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Abstract. Quality monitoring in Additive Manufacturing (AM) is cur-
rently mostly based on temperature measurements of the process zone or
on layer/piecewise high-resolution surface imaging. To this aim, various
sensors, such as pyrometers, photodiodes, and matrix CCD detectors,
have been tested. These standard temperature measurements, however,
do not provide a comprehensive description of the process dynamics,
as they are just limited to surface observations. Furthermore, they are
often used for post-factum inspection, i.e., after the piece is partially or
even completely produced. No robust and low-cost methods are so far
known to monitor the quality of laser processes in real-time. To close this
gap, we propose an innovative approach for online quality monitoring of
additive manufacturing employing acoustic emissions (AE). In fact, AE
signals can provide in-depth information about the process, e.g., melting,
resolidification, delamination, and cracking of the workpiece. Moreover,
the sintering or melting of the metal powder has several unique acous-
tic signatures that can be detected and interpreted in terms of quality.
In our approach, the correlation of the acoustic signals to the quality
of the produced pieces is made by Artificial Intelligence (AI) methods.
Specifically, AI in the form of Machine Learning is used to perform a
data-driven extraction and recognition of the unique acoustic signatures
from different sintering or melting events. In this contribution, we present
a summary of our results in the fields of selective laser melting and laser
welding, which have similar underlying mechanisms. At first, we discuss
how, by using AE, we can classify different types of defects and porosity
content in both processes. Afterward, with the aid of high-speed X-ray
imaging, we demonstrate the real-time performance of our approach in
the classification of transient events/regimes that are critical for the final
quality—in particular conduction, stable keyhole, unstable keyhole, pore
formation, and blowout. Finally, we present the future possibilities in
terms of control of AM processes based on AI.
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1 Introduction

Additive Manufacturing (AM) is a technology developed to manufacture three-
dimensional components based on computer models with great flexibility on
the choice of materials, including metals, ceramics, and polymers in different
forms, such as liquids, powders, or wires. AM offers several advantages compared
to traditional manufacturing methods [1], including very few geometric shape
limitations [2], innovative multi-material manufacturing, and low running costs.
These characteristics meet the needs of modern production, to the point that
AM is considered to be the new industrial revolution [1], drawing the attention
of a growing number of industries, such as automotive [3], medical [4], aerospace
[5], jewelry [6], and food [7].

In this article, we focus on Selective Laser Melting (SLM) [8]—an AM sub-
branch that allows building metallic components from powders. Similarly to
other AM technologies, the underlying physical phenomena that enable the func-
tioning of SLM, are highly complex. Indeed, they involve the interaction between
the intense laser beam with multiple material phases (solid, liquid, and vapor),
as well as very fast heating and cooling cycles of the base material (from 103 to
107 K/s) [9].

Therefore, despite many developments of this technology, SLM still suffers
from imperfect process repeatability [10–12], limiting its applications in mass
production, in particular in the ones with high-quality standards. Indeed, many
processing parameters—e.g., laser energy, scanning speed, hatch distance, and
powder layer thickness—must be carefully chosen according to the specific pow-
der used [2,13,14]. An improper choice of the parameters can lead to an accu-
mulation of residual stress inside the workpiece or to the formation of defects,
such as significant porosity, cracks, or lack of fusion [11], resulting in weakened
mechanical properties [15].

Currently, the industrial standard for the quality monitoring of the parts
produced by AM in terms of porosity or cracking is X-ray tomography [16].
Being a costly and time-consuming process, this type of analysis is generally
performed post-mortem—after the part has already been produced. In the liter-
ature, there are also some attempts to design near real-time quality monitoring
systems [11,17]. The two main adopted approaches are: i) image analysis of the
surface of each layer of the workpiece [18], and ii) temperature measurements of
the melting zone [11]. The main drawbacks of both techniques derive from their
limitation to surface measurements, with limited access to in-depth information.
Furthermore, their temporal resolution is not ideal for the analysis of the tran-
sient events during the process, which have been reported to take place at time
scales down to hundreds of microseconds [19]. For these reasons, the accuracy of
those commercial approaches is debatable [11].

In this context, there is a clear need for a reliable, cost-effective, and effi-
cient detection system that can provide subsurface information about the pro-
cess. One solution can be found in Acoustic Emission (AE) sensing technology.
Indeed, the use of AE signals to trace the onset or propagation of cracks/defects
in non-transparent materials is well-known for its efficiency, high sensitivity, and
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non-destructive nature [20,21]. Moreover, it can be easily implemented in indus-
trial environments for onlinemonitoringdue to low-cost hardware.Themainobsta-
cles that prevent the wide-spread use of AE technology for AM monitoring derive
from weak useful signals and loud background noise.

To this extent, we proposed a new methodology where AE is combined with
Machine Learning (ML). Indeed, highly sensitive AE sensors combined with
ML enable the detection of meaningful information in AM signals even in a
very loud environment. This approach has already been successfully applied to
several applications with a high level of background noise, including tribology
[22], and fracture mechanics [23]. It has to be noted that—even though the
selected examples used a highly sensitive fiber-based detector—the proposed
approach is very flexible in terms of sensing devices, from piezo-based contact
sensors to airborne microphones.

This contribution summarizes the work done so far by our research group
in the field of in situ AM and Laser Welding (LW) monitoring, combining AE
and ML. We start with the retrospective of the preliminary feasibility study
and then highlight the recent developments in correlating AE with the hidden
physical mechanisms responsible for the defects formation.

Firstly, we begin with an overview of the work of Shevchik et al. [24], which is
a preliminary study to investigate the feasibility of discerning, from AE signals,
between three different final build qualities in terms of porosity. The different
quality grades were intentionally provoked by using three sets of process param-
eters. Secondly, the application of our approach for the monitoring of different
LW regimes is presented [25]. Even though this work refers to a different appli-
cation, the same physical phenomena are involved in melting and subsequent
solidification of the metallic material. Thirdly, we move to a more recent work,
[26], where the AE based monitoring system was pushed a step further, aiming
at identifying the momentary events leading to the formation of defects, such as
porosity and blowout. In this case, the system was guided, during its training, by
high-speed X-ray radiography. In particular, it was shown that our methodology
could distinguish between stable and unstable keyhole regimes with high confi-
dence levels. Finally, we conclude with a discussion on how the precedent results
can be used for an AI-based closed-loop system for defect-free laser processes.

2 Detection Tool for Additive Manufacturing

The work presented hereafter is focused on SLM, but the same concepts can also
be applied to many other AM techniques. We start the survey from the work of
Shevchik et al. [24] that investigated the feasibility of in situ monitoring of SLM
processes combining AE and ML.
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2.1 Experimental Setup

To validate the robustness of the method, several experiments were carried out
using a commercially available machine Concept M2 (Concept Laser GmbH,
Germany), equipped with a fiber laser that operates continuously at a wave-
length of 1071 nm. The diameter of the focused laser spot was 90 µm, and the
beam quality factor was M2 = 1.02. The powder material was CL20ES stainless
steel (1.4404/316L) with a particle size distribution ranging from 10 to 45 µm.
The produced experimental sample had a cuboid shape with dimensions of
10 × 20 mm3.

In this work, the quality aspect of interest was the concentration of pores in
the workpiece. Their presence is one of the most critical defects as they may not
be noticed during a visual inspection, and they harm the mechanical integrity of
the sample. Different porosity levels were induced by using diverse laser scanning
velocities during the manufacturing of the various layers of the workpiece, all the
while fixing other process parameters (laser power P = 125 W, hatch distance
h = 0.105 mm, powder layer thickness t = 0.03 mm). Figure 1 shows a typical
optical image taken at the cross-section of the workpiece.

Fig. 1. (a) Test workpiece produced with three porosity concentrations. The regions
with different qualities can be distinguished by their unique colors. Typical light micro-
scope cross-section images of the regions produced with a laser scanning speed of (b)
300 mm/s (medium quality), (c) 500mm/s (high quality), and (d) 800 mm/s (poor
quality). Reprinted by permission from Elsevier License: Elsevier [24].

Poor quality refers to the process parameters leading to the highest pore con-
centration (1.42%) and is obtained with the highest scanning speed (800 mm/s).
In this case, the cause of the porosity is often referred to as lack of fusion, and
occured due to insufficient energy to sinter all the particles within the laser
beam. As far as the medium quality is concerned, the porosity level was 0.3%,
and the pores were caused by the overheating of the material due to the lower
laser scanning speed and, consequently, higher dose of deposited energy, resulting
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in the formation of deep keyhole channels. Finally, good samples were obtained
using an average scanning speed between the two aforementioned ones, and the
achieved porosity level was 0.07%. In this case, the speed was selected to pro-
vide, on the one hand, sufficient energy to sinter all the particles within the laser
beam, and on the other hand, to prevent the material from overheating. More
details on the process parameters and their effect on the working piece can be
found in Shevchik et al. [24] and in Fig. 1.

The AE signals during the entire SLM process were recorded with a Fiber
Bragg Grating (FBG). The latter was placed inside the printing chamber, at a
distance of 20 cm from the process zone. Detailed information about the sensing
principle of the FBG sensor can be found in Shevchik et al. [24].

2.2 Correlation of AE with AM Quality

The collected AE signals were divided into three categories according to the
quality of the obtained pieces. The obtained dataset was stochastically split
into two sets, one for training and one for testing. Each category of the dataset
consisted of 300 signals of 160 ms, and there was no shared data between the
two datasets. This approach simulated a real-life condition in which the trained
system has to operate with unseen input data.

2.2.1 Feature Extraction

The mathematical transform known as Wavelet Package Transform (WPT) was
used to extract meaningful information from the signals. In particular, the WPT
allows calculating the spectrograms of each signal, consisting of the relative
energies of different narrow frequency bands [27,28]. An example of a raw AE
signal and its spectrogram computed by means of WPT can be found in Fig. 2.

Fig. 2. Example of AE signal recorded when using the optimal process parameters (a)
and the corresponding spectrogram made up of the signal’s relative energies in several
narrow frequency bands localized in time-frequency domain (b). The red marker in (a)
shows the window of 160 ms used to partition the signals. Reprinted by permission
from Elsevier License: Elsevier [24].

The signal representation provided by the WPT has several significant advan-
tages. First, it reduces the amount of data and ambient noise by allowing the
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selection of specific frequency bands. In addition, it enables the interpretation of
the AE signals as an evolution over time of the chosen frequency bands. Finally,
it adapts the signals so that they can be used as inputs to existing Convolu-
tional Neural Network (CNN) implementations. In fact, most existing CNNs are
developed for image processing, where the 2D spatial domain of a picture is ana-
lyzed. Since the wavelet spectrogram domain is two-dimensional as well (time
and frequency), the existing CNNs can be directly applied to them. More details
on this technique can be found in Shevchik et al. [24].

2.3 Spectral Convolutional Neural Networks (SCNN)

The main disadvantage of using raw AE signals is their inherent complexity that
originates from the complicated nature of the underlying mechanisms. Practi-
cally, this means that the differences between signals from different categories
are not evident, making the classification task harder.

A conventional dimensionality reduction technique (Principal Component
Analysis, PCA, [29]) makes it evident that data from different categories is very
entangled, and no discrete clusters (data groupings) can be found (see Fig. 3).
For these reasons, simple, but effective ML techniques such as SVM cannot be
used.
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Fig. 3. Projection of the acoustic features into a 3D feature space using Principal
Component Analysis (PCA). The visualized dataset includes thirty data points from
each quality category. Reprinted by permission from Elsevier License: Elsevier [24].

Deep CNNs are well-known for being able to tackle this problem by successive
projections of the data into higher dimensionality spaces [30]. The main disad-
vantage is that their training is very demanding in terms of both computational
resources and amount of required data. To overcome these limits, a Spectral
Convolutional Neural Network (SCNN) has been adopted. SCNN inherits all
the advantages of traditional convolutional neural networks, with the additional
benefit of being able to process data with more complex structures (or geome-
tries) in a lightweight fashion in terms of computational effort. These benefits
are obtained by using irregular convolutional operations as a feature extraction
tool. In particular, the irregularity of the input data is captured using graphs.
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This external tool guides the network during the training procedure to optimize
its structure. As a result, it gives the possibility to process highly irregular data
in cases where the application of linear classifiers is not effective. More details
on the network architecture can be found in Shevchik et al. [24].

2.3.1 Results and Limitations
As described in Shevchik et al. [24], the overall accuracies of the SCNN applica-
tion towards porosity detection ranged from 83% to 89%. These results showed
the potential of the proposed approach, especially considering that this was only
the first feasibility study. In other words, we can conclude that the AE signals
recorded by an FBG and their processing with the SCNN have the potential to
be a solution for in situ quality monitoring of AM processes.

It has to be noted that the classification accuracy was high, but it can be
furtherly improved. Indeed, medium quality samples are occasionally misclassi-
fied with the other categories. One of the aspects that limits the potential of
the developed technique is the length of the acoustic signal acquisition window.
In the presented study, it was observed that the optimal time span was 160 ms.
However, the window length is a trade-off between stability and spatial resolu-
tion. Indeed, reducing the window span increases the temporal resolution of the
detection of the momentary events, but, unfortunately, so does the sensitivity
to noises. To overcome those limitations, in Shevchik et al. [31], the structure of
the developed SCNN is further developed to be able to process data from the
combination of two scanning windows with different time spans.

2.4 Double Scanning Strategy

As previously mentioned, the choice of the time span of the scanning window
is crucial. In fact, the AM process incorporates multiple events with different
time scales, and a window of a fixed size can hardly capture all the transients
involved. For this reason, in Shevchik et al. [31], the collected AE signals were
scanned with two running windows that were characterized by different time
lengths, indicated as short and long running window (SRW and LRW, respec-
tively). By using two running windows at the same time, an analysis—which is
stable to the presence of noise—is carried out at different time scales. This fea-
ture is particularly useful in the application under examination. Therefore, the
CNN structure has been adapted to process the spectrograms calculated from
both SRW and LRW simultaneously. Specifically, the wavelet spectrograms for
SRW and LRW were constructed separately and were used as inputs for the
SCNN classifier. Finally, an exhaustive search has been performed to identify
the optimal windows sizes and resulted in timespans of 80 ms and 160 ms for
SRW and LRW, respectively. An example of the two optimal running windows
and a typical AE signal can be found in Fig. 4.
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Fig. 4. Visualization of a typical raw AE signal and the optimal windows sizes of 80 ms
and 160 ms for SRW and LRW. Reprinted by permission from IEEE License: IEEE [31].

2.4.1 Results and Limitations
The classification accuracies obtained by this method range from 78% to 91%.
These results demonstrate that it is possible to combine highly sensitive AE
sensors with an SCNN to classify the sample qualities in terms of porosity con-
centration. It has to be noted that the classification was carried out without
using imaging techniques or altering the setup and with minimum manual inter-
ventions. Besides, the results have shown that the continuous SLM process can
be divided into a finite number of momentary events with unique acoustic sig-
natures. These signatures can be analyzed by the developed Machine Learning
framework and interpreted in terms of quality. The developed technique is also
able to detect porosity within the material, which cannot be achieved with exist-
ing image-based methods [11].

Given the similarities of SLM to laser welding of metal workpieces, a similar
approach has been used for the detection of the different welding regimes during
laser welding.

3 Laser Welding Quality Monitoring

As described in Sect. 2.2, the developed ML technique allowed discerning between
different operating regimes responsible for different qualities during the AM pro-
cess. In the successive work [25], the authors aimed at exploiting the previously
reported approach for a more challenging task, namely, to apply the monitoring
system to LW to identify the relationships between the different welding regimes
and the AE signals. The usage of the same methodology to this different applica-
tion comes as no surprise, as LW is an industrial process with many similarities
to SLM, involving the same physical mechanism for metal melting and succes-
sive solidification. In particular, in Shevchik et al. [25], the investigations were
carried out using laser welding of titanium workpieces.

In this specific contribution, the signals collected during laser welding were
assigned to four categories: (i) no illumination, (ii) conduction welding, (iii)
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keyhole without porosity, and (iv) keyhole with porosity. The first category rep-
resents the absence of laser radiation. The second one is characterized by a low
laser intensity leading to the so-called conduction welding regime (shallow). The
third and fourth categories refer to the keyhole (deep) welding regimes with and
without the presence of pores in the workpiece.

The distinction between the different welding regimes is crucial because, in
real applications, the transition between them can be provoked by local changes
in the material properties or in process parameters. To be specific, the capability
to distinguish between keyhole with and without porosity is of particular inter-
est for industrial applications. Indeed, the keyhole welding regime, despite its
advantages [32,33], is prone to defects. In particular, the high instability of the
keyhole channel in deep welding can lead to porosity in the workpiece [34,35].
In this work, the ground truth for the said categories was estimated a posteriori
by the visual inspection of the cross-sections of the welding joints.

On par with the previous works, the WPT was used to compute the relative
energies of the selected narrow frequency bands to form the spectrograms of
each signal. In contrast, the ML classifier that processes the spectrograms was
modified to boost the computational speed to enable the online monitoring of
the process.

3.1 Graph SVM with Adaptive Multi-kernel

As already discussed in paragraph Sect. 2.3, the described classification task
is challenging because of the similarities between data of different categories.
Even though the problem has been solved by using an SCNN, its relatively high
number of parameters and the computational resources needed for building a
graph for every new input sample to be classified, make it not suitable for real-
time applications.

For this reason, an original multi-kernel approach has been proposed in
Shevchik et al. [25] to relax the computational constraints while keeping a high
classification accuracy.

Specifically, in Shevchik et al. [25], the classification of the collected AE sig-
nals was carried out by a modification of the Laplacian Support Vector Machine
(LapSVM) [36]. The attractiveness of LapSVM relies on resolving sophisticated
features configurations by searching for the optimal decision cut in the feature
space to differentiate between the various categories [37]. Nevertheless, on the
other side, its main limitations derive from the general usage of a single Gaus-
sian kernel. Indeed, even though it can adapt to complex geometries, it fails to
recognize separated categories if the corresponding features are not well clus-
tered. For these reasons, LapSVM was improved by involving several adaptive
Gaussian kernels.

As shown in Shevchik et al. [25], this modification enhanced the algorithm
abilities in separating features from different categories. A depictive example on
how the multi-kernel LapSVM acts on the data can be found in Fig. 5.

It is noteworthy to notice that the developed ML technique inherits from the
conventional LapSVM a very high computational efficiency. Indeed, the classifi-
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Fig. 5. Algorithm performance with synthetic data made up of two categories whose
features do not form distinct groups: (a) original feature space, where the two colors
represent the two categories; (b) decision boundaries defined by LapSVM with a single
kernel; as can be seen, there are plenty of misclassifications, as several blue points
fall inside the green region; (c) decision boundaries defined by LapSVM with multi
Gaussian kernels; (d) 3D visualization of the learned Gaussian kernels after multi-
kernel LapSVM training. Reprinted by permission from IEEE License: IEEE [25].

cation of a new input data is reduced to just a matrix multiplication, allowing
the monitoring system to work in real-time. To be specific, the computational
time needed per measurement was as fast as 70 ms.

3.1.1 Results and Limitations
As reported in Shevchik et al. [25], the classification accuracies of the real-time
monitoring systems are very high, ranging from 87% to 99%. However, the cat-
egories that were misclassified the most are keyhole with porosity and keyhole
without porosity. These results indicate that there are overlapping of the AE fea-
tures for those categories, which can be improved by optimizing the algorithms.
On the other hand, the false classifications can also be due to errors in the iden-
tification of the ground truth. Indeed, it is almost impossible to detect all the
porosities by optical inspection of the cross-sections, due to the small size of the
pores. Moreover, the post mortem analysis cannot identify the pores that have
been generated during the process and which have disappeared afterward when
reaching the liquid/air interface [19,38].

In support of these assertions, it can be noted in Table 1 that almost 11%
of the input data labeled by visual inspection as keyhole without porosity is
classified as keyhole with porosity, while just 8% of the input data labeled as
keyhole with porosity is mistaken for keyhole without porosity.
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Table 1. Percentage classification accuracies per category versus ground truth.
Adapted from Shevchik et al. [25].
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No illumination 98.8 1.2 0.0 0.0

Conduction welding 0.0 92.0 3.0 5.0

Keyhole without
pores 0.0 2.0 87.1 10.9

Keyhole with 
pores 0.0 1.8 8.0 90.2

3.2 Quality Monitoring with High-Speed X-Ray Radiographic
Guidance

It is noteworthy that all the research work done so far has been focused on
a statistical approach to the analysis of the AE signals with the primary goal
of monitoring. Therefore, the nature and the physical explanation of the AE
contents were not investigated. In particular, the developed method allowed to
stop a process when a non-acceptable defect is detected. However, if this happens,
there are no other solutions than to discard the workpiece, despite the waste of
materials and machining time. To overcome this issue, a fully automatic control
loop is required. Nevertheless, to achieve this goal, we need to understand the
physics of defect creation and to determine whether it is possible to classify the
transients leading to artifacts such as the transition between stable and unstable
keyhole.

Given the importance and relevance of the matter, the successive contri-
butions of our research group were focused in this direction. In particular, in
Shevchik et al. [26], the AE signals were analyzed employing ML techniques to
identify the relationships between the momentary events that have an impact
on the quality of the weld, and the AE signals. To provide the ML algorithms
with precise labeling of the data, the real-time monitoring system was combined
with high-speed hard X-ray radiography. In particular, the process dynamics
have been visualized by X-ray images of the process area. From the X-ray data,
the following events are extracted and used for the training of the ML classifier:
conduction welding, stable keyhole, unstable keyhole, blowout, and pores.

Compared to the previously described works, the AE signals were sensed by
a piezoelectric sensor (PICO HF-1.2, Physical Acoustic, Germany) attached to
the sample holder. Moreover, the laser was additionally equipped with an optical
system for the collection of the back-reflected light (LBR) from the process
zone. Figure 6 shows a sequence of X-ray images of the process zone during the
experiment, together with the recorded AE and LBR signals.
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Fig. 6. X-ray images of the process zone (a) and the corresponding AE and optical
signals (b) during the experiment at 250 W. The scale bar equals 300 µm. Reprinted
by permission from Elsevier License: Elsevier [39].

The spectrograms computed utilizing the WPT (see Sect. 2.2.1) of these two
signals were then combined, and the corresponding classification accuracy is
compared to the results obtained with the individual sensors. As can be seen
in Table 2, the unification of LBR and AE improves the accuracy of the classi-
fication, although the increment is only marginal compared to what it can be
obtained with the AE only.

Table 2. Percentage classification accuracies per category versus ground truth for (a)
LBR sensor, (b) AE sensor, and (c) combination of the two sensors. Adapted from
Shevchik et al. [26].
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Conduction welding 88 7 5 0 0 99 1 0 0 0 99 1 1 0 0
Stable keyhole 5 82 13 0 0 1 91 8 0 0 0 93 6 1 0

Unstable keyhole 4 5 87 4 0 0 2 92 6 0 0 6 94 0 0
Blowout 0 0 5 95 0 0 0 1 99 0 0 0 1 99 0
Pores 0 10 10 7 73 0 8 7 0 85 0 12 0 0 88

3.2.1 Results and Future Work
There are two remarkable results in this work. First, the X-ray guidance allowed
us to provide the ML framework with high quality labeled data, increasing the
certainty of the system in distinguishing between stable keyhole and unstable
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keyhole. Since the latter is subject to defects, the ability to detect the stable -
unstable transition is of great interest. Indeed, it is a prerequisite for the imple-
mentation of a closed-loop process to avoid the formation of defects. Second, it
was noticed that it is not only possible to detect the formation of pores, but also
their removal through a successive scan of the laser. This outcome is particu-
larly satisfactory since it enables the realization of a device that can first detect
defects and successively repair them.

4 Beyond Classification: Process Control

As previously mentioned, the developed monitoring system allows the detection
of several momentary events responsible for the production of workpieces with
different qualities. From the initial offline analysis, we have seen how the system
has evolved both in terms of classification (from the generic regimes to the
detection of the physical events) and computational speed, making it ready for
online applications.

The natural continuation of this work is the development of a system that is
not only capable of monitoring the quality of the workpiece but also to predict the
upcoming events and to take corrective actions to prevent the onset of defects.
Our research group is already working in this direction. In particular, the goal is
to apply Machine Learning in this situation as well, in the form of Reinforcement
Learning (RL). RL, indeed, is able to learn, via trial and error, an optimal
feedback controller for the monitored process.

5 Conclusions

The present contribution provides an overview of our research efforts on in situ
and real-time monitoring of SLM and LW processes. Our approach primarily
relies on the combination of acoustic emission sensing technology and state-
of-the-art Machine Learning algorithms. Indeed, even though AE signals can
provide information that is not accessible to standard optical methods—such as
the volumetric behavior of the process zone—their complicated nature makes it
hard for conventional approaches to excerpt meaningful information from them.
ML, in contrast, is able to perform a convenient data-driven feature extraction
and recognition of the unique acoustic signatures from different quality critic
operational regimes.

In particular, our previous works show that the use of ML algorithms for the
analysis of the AE signals enables not only the detection of the final qualities of
the manufactured pieces but also the momentary events leading to the formation
of defects. Furthermore, the system was also able to identify if a subsequent laser
pulse has removed a pore, preparing the ground for a defect removal apparatus.

As of now, the computational time per classification on a PC equipped with
a Graphics Processing Unit (GPU) can be as low as 2 ms. This fact, combined
with the cost-effectiveness of the AE technology, makes the system ready for the
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integration in commercially available machines with minimum effort for in situ
and real-time monitoring of AM processes.

Quality monitor is only one of the many outcomes of the presented method-
ology. The described works also open the doors for an AI-based control loop of
laser processes. Indeed, based on the gained experience, it is possible to design
an adaptive ML control unit the can detect changes in the process dynamics
and automatically adjust the process parameters to manufacture high-quality
workpieces reproducibly.

In order to achieve this goal, additional investigations are planned for future
improvements to the system performance. In fact, despite the promising results
based on AE, it is of our belief that the monitoring system can benefit from a
combination of different types of sensors, e.g., pyrometer or photodiodes. Specifi-
cally, the sensor aggregation can increase the robustness of the system in a noisier
environment and enable it to work with a more complicated process. Secondly,
an expansion of the quality categories is needed to investigate the applicability of
the algorithm to other defect types such as lack of fusion, balling, delamination,
and cracking. Finally, the generalization of the monitoring system’s capabili-
ties has to be scrutinized by investigating how the algorithm can adapt to new
materials or to different geometries.
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