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Abstract

The controversial question of whether machines may ever
be conscious must be based on a careful consideration
of how consciousness arises in the only physical system
that undoubtedly possesses it: the human brain. We sug-
gest that the word “consciousness” conflates two differ-
ent types of information-processing computations in the
brain: the selection of information for global broadcast-
ing, thus making it flexibly available for computation
and report (C1, consciousness in the first sense), and
the self-monitoring of those computations, leading to a
subjective sense of certainty or error (C2, consciousness
in the second sense). We argue that despite their recent
successes, current machines are still mostly implementing
computations that reflect unconscious processing (C0) in
the human brain. We review the psychological and neural
science of unconscious (C0) and conscious computations
(C1 and C2) and outline how they may inspire novel
machine architectures.
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Metacognition

Imagine that you are driving when you suddenly realize
that the fuel-tank light is on. What makes you, a complex
assembly of neurons, aware of the light? And what makes
the car, a sophisticated piece of electronics and engineering,
unaware of it? What would it take for the car to be endowed
with a consciousness similar to our own? Are those questions
scientifically tractable?

Alan Turing and John von Neumann, the founders of the
modern science of computation, entertained the possibility
that machines would ultimately mimic all of the brain’s
abilities, including consciousness. Recent advances in arti-
ficial intelligence (AI) have revived this goal. Refinements
in machine learning, inspired by neurobiology, have led
to artificial neural networks that approach or, occasionally,
surpass humans (Silver et al. 2016; Lake et al. 2017). Al-
though those networks do not mimic the biophysical prop-
erties of actual brains, their design benefitted from several
neurobiological insights, including non-linear input-output
functions, layers with converging projections, and modifi-
able synaptic weights. Advances in computer hardware and
training algorithms now allow such networks to operate on
complex problems (e.g., machine translation) with success
rates previously thought to be the privilege of real brains. Are
they on the verge of consciousness?
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We argue that the answer is negative: the computations
implemented by current deep-learning networks correspond
mostly to nonconscious operations in the human brain.
However, much like artificial neural networks took their
inspiration from neurobiology, artificial consciousness may
progress by investigating the architectures that allow the
human brain to generate consciousness, then transferring
those insights into computer algorithms. Our aim is to
foster such progress by reviewing aspects of the cognitive
neuroscience of consciousness that may be pertinent for
machines.

Multiple Meanings of Consciousness

The word “consciousness,” like many pre-scientific terms, is
used in widely different senses. In a medical context, it is
often used in an intransitive sense (as in “the patient was no
longer conscious”), in the context of assessing vigilance and
wakefulness. Elucidating the brain mechanisms of vigilance
is an essential scientific goal with major consequences for
our understanding of sleep, anesthesia, coma, or vegetative
state. For lack of space, we do not deal with this aspect here,
however, because its computational impact seems minimal:
obviously, a machine must be properly turned on for its
computations to unfold normally.

We suggest that it is useful to distinguish two other es-
sential dimensions of conscious computation. We label them
using the terms global availability (C1) and self-monitoring
(C2).

* CI: Global availability. This corresponds to the transitive
meaning of consciousness (as in “The driver is conscious
of the light”). It refers to the relationship between a
cognitive system and a specific object of thought, such as
a mental representation of “the light.” This object appears
to be selected for further processing, including verbal and
nonverbal report. Information which is conscious in this
sense becomes globally available to the organism: we
can recall it, act upon it, speak about it, etc. This sense
is synonymous with “having the information in mind”:
among the vast repertoire of thoughts that can become
conscious at a given time, only that which is globally
available constitutes the content of C1-consciousness.

* (C2: Self-monitoring. Another meaning of consciousness
is reflexive. It refers to a self-referential relationship in
which the cognitive system is able to monitor its own pro-
cessing and obtain information about itself. Human beings
know a lot about themselves, including such diverse infor-
mation as the layout and position of their body, whether
they know or perceive something, or whether they just
made an error. This sense ofconsciousness corresponds
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to what is commonly called introspection, or what psy-
chologists call “meta-cognition”—the ability to conceive
and make use of internal representations of one’s own
knowledge and abilities.

We propose that C1 and C2 constitute orthogonal dimen-
sions of conscious computations. This is not to say that
C1 and C2 do not involve overlapping physical substrates;
in fact, as we review below, in the human brain, both de-
pend on prefrontal cortex. But we argue that, empirically
and conceptually, the two may come apart, as there can be
C1 without C2, for instance when reportable processing is
not accompanied by accurate metacognition, or C2 without
Cl1, for instance when a self-monitoring operation unfolds
without being consciously reportable. As such, it is advan-
tageous to consider these computations separately before
we consider their synergy. Furthermore, many computations
involve neither C1 nor C2 and therefore properly called
“unconscious” (or CO for short). It was Turing’s original
insight that even sophisticated information processing can
be realized by a mindless automaton. Cognitive neuroscience
confirms that complex computations such as face or speech
recognition, chess-game evaluation, sentence parsing, and
meaning extraction occur unconsciously in the human brain,
i.e., under conditions that yield neither global reportability
nor self-monitoring (Table 1). The brain appears to operate,
in part, as a juxtaposition of specialized processors or “mod-
ules” that operate nonconsciously and, we argue, correspond
tightly to the operation of current feedforward deep-learning
networks.

We now review the experimental evidence for how
human and animal brains handle CO-, C1-, and C2-level
computations—before returning to machines and how they
could benefit from this understanding of brain architecture.

Unconscious Processing (C0): Where Most
of Our Intelligence Lies

Probing Unconscious Computations

“We cannot be conscious of what we are not conscious of”
(Jaynes 1976). This truism has deep consequences. Because
we are blind to our unconscious processes, we tend to under-
estimate their role in our mental life. However, cognitive neu-
roscientists developed various means of presenting images or
sounds without inducing any conscious experience (Fig. 1),
and then used behavioral and brain-imaging to probe their
processing depth.

The phenomenon of priming illustrates the remarkable
depth of unconscious processing. A highly visible target
stimulus, such as the written word “four,” is processedmore
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efficiently when preceded by a related prime stimulus, such
as the Arabic digit “4,” even when subjects do not notice the
presence of the prime and cannot reliably report its identity.
Subliminal digits, words, faces, or objects can be invariantly
recognized and influence motor, semantic, and decision lev-
els of processing (Table 1). Neuroimaging methods reveal
that the vast majority of brain areas can be activated noncon-
sciously.

Unconscious View-Invariance and Meaning
Extraction in the Human Brain

Many of the difficult perceptual computations, such as invari-
ant face recognition or speaker-invariant speech recognition,
that were recently addressed by Al, correspond to noncon-
scious computations in the human brain (Dupoux et al. 2008;
Kouider and Dehaene 2007; Qiao et al. 2010). For instance,
processing someone’s face is facilitated when it is preceded
by the subliminal presentation of a totally different view of
the same person, indicating unconscious invariant recogni-
tion (Fig. 1). Subliminal priming generalizes across visual-
auditory modalities (Faivre et al. 2014; Kouider and Dehaene
2009), revealing that cross-modal computations that remain
challenging for Al software (e.g., extraction of semantic vec-
tors, speech-to-text) also involve unconscious mechanisms.
Even the semantic meaning of sensory input can be processed
without awareness by the human brain. Compared to related
words (e.g., animal-dog), semantic violations (e.g., furniture-
dog) generate a brain response as late as 400 ms after stimulus
onset in temporal-lobe language networks, even if one of the
two words cannot be consciously detected (Luck et al. 1996;
van Gaal et al. 2014).

Unconscious Control and Decision-Making

Unconscious processes can reach even deeper levels of the
cortical hierarchy. For instance, subliminal primes can in-
fluence prefrontal mechanisms of cognitive control involved
in the selection of a task (Lau and Passingham 2007) or
the inhibition of a motor response (van Gaal et al. 2010).
Neural mechanisms of decision-making involve accumulat-
ing sensory evidence that affects the probability of the various
choices, until a threshold is attained. This accumulation
of probabilistic knowledge continues to happen even with
subliminal stimuli (de Lange et al. 2011; Vorberg et al.
2003; Dehaene et al. 1998a; Vlassova et al. 2014). Bayesian
inference and evidence accumulation, which are cornerstone
computations for Al (Lake etal. 2017), are basic unconscious
mechanisms for humans.
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Table 1 Examples of computations pertaining to information-processing levels C0, C1, and C2 in the human brain

Computation Examples of experimental findings References

CO: Unconscious processing

Invariant visual recognition Subliminal priming by unseen words and faces, | Kouider and Dehaene (2007)
invariant for font, size or viewpoint.
fMRI and single-neuron response to unseen Sergent et al. (2005), Kreiman et al. (2002),
words and faces Dehaene et al. (2001), Vuilleumier et al. (2001)
Unconscious judgment of chess-game Kiesel et al. (2009)
configurations
Access to meaning N400 response to unseen out-of-context words | Luck et al. (1996), van Gaal et al. (2014)
Cognitive control Unconscious inhibition or task set preparation by Lau and Passingham (2007), van Gaal et al.
an unseen cue (2010)
Reinforcement learning Subliminal instrumental conditioning by unseen | Pessiglione et al. (2008)
shapes

Consciousness in the first sense (C1): global availability of information

All-or-none selection and broadcasting of a | Conscious perception of a single picture during | Moreno-Bote et al. (2011)
relevant content visual rivalry

Conscious perception of a single detail in a Vul et al. (2009), Aly and Yonelinas (2012)
picture or stream

All-or-none memory retrieval Harlow and Yonelinas (2016)

Attentional blink: conscious perception of item | Asplund et al. (2014), Vul et al. (2008), Pincham
A prevents the simultaneous perception of item | et al. (2016), Sergent and Dehaene (2004)
B

All-or-none “ignition” of event-related potentials| Sergent et al. (2005), Marti et al. (2012), Marti et
and fMRI signals, only on trials with conscious | al. (2015), Del Cul et al. (2007), Marois et al.

perception (2004), Moutard et al. (2015)
All-or-none firing of neurons coding for the Panagiotaropoulos et al. (2012), Logothetis
perceived object in prefrontal cortex and other | (1998), Kreiman et al. (2002), Quiroga et al.
higher areas (2008), Rey et al. (2014)
Stabilization of short-lived information for | Brain states are more stable when information is | King et al. (2016), Schurger et al. (2015)
off-line processing consciously perceived; unconscious information

quickly decays (1 s)
Conscious access may occur long after the Sergent et al. (2013)
stimulus is gone

Flexible routing of information Only conscious information can be routed Sackur and Dehaene (2009)

through a series of successive operations (e.g.,
successive calculations 3 x 4 + 2)

Sequential performance of several tasks Psychological refractory period: conscious Marti et al. (2012), Marois and Ivanoff (2005)
processing of item A delays conscious
processing of item B
Serial calculations or strategies require de Lange et al. (2011), Sackur and Dehaene
conscious perception (2009)
Serial organization of spontaneous brain activity | Barttfeld et al. (2015)
during conscious thought in the “resting state”

Consciousness in the second sense (C2): self-monitoring

Self-confidence Humans accurately report subjective confidence, Meyniel et al. (2015), Fleming et al. (2010)
i.e., a probabilistic estimate in the accuracy of a
decision or computation

Evaluation of one’s knowledge Humans and animals can ask for help or “opt Smith (2009), Goupil and Kouider (2016),
out” when unsure Goupil et al. (2016)
Humans and animals know when they don’t Dunlosky and Metcalfe (2008), Smith (2009)
know or remember

Error detection Anterior cingulate response to self-detected Charles et al. (2013), Goupil and Kouider
errors (2016), Gehring et al. (1993)
Listing one’s skills Children know the arithmetic procedures at their| Siegler (1988)

disposal, their speed, and error rate.

Sharing one’s confidence with others Decision-making improves when two persons | Bahrami et al. (2010)
share knowledge
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Objective stimulus

Identical
Related ~ e
Unrelated
500ms 50ms 33ms 500ms
Objective stimulus Subjective perception
Coherent
) .
Random

Fig. 1 Examples of paradigms probing unconscious processing (CO0).
(Top) Subliminal view-invariant face recognition (Kouider et al. 2009).
On each trial, a prime face is briefly presented (50 ms), surrounded
by masks that make it invisible, followed by a visible target face
(500 ms). Although subjective perception is identical across conditions,
processing is facilitated whenever the two faces represent the same
person, in same or different view. At the behavioral level, this view-
invariant unconscious priming is reflected by reduced reaction time
in recognizing the target face. At the neural level, it is reflected by
reduced cortical response to the target face (i.e., repetition suppression)
in the Fusiform Face Area of human inferotemporal cortex. (Bottom)

Unconscious Learning

Reinforcement learning algorithms, which capture how hu-
mans and animals shape their future actions based on the
history of past rewards, have excelled in attaining supra-
human Al performance in several applications, such as play-
ing Go (Silver et al. 2016). Remarkably, in humans, such
learning appears to proceed even when the cues, reward,
or motivation signals are presented below the consciousness
threshold (Pessiglione et al. 2008, 2007).

In summary, complex unconscious computations and in-
ferences routinely occur in parallel within various brain ar-
eas. Many of these CO computations have now been captured
by Al, particularly using feedforward convolutional neural

Subjective perception
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Behavioral effect Neural effect
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Reduced activity in
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Increased task performance Unconscious Conscious

Subliminal accumulation of evidence during interocular suppression
(Vlassova et al. 2014). Presentation of salient moving dots in one eye
prevents the conscious perception of paler moving dots in the opposite
eye. Despite their invisibility, the gray dots facilitate performance when
they moved in the same direction as a subsequent dot-display, an effect
proportional to their amount of motion coherence. This facilitation
only affects a first-order task (judging the direction of motion), not a
second-order metacognitive judgment (rating the confidence in the first
response). A computational model of evidence accumulation proposes
that subliminal motion information gets added to conscious information,
thus biasing and shortening the decision

networks (CNNs). We now consider what additional compu-
tations are required for conscious processing.

Consciousness in the First Sense (C1): Global
Availability of Relevant Information

The Need for Integration and Coordination

The organization of the brain into computationally special-
ized subsystems is efficient, but this architecture also raises
a specific computational problem: the organism as a whole
cannot stick to a diversity of probabilistic interpretations—it
must act, and therefore cut through the multiple possibilities
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and decide in favor of a single course of action. Integrating
all of the available evidence to converge towards a single
decision is a computational requirement which, we contend,
must be faced by any animal or autonomous Al system, and
corresponds to our first functional definition of conscious-
ness: global availability (C1).

For instance, elephants, when thirsty, manage to determine
the location of the nearest water hole and move straight to it,
from a distance of 5 to 50 km (Polansky et al. 2015). Such
decision-making requires a sophisticated architecture for (1)
efficiently pooling over all available sources of information,
including multisensory and memory cues; (2) considering
the available options and selecting the best one based on
this large information pool; (3) sticking to this choice over
time; and (4) coordinating all internal and external processes
towards the achievement of that goal. Primitive organisms,
such as bacteria, may achieve such decision solely through
an unconscious competition of uncoordinated sensorimotor
systems. This solution, however, fails as soon as it becomes
necessary to bridge over temporal delays and to inhibit short-
term tendencies in favor of longer-term winning strategies.
Cobherent, thoughtful planning required a specific C1 archi-
tecture.

Consciousness as Access to an Internal Global
Workspace

We hypothesize that consciousness in the first sense (C1)
evolved as an information-processing architecture that ad-
dresses this information-pooling problem (Baars 1988; De-
haene et al. 1998b; Dennett 2001; Dehaene and Naccache
2001). In this view, the architecture of C1 evolved to break
the modularity and parallelism of unconscious computations.
On top of a deep hierarchy of specialized modules, a “global
neuronal workspace,” with limited capacity, evolved to select
a piece of information, hold it over time, and share it across
modules. We call “conscious” whichever representation, at a
given time, wins the competition for access to this mental
arena and gets selected for global sharing and decision-
making. Consciousness is therefore manifested by the tempo-
rary dominance of a thought or train of thoughts over mental
processes, such that it can guide a broad variety of behaviors.
These behaviors include not only physical actions, but also
mental ones such as committing information to episodic
memory or routing it to other processors.

Relation Between Consciousness and Attention
William James described attention as “the taking possession

by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought”
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(James 1890). This definition is close to what we mean by
consciousness in the first sense (C1): the selection of a single
piece of information for entry into the global workspace.
There is, however, a clear-cut distinction between this final
step, which corresponds to conscious access, and the previous
stages of attentional selection, which can operate uncon-
sciously. Many experiments have established the existence of
dedicated mechanisms of attention orienting and shown that,
like any other processors, they can operate nonconsciously:
(1) in the top-down direction, attention can be oriented to-
wards an object, amplify its processing, and yet fail to bring
it to consciousness (Naccache et al. 2002); (2) in the bottom-
up direction, attention can be attracted by a flash even if
this stimulus ultimately remains unconscious (Kentridge et
al. 1999). What we call attention is a hierarchical system of
sieves that operate unconsciously. Such unconscious systems
compute with probability distributions, but only a single
sample, drawn from this probabilistic distribution, becomes
conscious at a given time (Asplund et al. 2014; Vul et al.
2009). We may become aware of several alternative interpre-
tations, but only by sampling their unconscious distributions
over time (Moreno-Bote et al. 2011; Vul et al. 2008).

Evidence for All-Or-None Selection
in a Capacity-Limited System

The primate brain comprises a conscious bottleneck and
can only consciously access a single item at a time (see
Table 1). For instance, rivalling pictures or ambiguous words
are perceived in an all-or-none manner: at any given time,
we subjectively perceive only a single interpretation out of
many possible ones (even though the others continue to
be processed unconsciously (Panagiotaropoulos et al. 2012;
Logothetis 1998)). The serial operation of consciousness is
attested by phenomena such as the attentional blink and the
psychological refractory period, whereby conscious access to
a first item A prevents or delays the perception of a second
competing item B (Luck et al. 1996; Asplund et al. 2014;
Vul et al. 2008; Sergent et al. 2005; Marti et al. 2012, 2015).
Such interference with the perception of B is triggered by
the mere conscious perception of A, even if no task is per-
formed (Nieuwenstein et al. 2009). Thus, C1-consciousness
is causally responsible for a serial information-processing
bottleneck.

Evidence for Integration and Broadcasting

Brain-imaging in humans and neuronal recordings in mon-
keys indicate that the conscious bottleneck is implemented by
a network of neurons which is distributed through the cortex,
but with a stronger emphasis on high-level associative areas.
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Table 1 lists some of the publications that have evidenced an
all-or-none “‘ignition” of this network during conscious per-
ception, using a variety of brain-imaging techniques. Single-
cell recordings indicate that each specific conscious percept,
such as a person’s face, is encoded by the all-or-none firing of
a subset of neurons in high-level temporal and prefrontal cor-
tices, while others remain silent (Fig. 2) (Panagiotaropoulos
et al. 2012; Logothetis 1998; Kreiman et al. 2002; Quiroga et
al. 2008).

Stability as a Feature of Consciousness

Direct contrasts between seen and unseen pictures or words
confirm that such ignition occurs only for the conscious per-
cept. As explained earlier, nonconscious stimuli may reach
into deep cortical networks and influence higher levels of
processing and even central executive functions, but these
effects tend to be small, variable, and short-lived (although
nonconscious information decays at a slower rate than ini-
tially expected (King et al. 2016; Triibutschek et al. 2017)).
By contrast, the stable, reproducible representation of high-
quality information by a distributed activity pattern in higher
cortical areas is a feature of conscious processing (Table 1).
Such transient “meta-stability” seems to be necessary for
the nervous system to integrate information from a variety
of modules and then broadcast it back to them, thereby
achieving flexible cross-module routing.

C1 Consciousness in Human and Nonhuman
Animals

C1 consciousness is an elementary property which is present
in human infants (Kouider et al. 2013) as well as in animals.
Nonhuman primates exhibit similar visual illusions (Pana-
giotaropoulos et al. 2012; Logothetis 1998), attentional blink
(Maloney et al. 2013), and central capacity limits (Watanabe
and Funahashi 2014) as human subjects. Prefrontal cortex
appears to act as a central information sharing device and
serial bottleneck in both human and nonhuman primates
(Watanabe and Funahashi 2014). The considerable expan-
sion of prefrontal cortex in the human lineage may have
resulted in a greater capacity for multimodal convergence
and integration (Elston 2003; Neubert et al. 2014; Wang
et al. 2015). Furthermore, humans possess additional cir-
cuits in inferior prefrontal cortex for verbally formulating
and reporting information to others. The capacity to report
information through language is universally considered as
one of the clearest signs of conscious perception, because
once information has reached this level of representation in
humans, it is necessarily available for sharing across mental
modules, and therefore conscious in the C1 sense. Thus,
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while language is not required for conscious perception and
processing, the emergence of language circuits in humans
may have resulted in a considerable increase in the speed,
ease, and flexibility of Cl-level information sharing.

Consciousness in the Second Sense (C2):
Self-Monitoring

While C1-consciousness reflects the capacity to access exter-
nal, objective information, consciousness in the second sense
(C2) is characterized by the ability to reflexively represent
oneself (Cleeremans et al. 2007; Cleeremans 2014; Dunlosky
and Metcalfe 2008; Clark and Karmiloff-Smith 1993). A
substantial amount of research in cognitive neuroscience
and psychology has addressed self-monitoring under the
term of “metacognition,” roughly defined as cognition about
cognition or knowing about knowing. Below, we review
the mechanisms by which the primate brain monitors itself,
while stressing their implications for building self-reflective
machines.

A Probabilistic Sense of Confidence

When taking a decision, humans feel more or less confident
about their choice. Confidence can be defined as a sense
of the probability that a decision or computation is correct
(Meyniel et al. 2015). Almost anytime the brain perceives or
decides, it also estimates its degree of confidence. Learning
is also accompanied by a quantitative sense of confidence:
humans evaluate how much trust they have in what they have
learned, and use it to weigh past knowledge versus present
evidence (Meyniel and Dehaene 2017). Confidence can be
assessed nonverbally, either retrospectively, by measuring
whether humans persist in their initial choice, or prospec-
tively, by allowing them to opt out from a task without even
attempting it. Both measures have been used in nonhuman
animals to show that they too possess metacognitive abilities
(Smith 2009). By contrast, most current neural networks lack
them: although they can learn, they generally lack meta-
knowledge of the reliability and limits of what has been
learned. A noticeable exception is biologically constrained
models that rely on Bayesian mechanisms to simulate the
integration of multiple probabilistic cues in neural circuits
(Ma et al. 2006). These models have been fruitful in describ-
ing how neural populations may automatically compute the
probability that a given process is performed successfully.
Although these implementations remain rare and have not
addressed the same range of computational problems as
traditional Al, they offer a promising venue for incorporating
uncertainty monitoring in deep-learning networks.
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Objective stimulus

33ms 467 ms
66 ms 434 ms
132 ms 368 ms
264ms 236ms

Fig. 2 Global availability: consciousness in the first sense (C1): Con-
scious subjective percepts are encoded by the sudden firing of stimulus-
specific neural populations distributed in interconnected, high-level
cortical areas, including lateral prefrontal cortex, anterior temporal
cortex, and hippocampus. (Top) During binocular flash suppression, the
flashing of a picture to one eye suppresses the conscious perception of a
second picture presented to the other eye. As a result, the same physical
stimulus can lead to distinct subjective percepts. This example illustrates
a prefrontal neuron sensitive to faces and unresponsive to checkers,
whose firing shoots up in tight association with the sudden onset of
subjective face perception (Panagiotaropoulos et al. 2012). (Bottom)

Subjective perception / single-cell activity

Non-preferred to preferred stimulus
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(spikes/sec)

Preferred to non-preferred stimulus

Response of neuron selective to World Trade Center
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During masking, a flashed image, if brief enough and followed by a
longer “mask,” can remain subjectively invisible. Shown is a neuron in
the entorhinal cortex firing selectively to the concept of “World Trade
Center.” Rasters in red indicate trials where the subject reported recog-
nizing the picture (blue = no recognition). Under masking, when the
picture is presented for only 33 ms there is little or no neural activity—
but once presentation time is longer than the perceptual threshold (66 ms
or larger), the neuron fires substantially only on recognized trials.
Overall, even for identical objective input (same duration), spiking
activity is higher and more stable for recognized trials (Quiroga et al.
2008)
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Explicit Confidence in Prefrontal Cortex

According to Bayesian accounts, each local cortical circuit
may represent and combine probability distributions in order
to estimate processing uncertainty (Ma et al. 2006). How-
ever, additional neural circuits may be required in order to
explicitly extract and manipulate confidence signals. MRI
studies in humans and physiological recordings in primates
and even in rats have specifically linked such confidence
processing to the prefrontal cortex (Fleming et al. 2010;
Miyamoto et al. 2017; Kepecs et al. 2008). Inactivation of
prefrontal cortex can induce a specific deficit in second-order
(i.e., metacognitive) judgments while sparing performance
on the first-order task (Miyamoto et al. 2017; Rounis et al.
2010). Thus, circuits in prefrontal cortex may have evolved
to monitor the performance of other brain processes.

Error Detection: Reflecting on One’s Own
Mistakes

Error detection provides a particularly clear example of self-
monitoring: just after responding, we sometimes realize that
we made an error and change our mind. Error detection
is reflected by two components of EEG activity, the error-
relativity negativity (ERN) and the positivity upon error (Pe),
which emerge in cingulate and medial prefrontal cortex just
after a wrong response, but before any feedback is received.
How can the brain make a mistake and detect it? One possi-
bility is that the accumulation of sensory evidence continues
after a decision is made, and an error is inferred whenever
this further evidence points in the opposite direction (Resulaj
et al. 2009). A second possibility, more compatible with
the remarkable speed of error detection, is that two parallel
circuits, a low-level sensory-motor circuit and a higher-level
intention circuit, operate on the same sensory data and signal
an error whenever their conclusions diverge (Charles et al.
2014, 2013).

Meta-Memory

Humans don’t just know things about the world—they actu-
ally know that they know, or that they don’t know. A familiar
example is having a word “on the tip of the tongue.” The term
“meta-memory” was coined to capture the fact that humans
report feelings of knowing, confidence, and doubts on their
memories. Meta-memory is thought to involve a second-
order system that monitors internal signals (e.g., the strength
and quality of a memory trace) to regulate behavior. Meta-
memory is associated with prefrontal structures whose phar-
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macological inactivation leads to a metacognitive impairment
while sparing memory performance itself (Miyamoto et al.
2017). Meta-memory is crucial to human learning and ed-
ucation, by allowing learners to develop strategies such as
increasing the amount of study or adapting the time allocated
to memory encoding and rehearsal (Dunlosky and Metcalfe
2008).

Reality Monitoring

In addition to monitoring the quality of sensory and memory
representations, the human brain must also distinguish self-
generated versus externally driven representations. Indeed,
we can perceive things, but also conjure them from imagina-
tion or memory. Hallucinations in schizophrenia have been
linked to a failure to distinguish whether sensory activity is
generated by oneself or by the external world (Frith 1992).
Neuroimaging studies have linked this kind of reality moni-
toring to the anterior prefrontal cortex (Simons et al. 2017).
In nonhuman primates, neurons in the prefrontal cortex dis-
tinguish between normal visual perception and active main-
tenance of the same visual content in memory (Mendoza-
Halliday and Martinez-Trujillo 2017).

Foundations of C2 Consciousness in Infants

Self-monitoring is such a basic ability that it is already
present during infancy (Fig. 3). The ERN, indicating error
monitoring, was observed when one-year-old infants made
a wrong choice in a perceptual decision task (Goupil and
Kouider 2016). Similarly, after 1-%—year-old infants pointed
to one of two boxes in order to obtain a hidden toy, they
waited longer for an upcoming reward (e.g., a toy) when
their initial choice was correct than when it was wrong, sug-
gesting that they monitored the likelihood that their decision
was right (Kepecs et al. 2008; Goupil and Kouider 2016).
Moreover, when given the opportunity to ask (nonverbally)
their parents for help instead of pointing, they chose this
opt-out option specifically on trials where they were likely
to be wrong, revealing a prospective estimate of their own
uncertainty (Goupil et al. 2016). The fact that infants can
communicate their own uncertainty to other agents further
suggests that they consciously experience metacognitive in-
formation. Thus, infants are already equipped with the ability
to monitor their own mental states. Facing a world where
everything remains to be learned, C2 mechanisms allow them
to actively orient towards domains that they know they don’t
know—a mechanism that we call “curiosity.”
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Fig. 3 Self-monitoring: consciousness in the second sense (C2): Self-
monitoring (also called “meta-cognition”), the capacity to reflect on
one’s own mental state, is available early during infancy. (Top) One-
and-half-year-old infants, after deciding to point to the location of a
hidden toy, exhibit two types of evidence for self-monitoring of their
decision: (1) they persist longer in searching for the hidden object
within the selected box when their initial choice was correct than
when it was incorrect. (2) When given the opportunity to ask for help,
they use this option selectively to reduce the probability of making

Dissociations Between C1 and C2

According to our analysis, C1 and C2 are largely orthogonal
and complementary dimensions of what we call conscious-
ness. On one side of this double dissociation, self-monitoring
can exist for unreportable stimuli (C2 without C1). Auto-
matic typing provides a good example: subjects slow down
after a typing mistake, even when they fail to consciously
notice the error (Logan and Crump 2010). Similarly, at the
neural level, an ERN can occur for subjectively undetected
errors (Nieuwenhuis et al. 2001). On the other side of this
dissociation, consciously reportable contents sometimes fail
to be accompanied by an adequate sense of confidence (C1
without C2). For instance, when we retrieve a memory, it
pops into consciousness (C1) but sometimes without any
accurate evaluation of its confidence (C2), leading to false
memories. As noted by Marvin Minsky, “what we call con-
sciousness [in the C1 sense] is a very imperfect summary
in one part of the brain of what the rest is doing.” The

an error. (Bottom) One-year-old infants were presented with either
a meaningless pattern or a face that was either visible or invisible
(depending on its duration) and then decided to gaze left or right in
anticipation of face reappearance. As for manual search, post-decision
persistence in waiting at the same gaze location increased for correct
compared to incorrect initial decisions. Moreover, EEG signals revealed
the presence of the error-related negativity over fronto-central electrodes
when infants make an incorrect choice. These markers of metacognition
were elicited by visible but not by invisible stimuli, as also shown in
adults (Charles et al. 2013)

imperfection arises in part from the fact that the conscious
global workspace reduces complex parallel sensory streams
of probabilistic computation to a single conscious sample
(Asplund et al. 2014; Vul et al. 2009; Moreno-Bote et al.
2011). Thus, probabilistic information is often lost on the
way, and subjects feel over-confident in the accuracy of their
perception.

Synergies Between C1 and C2 Consciousness

Because C1 and C2 are orthogonal, their joint possession
may have synergistic benefits to organisms. In one direction,
bringing probabilistic metacognitive information (C2) into
the global workspace (C1) allows it to be held over time,
integrated into explicit long-term reflection, and shared with
others. Social information sharing improves decisions: by
sharing their confidence signals, two persons achieve a better
performance in collective decision-making than either person



What Is Consciousness, and Could Machines Have It?

alone (Bahrami et al. 2010). In the converse direction, the
possession of an explicit repertoire of one’s own abilities
(C2) improves the efficiency with which C1 information is
processed. During mental arithmetic, children can perform
a C2-level evaluation of their available competences (e.g.,
counting, adding, multiplying, memory retrieval . . . ) and use
this information to evaluate how to best face a given arith-
metic problem (Siegler 1988). This functionality requires a
single “common currency” for confidence across difference
modules, which humans appear to possess (de Gardelle and
Mamassian 2014).

Endowing Machines with C1 and C2

How could machines be endowed with C1 and C2 compu-
tations? Let us return to the car light example. In current
machines, the “low gas” light is a prototypical example of
an unconscious modular signal (C0). When the light flashes,
all other processors in the machine remain uninformed and
unchanged: fuel continues to be injected in the carburetor, the
car passes gas stations without stopping (although they might
be present on the GPS map), etc. Current cars or cell phones
are mere collections of specialized modules that are largely
“unaware” of each other. Endowing this machine with global
information availability (C1) would allow these modules to
share information and collaborate to address the impending
problem (much like humans do when they become aware of
the light, or elephants of thirst).

While AI has met considerable success in solving spe-
cific problems, implementing multiple processes in a sin-
gle system and flexibly coordinating them remain difficult
problems. In the 1960s, computational architectures called
“blackboard systems” were specifically designed to post
information and make it available to other modules in a
flexible and interpretable manner, similar in flavor to a global
workspace (Baars 1988). A recent architecture called Pathnet
uses a genetic algorithm to learn which path through its
many specialized neural networks is most suited to a given
task (Fernando et al. 2017). This architecture exhibits robust,
flexible performance and generalization across tasks, and
may constitute a first step towards primate-like conscious
flexibility.

To make optimal use of the information provided by
the fuel-gauge light, it would also be useful for the car to
possess a database of its own capacities and limits. Such self-
monitoring (C2) would include an integrated image of itself,
including its current location, fuel consumption, etc., as well
as its internal databases (e.g., “knowing” that it possesses
a GPS map that can locate gas stations). A self-monitoring
machine would keep a list of its subprograms, compute
estimates of their probabilities of succeeding at various tasks,
and constantly update them (e.g., noticing if a part fails).
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Most present-day machine-learning systems are devoid of
any self-monitoring: they compute (C0O) without representing
the extent and limits of their knowledge or the fact that others
may have a different viewpoint than their own. There are
a few exceptions: Bayesian networks (Ma et al. 2006) or
programs (Tenenbaum et al. 2011) compute with probability
distributions and therefore keep track of how likely they are to
be correct. Even when the primary computation is performed
by a classical CNN, and is therefore opaque to introspection,
it is possible to train a second, hierarchically higher neural
network to predict the first one’s performance (Cleeremans
et al. 2007). This approach, whereby a system re-describes
itself, has been claimed to lead to “the emergence of internal
models that are metacognitive in nature and (...) make it
possible for an agent to develop a (limited, implicit, prac-
tical) understanding of itself” (Cleeremans 2014). Pathnet
(Fernando et al. 2017) uses a related architecture to track
which internal configurations are most successful at a given
task and use this knowledge to guide subsequent processing.
Robots have also been programed to monitor their learning
progress, and use it to orient resources towards the problems
that maximize information gain, thus implementing a form
of curiosity (Gottlieb et al. 2013).

An important element of C2 which has received relatively
little attention is reality monitoring. Bayesian approaches to
Al (Lake et al. 2017; Tenenbaum et al. 2011) have recog-
nized the usefulness of learning generative models that can
be jointly used for actual perception (present), prospective
planning (future), and retrospective analysis (past). In hu-
mans, the same sensory areas are involved in both perception
and imagination. As such, some mechanisms are needed to
tell apart self-generated versus externally triggered activity.
A powerful method for training generative models, called
adversarial learning (Goodfellow et al. 2014) involves having
a secondary network ‘“compete” against a generative net-
work, to critically evaluate the authenticity of self-generated
representations. When such reality monitoring (C2) is cou-
pled with C1 mechanisms, the resulting machine may more
closely mimic human consciousness in terms of affording
global access to perceptual representations while having an
immediate sense that their content is a genuine reflection of
the current state of the world.

Concluding Remarks

Our stance is based on a simple hypothesis: what we call
“consciousness” results from specific types of information-
processing computations, physically realized by the hard-
ware of the brain. It differs from other theories in being res-
olutely computational—we surmise that mere information-
theoretic quantities (Tononi et al. 2016) do not suffice to
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define consciousness unless one also considers the nature and
depth of the information being processed.

We contend that a machine endowed with C1 and C2
would behave as if it were conscious—for instance, it would
know that it is seeing something, would express confidence in
it, would report it to others, could suffer hallucinations when
its monitoring mechanisms break down, and may even expe-
rience the same perceptual illusions as humans. Still, such
a purely functional definition of consciousness may leave
some readers unsatisfied. Are we “over-intellectualizing”
consciousness, by assuming that some high-level cognitive
functions are necessary tied to consciousness? Are we leav-
ing aside the experiential component (“what it is like” to be
conscious)? Does subjective experience escape a computa-
tional definition?

While those philosophical questions lie beyond the scope
of the present paper, we close by noting that, empirically,
in humans, the loss of C1 and C2 computations co-varies
with a loss of subjective experience. For example, in humans,
damage to the primary visual cortex may lead to a neuro-
logical condition called “blindsight,” in which the patients
report being blind in the affected visual field. Remarkably,
those patients can localize visual stimuli in their blind field,
but they cannot report them (C1) nor can they effectively
assess their likelihood of success (C2)—they believe that
they are merely “guessing.” In this example at least, sub-
jective experience appears to cohere with possession of C1
and C2. Although centuries of philosophical dualism have
led us to consider consciousness as unreducible to physical
interactions, the empirical evidence is compatible with the
possibility that consciousness arises from nothing more than
specific computations.
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