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Abstract. Additive manufacturing is evolving as a prominent aspect of
the fourth industrial revolution and offers unprecedented design freedom
for creating solid objects from 3D digital models. Effective contribution
of metal additive manufacturing (MAM) to realization of Industry 4.0
requires improved mechanical integrity of the AM parts at a lower cost.
This study aims to exploit the potential of multiscale modelling and arti-
ficial intelligence (machine learning and metamodelling) to realise reliable
component-scale multi-physical field simulations for MAM. The thorough
quantitative understanding of the various physical phenomena involved in
MAM processes would enable a systematic optimisation of process condi-
tions for achieving ‘first-time-right’ high-quality production.

Keywords: Metal additive manufacturing · Multi-physics simulation ·
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1 Introduction

Commerical additive manufacturing (AM) first emerged with the stereolithogra-
phy (SL) process from 3D Systems in 1987 [1]. Arguably, the first reported metal
AM parts were made from copper, tin and Pb–Sn solder powders through a selec-
tive laser sintering (SLS) process in 1990 [2]. German company EOS (Electro-
Optical Systems), Sandia National Laboratories, Swedish company Arcam-AB
and Fraunhofer institute in germany later developed metal additive manufactur-
ing (MAM) techniques such as direct metal laser sintering (DMLS), laser engi-
neered net shaping (LENS), electron beam melting (EBM) and selective laser
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melting (SLM) [1,3]. MAM is currently a rapidly growing industry with revenue
estimates projected to surpass $7’150M by 2026 in comparison to $1’030M in
2016 [4].

In the early phase of its 30-year history, AM had been primarily employed
for the fabrication of conceptual and functional prototypes then known as Rapid
Prototyping (RP) [5]. Recent innovations in processes and materials, and extend-
ing the applicability of the technology to metals, have transformed it to a manu-
facturing technology for the production of end-use parts [5–7]. Important factors
hindering even faster growth and widespread industrial application of MAM are
the high cost and uncertain mechanical performance of the AM builds [8]. Due to
such problems, the business cases for the employment of this technology in many
industries are rather marginal, particularly for the fabrication of components
operating under severe loading conditions. Resolving the described challenges
would thus lead to further progress of digital manufacturing and accelerate the
realisation of the foreseen 4th industrial revolution. Due to the lack of a better
alternative, trial-and-error strategies, that are costly in terms of both time and
money, are often adopted to optimise the MAM process conditions [8–10]. More-
over, the quality of products so designed does not ultimately meet the expected
requirement(s) in most safety-sensitive load-bearing applications. This ongoing
research aims to contribute to this endeavour using advanced multi-physical field
simulations.

2 Multi-physical Field Simulation for MAM

A thorough quantitative understanding of the MAM process requires insight
from different modelling areas, such as thermal, mechanical, metallurgical, fluid,
and thermodynamics simulations (Table 1). The extremely high computational
cost of such multi-field simulations has been addressed in previous research by
either decreasing the simulation domain size and/or by assuming gross simplifi-
cations. Instead, this study proposes to exploit the power of multiscale modelling
and artificial intelligence (machine learning and metamodelling) to realise reli-
able component-scale simulations for MAM. The underlying idea originates from
the incremental build characteristic of MAM and how the involved phenomena
are repetitive and deterministic in nature. The variation in the characteristics of
the deposited material increments does not originate from a significant change

Table 1. Relevant simulation fields for metal additive manufacturing

Simulation type Predictions Simulation techniques

Thermal simulation Thermal profiles, hot spots Continuum finite element

Thermomechanical simulation Residual stress, distortion Continuum finite element

Thermal-fluid simulation Defect, surface roughness Computational fluid dynamics

Microstructural simulation Grain structure, texture Cellular automata, phase field

Mechanical prediction Deformation, failure Crystal plasticity finite element
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in the involved physics but only from a (modest) change in the imposed bound-
ary conditions. Therefore, component-scale simulations of MAM process can
be considered as solving a large number of nominally similar small-scale mod-
els, each with slightly different boundary conditions. The computational cost of
such repetitive simulations can be significantly reduced by employing a dedicated
machine learning toolbox. Systematic design of experiments would first involve
a limited number of small-scale simulations to identify the sensitivity of the out-
put parameters to the boundary conditions. Results from these simulations can
then be exploited to train and cross-validate a computationally cheap surrogate
(meta)model without compromising the process efficacy. This leads to a sig-
nificant cost reduction for component-scale multi-physical field simulations and
allows their direct implementation in construction of numerical optimisations for
the fabrication of AM components with desired properties and performance.

It should be noted that this study uses metamodels as a very efficient machine
learning regression tool. Devised from the field of uncertainty quantification
(UQ), surrogate (meta) models are replacements of expensive computational
models which can be used in analyses that require a large number of model
evaluations, such as uncertainty propagation and design optimization, in a rea-
sonable time [11]. In contrast to the typical machine learning applications which
deal with a large amount of (noisy) data, a metamodel approximates a com-
putational model by analysing the outcomes of a small number of simulation
runs.

This ongoing research intends to develop a flexible simulation platform which,
for a given set of MAM process conditions, trains and validates a metamodel on
the basis of few small-scale high-fidelity simulations that incorporate thermal,
solid mechanics, microstructural, thermodynamics, and fluid dynamics compu-
tations (Fig. 1). For a given geometry and process parameter set, the plat-
form will use a specific metamodel for predicting a range of relevant param-
eters/characteristics within the MAM part – such as temperature and resid-
ual stress profiles, part distortion, spatial distribution of defects and porosity,
and microstructural parameters. The prediction results will be subsequently
exploited by a crystal plasticity finite element framework for assessing the
mechanical integrity of MAM components. Notably, various high-end experimen-
tal facilities will be employed for designing dedicated experiments to 1) under-
stand the involved physical phenomena, 2) derive relevant numerical models
based on observations, and 3) ultimately evaluate the reliability and effective-
ness of the proposed simulation strategy.

Employing a metamodel as an alternative for the conventional simulation
techniques is associated with some levels of uncertainty for the obtained predic-
tions. This uncertainty mainly depends on the robustness and representativeness
of the training data set. Primarily, the uncertainty of metamodel predictions are
quantifiable, and thus an uncertainty index would be included in the applica-
tion of the metamodel for simulation of a component. For conditions where the
involved uncertainty is unacceptable (i.e. high levels of uncertainty at critical
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Fig. 1. Metamodelling for component-scale multi-physical field simulations of MAM
(CA: cellular automata, PF: phase field, CFD: computational fluid dynamics)

locations of the assessed component), additional small-scale simulations for rep-
resenting the situation at those locations, can be designed and added to the
training pool to reduce the uncertainty level.

This paper presents the preliminary results for application of the described
methodology for thermal simulation of selective laser melting (SLM) process.

3 Continuum Thermal Modelling

Temperature profile evolutions are perhaps the most critical information required
for any type of MAM simulations. The temperature profile experienced by
the molten material during MAM is very different from other manufacturing
techniques, and to a great extent controls the state of defects, residual stress,
microstructure, and properties of the product. Finite element (FE) analysis
solves the below equation for calculation of the time-dependent temperature
fields over the discretised domain:

ρcpṪ − ∇.(k∇T ) = qvol (1)

where ρ, cp, and k are respectively density, specific heat, and thermal conduc-
tivity of the material; and qvol is the volumetric heat generation, e.g. due to
the laser beam exposure. Contrary to the conventional continuum thermal anal-
yses, for simulation of SLM, 1) employment of element activation or the quiet
element strategy is required to simulate incremental material addition to the
model, and 2) each material point can take one of the states of powder, solid
or liquid. Implementation of these SLM specific considerations into commercial
FE packages are often executed through user-defined subroutines. Ref [12] com-
prehensively describes the details for continuum thermal simulation of SLM in
ABAQUS FE package. In Fig. 2 an overview of the model setup for 2D thermal
simulations is shown.
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Fig. 2. Finite element model setup for 2D continuum thermal modelling of the SLM
process [12].

High-fidelity thermal analysis of the SLM process requires a high level of dis-
cretisation in time and space (e.g. element size of 10–20µm and time-increments
of a few μs) which hinders the full-scale analysis of a real-size component due
to extremely high computational costs. However, this level of discretization is
only required near the melt-pool where temperature gradients are steep and the
thermal evolution rates are high. Therefore, the proposed approach breaks down
the problem into two scales of local and global, where the global calculations
employ a coarse mesh and larger time increments to determine the temperature
profiles in regions far away from the melt-pool, while fine-mesh local simulations
adaptively follow the beam location and estimate the thermal profiles at the
vicinity of the melt-pool. This particular type of modelling technique combines
the results of the local simulations and the global solution, thus providing reliable
temperature predictions at a significantly reduced computational cost. Figure 3
shows the various steps that are taken in this multiscale modelling approach.

For concept verification, a computationally expensive finite element model
that solves the whole simulation region using small time increments and a fine
mesh is defined as the ‘reference’ solution. From comparing the multiscale results
with the reference model, an assessment of maintained accuracy and the reduc-
tion in computational costs can be made. For instance, in the case of 2D simu-
lation of a 2× 2 mm2 SLM deposition, the nodal temperatures in the multiscale
approach remain nearly identical to those from the reference solution as observed
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Fig. 3. Overview of the proposed strategy for continuum thermal modelling of MAM
process

in Fig. 4a. Meanwhile, the computational costs from adopting the multiscale
approach are reduced by roughly an order of magnitude as shown in Fig. 4b.
Extension of the adaptive multiscale idea to strongly reduce the computational
costs of larger simulation domains is ongoing.

Although such a strategy significantly decreases the computational costs, it
will still neither be affordable for the current industry nor for consideration in
numerical process optimisation exercises. The effectiveness of employing machine
learning-based approaches for further moderating the cost of MAM numerical
analyses have been discussed in the following.

Employment of the described multiscale approach for thermal analysis of
an SLM part involves thousands of local simulations. Due to the repetitive
and deterministic nature of the heat transfer problem, it is possible to replace
the numerous computationally expensive local finite element simulations with a
much cheaper surrogate (meta)model.

A number of local thermal analyses were performed to generate the temper-
ature profiles in the vicinity of the melt-pool for a number of different build con-
ditions. The generated data were then exploited to develop a cheap metamodel-
based on sparse polynomial chaos expansion (PCE) [13] combined with principal
component analysis (PCA) [14] for dimensional reduction. The effectiveness of
surrogate modelling based on the PCE method has been demonstrated in a
number of studies e.g. [15–17]. PCE surrogate modelling is typically used to
replace computationally expensive models with uncertain input parameters and
to efficiently compute statistics of the uncertain model outputs. The polynomial
chaos expansion theory is established on the basis of polynomials orthogonal
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Fig. 4. (a) Comparison of temperature evolution for identical coordinates between
the multiscale and reference simulation. (b) Comparison of calculation time for 2D
simulation of the SLM process of various squares. The labels show the size of the
model in mm2. The horizontal axis is based on the number of nodes in the reference
simulation [12].

with respect to the distribution of the probabilistic model input. The mapping
between input and output data that should be substituted by the metamodel
is seen as a stochastic model on these data spaces and it is then expanded in
terms of the orthogonal polynomial basis functions. Depending on the accuracy
needed, the infinite-dimensional expansion is truncated after a certain number
of elements. During the training phase, the coefficients of the PCE for the given
polynomial basis will be determined using a set of training data points with
corresponding model responses. Because of the high dimensionality of the data
spaces (temperature data on two dimensional grid), principal component analy-
sis is used to reduce the dimensions of both the input and the result space. The
PCE metamodel is then used to model the dependence of the reduced result
data on the reduced input data.

The metamodel is built to replace the local small-scale finite element simu-
lations of the multiscale approach presented before. Thus, the results obtained
through application of the metamodel can directly be integrated in the existing
workflow of thermal modelling of the MAM process.

The validation of the metamodel involves evaluation of its ability to predict
the temperature evolution for input settings which were not revealed during
the training phase. As an example, the SLM process of a 1× 1 mm2 block is
considered. The multiscale simulation of this setup consists of 165 local models
out of which, only ten are used to train the surrogate model. Afterwards, the
temperature evolution for the remaining local models is predicted using the
surrogate model and a value for the prediction error (with the multiscale finite
element simulation as the reference) can be computed. In Fig. 5, comparison
of the nodal temperature between the surrogate model and multiscale finite
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Fig. 5. Comparison of temperature predictions from surrogate modelling and local
FE thermal analysis, a) peak temperature temperature distributions b) temperature
evolutions.

element simulation at a point in the center of the deposition domain is shown.
Only minor differences between the two temperature evolution curves are visible.
In this exemplary setting, the surrogate model results show good agreement with
the finite element simulation results while being produced at a much lower cost.

4 Concluding Remarks

This study aims to use the potential of multiscale finite element simulations in
conjunction with machine learning algorithms to create a framework for reliable
component-scale simulations of MAM. First, since the highly involved multi-
physics phenomena is present only in the vicinity of the melt pool, numerical
simulations can be separated into different scales to reduce computational costs
and maintain the small degree of discretization required for capturing the phys-
ical developments during the SLM process. Second, the deterministic nature of
the phenomena involved in MAM allows the repetitive small-scale local finite ele-
ment simulations to be replaced by a surrogate model after generating enough
data through FE simulation, for training the algorithm.

The proposed strategy has been employed for thermal simulation of SLM
process which demonstrated its efficiency for reliable prediction of temperature
profiles at significantly reduced computational costs. Extension of the proposed
modelling strategy for radically improving the efficiency of other types of MAM
simulations are under investigation.
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11. Schöbi, R.: Surrogate models for uncertainty quantification in the context of impre-
cise probability modelling. IBK Bericht 505 (2019)

12. Scheel, P., Mazza, E., Hosseini, E.: Adaptive local-global multiscale approach for
thermal simulation of the selective laser melting process (Under Review)

13. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on
least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

14. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)
15. Collaboration, E., Knabenhans, M., Stadel, J., Marelli, S., Potter, D., Teyssier,

R., Legrand, L., Schneider, A., Sudret, B., Blot, L., et al.: Euclid preparation: II.
The euclidemulator–a tool to compute the cosmology dependence of the nonlinear
matter power spectrum. Mon. Not. R. Astron. Soc. 484(4), 5509–5529 (2019)

16. Torre, E., Marelli, S., Embrechts, P., Sudret, B.: Data-driven polynomial chaos
expansion for machine learning regression. J. Comput. Phys. 388, 601–623 (2019)

17. Nagel, J.B., Rieckermann, J., Sudret, B.: Principal component analysis and sparse
polynomial chaos expansions for global sensitivity analysis and model calibration:
application to urban drainage simulation. Reliab. Eng. Syst. Saf. 195, 106737
(2020)


	Deploying Artificial Intelligence for Component-Scale Multi-physical Field Simulation of Metal Additive Manufacturing
	1 Introduction
	2 Multi-physical Field Simulation for MAM
	3 Continuum Thermal Modelling
	4 Concluding Remarks
	References


