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Abstract. Additive Manufacturing (AM) is one of the manufacturing
processes with the highest potentials in the current transformation of the
industry. To make use of this potential and to achieve consistent product
quality at decreasing costs not only the 3D printers themselves but also
the whole process chain has to be automated. Due to the high degree of
digitalization and the use of 3D Computer Aided Design (CAD) models
within the entire process chain, it is possible to use these information
for automation via intelligent data analysis. In this paper, the poten-
tial of using 3D Machine Learning (ML) approaches for automation and
optimization of sub-processes of the process chain is analyzed. There-
fore, we consider the information flow of the 3D models in the process
chain of an AM service provider. The potential of using state-of-the-art
algorithms from the field of 3D ML for automation of sub-processes like
manufacturability analysis, production cost calculation or 3D-component
recognition is analyzed and feasibility is examined. For the sub-processes
of manufacturability analysis and 3D-component recognition prototype
solutions have been implemented and evaluated. For the production cost
calculation, only preliminary analyses were carried out, on the basis of
which the possible applications of 3D ML algorithms can be estimated.
With our analyses, we demonstrate that it is possible to further auto-
mate the process chain of AM service providers through the use of 3D
ML algorithms.
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1 Introduction

Additive Manufacturing (AM) offers enormous potentials for the use of opti-
mized components in many highly technical industries. However, since it is still
a relatively young process on an industrial scale, many steps of the process
chain that go beyond actual production are characterized by manual work. Since
the beginning of the fourth technological revolution, industrial processes have
been iteratively optimized. The use of interconnected sensors and cyber-physical-
systems leads to intelligent self-adaptive production chains. This enables a more
efficient production and a reduction of costs while achieving higher quality [1,2].
Currently, conventional manufacturing processes cover the majority of industrial
production. Only 0.04% of global goods production is additively manufactured
[3]. According to the same study, however, 5% is quite within the realm of what
is possible in the future, if the AM industry takes advantage of its development
opportunities. In order to keep pace with common manufacturing processes such
as casting, forging or milling and to enable series production, production costs
must be further reduced, consistent quality ensured and the advantage of short
time to market further expanded. To achieve this, the potential of process chain
automation must be further exploited.

For the analysis of the process chain we worked together with an AM service
provider. As the service provider works with 3D printers from the Powder Bed
Fusion (PBF) field [4], we also focus on the process chain of this production
method. PBF processes for processing polymers and metals are widely used in
the AM industry. The actual AM process of the PBF 3D printers themselves is
already completely automated.

Fig. 1. Structure of PBF 3D printers [5].
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Nevertheless, large parts of the upstream and downstream processes are char-
acterized by manual work steps. In the context of our work, we focus on the
process steps which are directly linked to the information flow of the 3D mod-
els and identify the potentials of using 3D Machine Learning (ML) algorithms
for process automation. 3D ML is one of the evolving fields of ML and offers
enormous potentials for the analysis of 3D-data.

Our main contribution is the proof of concept that parts of the AM process
chain can be automated by using 3D ML techniques. For the steps manufactura-
bility analysis and 3D-component recognition, we already implemented evalua-
tion systems and proved the feasibility of these systems. For the process step of
production cost calculation, only preliminary analyses were carried out which
underline the potentials for this sub-process.

In Sect. 2, we describe the major parts of the process chain and analyze
which sub-processes are suitable for further automation. Afterwards we give an
overview of state-of-the-art 3D ML algorithms which can be used for our pur-
poses. In the following Sect. 4, the results of our evaluation studies are presented,
followed by a conclusion and the future perspectives.

2 AM process Chain Analysis

In this chapter, we take a deeper look on the AM process chain with its upstream
and downstream processes. For getting a detailed insight of all processes, we
worked together with an industrial AM service provider and focused on the
PBF process chain. All analyses in this paper refer to these processes. We first
describe the basic sub-steps of the process chain in Sect. 2.1 and subsequently
analyze the automation potentials of the different steps in Sect. 2.2.

The basic structure of PBF 3D printers can be seen in Fig. 1. The main
characteristic of PBF is the layer-wise application of powder and subsequent
selective melting of the powder using a laser with up to 200 W for polymers and
around 400 W for metals [6]. This specific approach leads to the necessity of
various additional steps, such as the manufacturability analysis, production cost
calculation or 3D-component recognition.

Since we deal with the analysis of the information flow in the process chain,
we only cover sub-processes that are directly related to the digital 3D models.
Of course, the process chain includes further steps besides those shown in Fig. 2.
However, these have been deliberately removed in our graphic, as they have
no direct relation to the digital information flow. Subsequently, we work out
sub-processes with automation potentials in Sect. 2.2.

2.1 The Process Chain of an AM Service Provider

The process chain of an AM service provider includes many up- and downstream
processes besides the actual production. We deal with all steps that take place in
the environment of the service provider and therefore start with the data upload.
The construction of the Computer Aided Design (CAD) models is on the side
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Fig. 2. Process steps in the AM process chain which are directly linked to 3D models.

of the customer and is therefore not included. An overview of the process steps
related to the 3D models is given in Fig. 2.

Data Upload. As mentioned before, the process chain begins with an upload
of 3D models by a customer. The data can be uploaded in nearly all common 3D
data types. Regardless of the uploaded data type, the 3D models are automati-
cally converted to the Standard Tessellation Language (STL) [7] file format. The
STL file format is the standard data format used for AM. All following steps are
based on the STL models.

Model Repair. The three subsequent steps 3D model repair, manufacturability
analysis and production cost calculation are already performed automatically on
a server. It is necessary to perform these steps automatically in near real time
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so that potential customers can receive a quote for their uploaded 3D models
without delay. 3D model repair involves the checking and correction of errors
that may occur during the CAD construction or the conversion to STL. For that
task, software with ready-to-use functions can be used to repair STL models
completely automatically [8].

Manufacturability Analysis. The manufacturability analysis is necessary to
verify if an STL model with a given geometry can be manufactured with a
specific manufacturing technology. The manufacturability of an object is defined
by geometric features like overhangs, bores or channels and process parameters
like layer thickness or build orientation [9].

Only parts of these features can currently be checked automatically with soft-
ware tools. Problematic here is above all that the existing definitions of manu-
facturability can only be applied to existing models to a limited extent. Possible
guidelines for the manufacturability of 3D models were considered by various
researchers in the last years [10,11]. Most of these design guidelines are based
on standard geometries like cylinders or cuboids. To use these guidelines, 3D
models must be approximated by combinations of the standard geometries. The
guidelines can then be applied to the approximated 3D models. A major problem
is that complex 3D models can often only be approximated very imprecisely by
standard geometries. Therefore, only the guideline of minimum wall thickness is
currently automatically tested by a software tool since this feature is not based
on standard geometries. At the AM service provider, a more detailed check of
the 3D models is therefore performed manually by AM experts in the following
step.

Production Cost Calculation. The production cost calculation is the last
step which has to be performed automatically after the upload to enable real-
time pricing. Based on the 3D models geometry and operational parameters, the
production cost of 3D models has to be calculated. The costs of a component
are influenced by all processes in the process chain. From the preliminary anal-
yses to the manual build job preparation, the actual 3D printing process and
the various post-processing steps right through to shipping. Due to the great
variety of individual geometries, however, it is hard to exactly predict the costs
for some of these steps, e.g. the time necessary for the post-processing steps
like sandblasting or support removal. Owing to the complexity, the relationship
between the geometry of the 3D model and the amount of work required for
the post-processing steps cannot easily be described mathematically. Therefore,
the costs of these procedures can only be approximated with current software
solutions.

Build Job Preparation. The build job preparation is split into manual work
steps carried out by AM engineers work steps executed by software tools. Single
CAD models must be combined to build jobs. Depending on the requirements of
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the final product, e.g. different build orientations of a 3D model in the construc-
tion space are necessary. Automated functions are in principle available for calcu-
lation of a good orientation and position of the 3D models in the build chamber
[8,12]. Nevertheless, especially the orientation has a strong influence on compo-
nent properties such as surface quality or mechanical characteristics. Therefore,
objects produced in automatically calculated orientations do not always meet the
specifications a customer expects. On the basis of interviews with the experts of
the AM service provider, it has become clear that especially the orientation of
the 3D models is currently still chosen manually by AM engineers in order to
guarantee the optimal quality of the components to be produced.

Additive Manufacturing. After the build job preparation, the physical pro-
cess steps begin. As mentioned in Sect. 1, the AM process itself is already com-
pletely automated. Depending on process and material, production is followed by
various technical finishing steps such as powder removal or sandblasting. These
processes run apart from the digital information flow. The physical production
and the virtual information flow converge again in the 3D-component recognition
step.

3D-Component Recognition. In PBF processes, different components are
manufactured together in one batch. Especially with the PBF 3D printers for
polymer processing, up to 100 different components are often produced in one
build job. After production, they must be assigned to the appropriate digital 3D
model again, in order to be able to continue with the subsequent post-processing
steps. This is still a manual process which is time consuming and expensive.

Post Processing. After the individual components have been separated again,
all digital information is available in order to be able to carry out post-processing
steps such as surface treatment and to subsequently check whether all customer
criteria have been met in the quality control process step. If this is the case,
the process chain can be completed with the dispatch of the components to the
respective customer.

2.2 Automation Potentials in the AM Process Chain

In this section, we analyze the optimization potential of the process steps
described in Sect. 2.1 to decide which process steps are suitable for automation
using 3D ML algorithms. The process steps manufacturability analysis, build
job preparation, 3D-component recognition and post-processing are potentially
of interest for optimization because they are characterized by manual work. Fur-
thermore, the step production cost calculation can be considered. Although this
step is automated, it still offers further potential for optimization to improve the
current approximation of the calculation of real production costs. In our work,
we do not consider build job preparation any further because we believe that the
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expertise required in this step is difficult to replace with intelligent algorithms.
Additionally, the step post-processing will neither be considered in the context
of this paper, since intelligent data analysis is not relevant for that process.

Manufacturability Analysis. In Sect. 2.1, we explained that current manu-
facturability criteria are represented by design guidelines which are based on
standard geometries. With increasing complexity of components, the guidelines
are no longer sufficient to represent the real limitations of processability. Since it
is difficult to describe the restrictions by concrete mathematical representations,
we believe it is more goal-oriented to investigate the possibility of generating
conclusions about the manufacturability directly from existing production data.
Intelligent systems are capable of independently learning the features that are
decisive for manufacturability. Therefore, we see the potential of automation
with 3D ML algorithms for this process step.

According to AM experts of the AM service provider, errors occurring in
the production can be triggered by many different causes. Partly it is filigree
details in the 3D models, partly larger connected features that lead to faulty
production. Therefore, a solution for this application has to be able to capture
and process both fine details and global correlations within the 3D models.

Production Cost Calculation. As described in Sect. 2.1, it is difficult to
define the mathematical relationships between the geometry of a 3D model and
the actual costs for 3D printing itself and the pre- and post-processing steps.
The cost of a component depends on many different factors, such as the objects
volume and geometric complexity or the orientation in the build chamber. These
factors in turn influence direct cost factors such as construction time, material
consumption or the amount of work required for the various finishing steps such
as sand blasting and surface preparation or in metal processing the removal of
support structures. Our research and discussions with the AM service provider
have shown that in particular sand blasting, surface preparation and support
removal in metal processing are a major cost factor as they are mostly per-
formed manually. Due to the great geometric individuality of the 3D models, it
is difficult to calculate the exact amount of work required for the manual post-
processing steps. The amount of work and thus the costs are strongly dependent
on the geometric complexity. Complex geometries can contain many different
features like free-form surfaces, small openings or complex internal structures. It
is practically impossible to create a mathematical formula with hand-generated
features to calculate the correlation between these features and the costs for
post-processing.

At this point we see clear opportunities for optimization. Data-driven sys-
tems are able to learn to extract the relevant features. The big advantage of
Deep Learning (DL) models is that they are able to generate so called Deep
Features from raw inputs on their own. This enables them to learn the complex
mathematical relationships that exist here on the basis of their own automati-
cally generated features. By collecting data such as the manual processing time
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for post-processing of produced objects during real production, a 3D ML system
can then learn the relationship between the geometry and the processing time
and thus the processing costs.

By determining the costs for individual post-processing steps more precisely,
the total costs for an object can be significantly improved compared to the
estimation currently in use.

3D-Component Recognition. For manually assigning physical components
to digital 3D models, an employee visually compares the properties of the objects
with the 3D models. Due to the increasing number of produced objects, manual
sorting is today already connected with an extremely high effort. Therefore, we
see a high potential for cost savings through an automated solution. Since in
AM completely new components have to be detected in real time every day,
conventional computer vision approaches reach their limits. In contrast, 3D ML
applications can adapt to the daily changing components. During our work on
this topic a first commercial approach recently emerged for this task (AM Flow
[13]). According to their data, they achieve a detection rate of 95%. To the
best of our knowledge, their system has never been evaluated on a standardized,
publicly available data set. In our opinion it is necessary to achieve a detection
rate of almost 100% for complete automation. Therefore, a further optimization
with 3D ML is possible for the step of component recognition.

3 3D Machine Learning

For the process steps of manufacturability analysis, production cost calcula-
tion and 3D-component recognition explained in Sect. 2.2, we have examined
the possibility of using 3D ML approaches to automate that steps. To find the
most suitable solution for our task, we compared several state-of-the-art 3D ML
approaches.

Existing 3D ML algorithms for popular tasks like 3D object recognition,
segmentation or tracking are using either directly 3D data or 2D projections
like images. Both variants contain different positive and negative aspects. By
sensors like 3D scanners, 3D data in the form of point clouds, meshes or Red,
Green, Blue, Depth (RGB-D) data can be generated. 3D representations offer
the advantage of displaying the scanned data in great detail but have the dis-
advantage of being very memory intensive and therefore place high demands on
the processing hard- and software. On the other hand, 2D projections in the
form of images offer the advantage of being less memory intensive but have the
disadvantage of information loss.

In order to find the best solution, we figured out the positive and negative
aspects of the different approaches and decided which approach is most useful
for our purposes.
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3.1 Image-Based

Image-based approaches like RotationNet [14] or Group-view Convolutional Neu-
ral Network (GVCNN) [15] have the advantage of less memory consumption,
faster training times and lower hardware requirements compared to approaches
using 3D data. For frequently used benchmark tasks such as the classification of
the Princeton ModelNet40 dataset [16], they achieve classification rates of up to
97% which is state of the art and exceeds 3D-data-based approaches.

Fig. 3. Data representation of RotationNet [14]

In most state-of-the-art image-based approaches the basic drawback of losing
information about the 3D objects by using 2D projections is counteracted by
using multi-view representations of the 3D models. For each 3D object of the
data set, multiple images are generated by using different view points around
the 3D model (see Fig. 3). These groups of images are then used as collective
input data for the model, giving more information to the model what leads
to the state-of-the-art results in classification of ModelNet40 [14,15]. However,
differentiating 3D models from ModelNet40 differs from our issue because filigree
details are relatively irrelevant. Therefore, it must be proven that the image-
based approaches are also capable of differentiating very similar objects.

3.2 3D-Data-Based

Approaches based on 3D data can be assigned to the two sub-classes point-cloud-
based and voxel-based. Voxels are the three-dimensional equivalent of pixels in
two-dimensional space.

Point-Cloud-Based. Point-cloud-based approaches likePointNet++,Relation-
shape Convolutional Neural Network (CNN) [17,18] or Linked Dynamic Graph
CNN [19] directly work on 3D point clouds which can be generated by different
types of sensors (Fig. 4).
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Fig. 4. Data representation of relation-shape CNN [18]

Since point clouds are unstructured data sets with possibly varying point
densities in different parts of the cloud, convolutional filters which are often used
for image processing can not be used. For being capable of handling the varying
resolutions, point-cloud-based approaches learn features in multiple hierarchical
scales. However, the possibility to capture filigree and global features at the same
time can only be realized in theory because it is limited by the size of Graphics
Processing Units (GPUs). In practice, a maximum of 5000 points is usually used
which is not sufficient to display all details of complex objects. For the analysis
of fine details of 3D models, point-cloud-based approaches reach their limits.

Voxel-Based. Similar to point clouds, so called voxels capture three dimen-
sional information. The difference to point clouds is that the data is stored
structured in a three-dimensional grid. Therefore, common mathematical oper-
ators like convolution used in Convolutional Neural Networks (CNNs) can be
applied on the 3D data. This enables the same behaviour of voxel-based systems
in the three-dimensional as the conventional CNNs in the two-dimensional space.
The main drawback similar to point-cloud-based approaches is the high usage of
computational memory with growing resolution of the voxel grid. Developers of
the approaches VoxNet, OctNet [20,21] or Spatial-hashing-based Convolutional
Neural Network (HCNN) [22] have thus tried to optimize the data structure
to enable a high resolution. Wang et al. [22] represent the state of the art and
reach a resolution of 5123 voxel using high end GPUs. Therefore, voxel-based
approaches are best suited to capture filigree details in 3D models (Fig. 5).

3.3 Approach Selection

Based on the requirements of the process steps manufacturability analysis, pro-
duction cost calculation and 3D-component recognition and the characteristics
of the different types of approaches, the following potentials for process automa-
tion arise. Since both local and global features must be considered in the sub-
processes of manufacturability analysis and production cost calculation, the use
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Fig. 5. Data representation of HCNN [22]

of a voxel-based approach is reasonable for these sub-processes. The longer train-
ing time is negligible, since no recurring training process is necessary. For 3D-
component recognition all described types of algorithms offer positive arguments
which argue for a use. Therefore, we evaluate all described algorithms for that
task.

4 Evaluation

In order to prove that the described algorithms are suitable for solving the tasks
of manufacturability analysis, production cost calculation and 3D-component
recognition, an evaluation must be carried out. To the best of our knowledge
there are currently no benchmark data sets available for the problems we are
investigating. Therefore, we generated our own data sets based on the Thingi10K
data set [23] which contains 10000 3D models from the AM domain and trained
the algorithms with subsets of that data. The subsets were adapted to the respec-
tive problem definition and are oriented towards real production data.

4.1 Manufacturability Analysis

To verify the basic usability of the HCNN approach for manufacturability anal-
ysis, we had to generate a labeled data set. Since manual labeling of thousands
of 3D models is extremely time-consuming, we decided to use the wall thickness
tool which is currently used at the AM service provider. With the help of the
tool and the Thingi10K data set, a labeled data set with about 5000 3D models
has been created where the 3D models are divided into the categories “manufac-
turable” and “non-manufacturable” with respect to the feature “minimum wall
thickness”. Labeling this data set, enables us to verify the ability to recognize
filigree details in 3D models. Some example 3D models can be seen in Fig. 6.

This data set has been used to train the HCNN model which is presented in
Sect. 3.2 with a resolution of 5123 voxels. The HCNN model is able to achieve
an accuracy of 94% correctly classified 3D models in first studies. By applying
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Fig. 6. Example 3D models with colorization of thin areas. Red areas are beneath a
threshold value of 0.5 mm.

parameter tuning, this value can be increased even further. The studies have
shown that a voxel-based model has the ability to learn high-resolution features
from 3D models. Especially, it has shown that it is possible to recognize the wall
thickness feature despite strong variance in the exact expression of the feature.

Therefore, the next step of our work will be to back up the generated results
with further data sets. We want to use the data generated during the produc-
tion of the AM service provider to generate additional data sets. With that
information we can create labeled data sets regarding other geometric features
like overhangs, bore holes or channels described by Bikas et al. [9].

4.2 3D-Component Recognition

For 3D-component recognition six different evaluation data sets have been gen-
erated based on the Thingi10K data set in order to evaluate the performance
of the described algorithms for the recognition of physical components. These
data sets contain between 10 and 100 different 3D models and were composed
in a way that they represent typical build jobs of the currently common indus-
trial PBF 3D printers for polymer processing. Three data sets contain random
compositions of 3D models from the AM domain, the other three explicitly very
similar 3D models (Fig. 7). The data sets are available for public download in
order to offer other researchers the possibility of comparison1.

To prove that the approaches we are using are applicable for a real applica-
tion, we need to adapt it to a possible recognition station setup. After printing,
the objects will be separated on a conveyor belt and passed into a scanning area
consisting of multiple 2D- or 3D-sensors installed in elevated view-points like

1 https://gpstd.s3.eu-central-1.amazonaws.com/Raw datasets.zip.

https://gpstd.s3.eu-central-1.amazonaws.com/Raw_datasets.zip
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shown inf Fig. 3. The biggest unknown in this system is the orientation in which
a component is sensed by the sensors. Therefore, the creation of training data
for the 3D ML algorithms is a deciding factor.

Depending on the algorithm, virtual images, point clouds or voxel represen-
tations have been generated from the 3D models, which have then been used
as training data for the systems. For the creation of these input representations
we implemented an algorithm which generates physically sound training data.
This means that only virtual sensor views are used, which can also occur in the
described setup with real sensors. Our evaluation has shown that this method for
training data generation has a major influence compared to randomly generated
training data.

Fig. 7. Example of 3D models with high similarity.

The data sets have been used to train the approaches [14,15,17–19,22] pre-
sented in Sect. 3.1. For the data sets with up to 30 different randomly chosen 3D
models all approaches reached an accuracy of more than 99%. For higher num-
bers of different 3D models the accuracy of the image-based approaches decreases
to values around 93%. The accuracy of the point-cloud-based approaches can still
reach 96% and the voxel-based approach is close to 99%. This confirms the expec-
tations that image-based approaches in particular reach their limits, especially
when there are strong similarities between individual objects.

The evaluation experiments have shown that Deep Neural Network (DNN)-
based approaches are able to recognize physical objects after production with
high accuracy. Especially the generation of physically sound training data brings
us one step closer to the goal of a 100% recognition rate and thus to the possibility
of complete automation. In the next step, we will evaluate the approaches in the
production process of the service provider to move from artificially generated
data sets to real production data.
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5 Conclusion

In the context of our work we have shown that the process chain of AM offers
various aspects that can be optimized with the use of 3D ML algorithms. The
studies have shown that state-of-the-art 3D ML algorithms are capable of analyz-
ing 3D models in high detail with regard to various issues. For the sub-processes
of manufacturability analysis and 3D-component recognition we implemented
prototypes which have shown that these two tasks can be optimized using the
proposed 3D ML algorithms. For the production cost calculation we have car-
ried out preliminary studies. These have shown that using 3D ML algorithms
for a more precise calculation of the production costs is promising. In our future
work we are going to verify this assumption by using the algorithms with real
production data.

Our results show that there are different potentials for further automating
the process chain of AM. In our research we will continue to build on the studies
described in this paper and apply the applications in real production.
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