McDermott, J.C., Bonen, A.: Lactate transport by skeletal muscle sarcolemmal vesicles. Mol. Cell. Biochem. 122(2), 113–121 (1993)

    Article  Google Scholar 

  28. Pilegaard, H., Juel, C., Wibrand, F.: Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am. J. Phys. 264(2 Pt 1), E156–E160 (1993)

    Google Scholar 

  29. Juel, C., Halestrap, A.P.: Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J. Physiol. 517(Pt 3), 633–642 (1999)

    Article  Google Scholar 

  30. Roth, D.A., Brooks, G.A.: Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch. Biochem. Biophys. 279(2), 386–394 (1990)

    Article  Google Scholar 

  31. Roth, D.A., Brooks, G.A.: Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Arch. Biochem. Biophys. 279(2), 377–385 (1990)

    Article  Google Scholar 

  32. Carpenter, L., Halestrap, A.P.: The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem. J. 304(Pt 3), 751–760 (1994)

    Article  Google Scholar 

  33. Bastiaansen, J.A.M., Yoshihara, H.A.L., Takado, Y., Gruetter, R., Comment, A.: Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle. Metabolomics. 10, 986–994 (2014). https://doi.org/10.1007/s11306-014-0630-5

    Article  Google Scholar 

  34. Park, J.M., Josan, S., Mayer, D., Hurd, R.E., Chung, Y., Bendahan, D., Spielman, D.M., Jue, T.: Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. J. Exp. Biol. 218(Pt 20), 3308–3318 (2015). https://doi.org/10.1242/jeb.123141

    Article  Google Scholar 

  35. Park, J.M., Josan, S., Jang, T., Merchant, M., Yen, Y.F., Hurd, R.E., Recht, L., Spielman, D.M., Mayer, D.: Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate. Magn. Reson. Med. 68(6), 1886–1893 (2012). https://doi.org/10.1002/mrm.24181

    Article  Google Scholar 

  36. Chen, J., Hackett, E.P., Kovacs, Z., Malloy, C.R., Park, J.M.: Assessment of hepatic pyruvate carboxylase activity using hyperpolarized [1-13C]-l-lactate. Magn. Reson. Med. 00, 1–8 (2020). https://doi.org/10.1002/mrm.28489

  37. Kettunen, M.I., Hu, D.E., Witney, T.H., McLaughlin, R., Gallagher, F.A., Bohndiek, S.E., Day, S.E., Brindle, K.M.: Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn. Reson. Med. 63(4), 872–880 (2010). https://doi.org/10.1002/mrm.22276

    Article  Google Scholar 

  38. Howlett, R.A., Heigenhauser, G.J., Hultman, E., Hollidge-Horvat, M.G., Spriet, L.L.: Effects of dichloroacetate infusion on human skeletal muscle metabolism at the onset of exercise. Am. J. Phys. 277(1), E18–E25 (1999)

    Google Scholar 

  39. Li, Y., Dash, R.K., Kim, J., Saidel, G.M., Cabrera, M.E.: Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. Am. J. Phys. Cell Physiol. 296(1), C25–C46 (2009). https://doi.org/10.1152/ajpcell.00094.2008

    Article  Google Scholar 

  40. White, A.T., Schenk, S.: NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am. J. Physiol. Endocrinol. Metab. 303(3), E308–E321 (2012). https://doi.org/10.1152/ajpendo.00054.2012

    Article  Google Scholar 

  41. Bangsbo, J., Gibala, M.J., Krustrup, P., Gonzalez-Alonso, J., Saltin, B.: Enhanced pyruvate dehydrogenase activity does not affect muscle O2 uptake at onset of intense exercise in humans. Am. J. Phys. 282(1), R273–R280 (2002)

    Google Scholar 

  42. Howlett, R.A., Hogan, M.C.: Dichloroacetate accelerates the fall in intracellular PO2 at onset of contractions in xenopus single muscle fibers. Am. J. Phys. 284, R481–R485 (2002)

    Google Scholar 

  43. Tschakovsy, M.E., Hughson, R.L.: Interaction of factors determining oxygen uptake at the onset of exercise. J. Appl. Physiol. 86(4), 1101–1113 (1999)

    Article  Google Scholar 

  44. Grassi, B., Gladden, L.B., Samaja, M., Stary, C.M., Hogan, M.C.: Faster adjustment of O2 delivery does not affect V(O2) on-kinetics in isolated in situ canine muscle. J. Appl. Physiol. 85(4), 1394–1403 (1998)

    Article  Google Scholar 

  45. Bangsbo, J., Gibala, M.J., Howarth, K.R., Krustrup, P.: Tricarboxylic acid cycle intermediates accumulate at the onset of intense exercise in man but are not essential for the increase in muscle oxygen uptake. Pflugers Arch. - Eur. J. Physiol. 452(6), 737–743 (2006). https://doi.org/10.1007/s00424-006-0075-4

    Article  Google Scholar 

  46. Whipp, B.J.: The slow component of O2 uptake kinetics during heavy exercise. Med. Sci. Sports Exerc. 26(11), 1319–1326 (1994)

    Article  Google Scholar 

  47. Chung, Y., Mole, P.A., Sailasuta, N., Tran, T.K., Hurd, R., Jue, T.: Control of respiration and bioenergetics during muscle contraction. Am. J. Phys. Cell Physiol. 288(3), C730–C738 (2005)

    Article  Google Scholar 

  48. Brooks, G.A.: Cell-cell and intracellular lactate shuttles. J. Physiol. 587(Pt 23), 5591–5600 (2009). https://doi.org/10.1113/jphysiol.2009.178350

    Article  Google Scholar 

  49. Bonen, A., McDermott, J.C., Tan, M.H.: Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones. Am. J. Phys. 258(4 Pt 1), E693–E700 (1990)

    Google Scholar 

  50. McDermott, J.C., Bonen, A.: Glyconeogenic and oxidative lactate utilization in skeletal muscle. Can. J. Physiol. Pharmacol. 70(1), 142–149 (1992)

    Article  Google Scholar 

  51. McLane, J.A., Holloszy, J.O.: Glycogen synthesis from lactate in the three types of skeletal muscle. J. Biol. Chem. 254(14), 6548–6553 (1979)

    Article  Google Scholar 

  52. Johnson, J.L., Bagby, G.J.: Gluconeogenic pathway in liver and muscle glycogen synthesis after exercise. J. Appl. Physiol. 64(4), 1591–1599 (1988)

    Article  Google Scholar 

  53. Grieshaber, M.K., Hardewig, I., Kreutzer, U., Portner, H.O.: Physiological and metabolic responses to hypoxia in invertebrates. Rev. Physiol. Biochem. Pharmacol. 125, 43–147 (1994)

    Google Scholar 

  54. Kreutzer, U., Jue, T.: Metabolic response in Arenicola marina to limiting oxygen as reflected in the 1H-NMR oxymyoglobin signal. Eur. J. Biochem. 243, 233–239 (1997)

    Article  Google Scholar 

Further Reading

  • Brooks, G.A.: Cell-cell and intracellular lactate shuttles. J. Physiol. 587, 5591–5600 (2009)

    Article  Google Scholar 

  • Chung, Y., Sharman, R., Carlsen, R., Unger, S.W., Larson, D., Jue, T.: Metabolic fluctuation during a muscle contraction cycle. Am. J. Phys. Cell Physiol. 274, C846–CC52 (1998)

    Article  Google Scholar 

  • Park, J.M., Josan, S., Jang, T., Merchant, M., Yen, Y.F., et al.: Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate. Magn. Reson. Med. 68, 1886–1893 (2012)

    Article  Google Scholar 

  • Shulman, R.G., Rothman, D.L.: The “glycogen shunt” in exercising muscle: a role for glycogen in muscle energetics and fatigue. Proc. Natl. Acad. Sci. U. S. A. 98, 457–461 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from NIH (P41 EB015891 and R01 NS107409-01A1), the Welch Foundation (I-2009-20190330), and France Berkeley Fund, California Department of Public Health 18-10923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jue .

Editor information

Editors and Affiliations

Problems

Problems

  1. 1.

    How does the glycogen shunt hypothesis explain the formation of lactate during exercise, when the cell has not crossed any hypoxia threshold?

  2. 2.

    Do you expect any changes of metabolic products in skeletal muscle after exercise when hyperpolarized either [1-13C]lactate or [2-13C]pyruvate is injected?

  3. 3.

    From hyperpolarized [2-13C]pyruvate, no TCA intermediates are observed in the spectra although glutamate was detected. Can you explain why? On the other hand, a large acetyl-carnitine peak was shown. What does it imply?

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, J.M., Jue, T. (2021). Insights on Lactate Metabolism in Skeletal Muscle Based on 13C Dynamic Nuclear Polarization Studies. In: Jue, T., Mayer, D. (eds) Dynamic Hyperpolarized Nuclear Magnetic Resonance. Handbook of Modern Biophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-55043-1_10

Download citation

Publish with us

Policies and ethics