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Abstract. Physical swarm system, including number of units, operated in phys-
ical time according to corporative algorithm, is considered. It is shown, that for
proper corporative algorithm interpretation it is necessary to synchronize compu-
tational processes in units. Structural-parametric model of synchronized swarm
operation, based on Petri-Markov nets apparatus, is worked out. In the Petri-
Markov net transitions are abstract analogues of synchronization procedure, while
places simulate corporative algorithm parts interpretation by swarm units. Primary
Petri-Markovmodel is transformed into complex semi-Markov process. Formulae
for calculation of stochastic and time characteristics of the process are obtained.
It is shown, that after transformation all methods of ordinary semi-Markov pro-
cesses investigation may be used for synchronized systems. With use the concept
of distributed forfeit effectiveness of synchronization is evaluated.

Keywords: Swarm · Unit · Corporative algorithm · Semi-Markov process ·
Petri-Markov net · Time characteristics · Stochastic characteristics · Distributed
forfeit effectiveness

1 Introduction

Physical swarms, which solve corporative task, are widely used in different branches of
human activity, industrial andmobile robotics, concurrent computation, control systems,
etc. [1–5]. Such systems include number of units, each of which operates accordingly
to its own algorithm realized on Von Neumann type controllers. Due to consecutive
interpretation of algorithm operators and accidental character of data processed, runtime
of controller is a random value, and outcome of program operation is stochastic [6]. So
for proper operation, when solving a corporative task, swarm should be tuned in such a
way, that corporative algorithm should be divided on pieces, which are realized on swarm
units, and interpretation of algorithm pieces should be carried out in the proper sequence
[7]. Such alignment is called synchronization. For optimal synchronization adequate
model of parallel process should be worked out. Below approach to simulation, based
on Petri-Markov nets [8], which from one side permits to evaluate random time intervals
characteristics, and from other side take into account interaction of parallel processes, is
used. Also for optimal synchronization it is necessary to have criterion, which permits
to evaluate effectiveness of corporative algorithm division. Below universal criterion,
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called distributed forfeit, is proposed, and formulae for effectiveness estimation with use
proposed criterion are obtained.

Approaches to simulation of synchronized operation of swarm are currently known
insufficiently, that explains necessity and relevance of the investigations in this domain.

2 Petri-Markov Model of Synchronized Operation

Operation of swarm, which includes M units and solves some corporative task, may be
described with use Petri-Markov net (PMN) apparatus [8]. Swarm operation model is
as follows (Fig. 1).
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Fig. 1. Petri-Markov network describing the synchronous operation of equipment.

� = {A,Z, ι(Z), o(Z)}, (1)

where A = {
A1, . . . ,Aj, . . . ,AJ

}
is the set op places, which describes operation of

M swarm units; Z = {
Z1, . . . ,Zj, . . . ,ZJ

}
is the set of transitions, which describes

synchronization procedures; ι(Z) o(Z) are input and output functions of transitions,
correspondingly; J number of operators in corporative algorithm of swarm behavior
when solving corporative task;

Aj = {
αj,0, αj,1, . . . , αj,m, . . . , αj,M

}
, 1 ≤ j ≤ J ; (2)
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Zj = {
ζj,0, ζj,1

}
, 1 ≤ j ≤ J ; (3)

⎧
⎪⎪⎨

⎪⎪⎩

ι(Z) == {
ι(Z1), . . . , ι

(
Zj

)
, . . . , ι(ZJ )
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ι
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Zj
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)
, ι

(
ζj,1
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, 1 ≤ j ≤ J ;

ι
(
ζj,0

) = αj,0;
ι
(
ζj,1

) = {
αj,1, . . . , αj,m, . . . , αj,M

};
(4)
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o(Z1), . . . , o

(
Zj

)
, . . . , o(ZJ )
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o
(
Zj

) = {
o
(
ζj,0

)
, o

(
ζj,1

)}
, 1 ≤ j ≤ J ;

o
(
ζj,0

) = {
αj,1, . . . , αj,m, . . . ,αj,M

};
o
(
ζj,1

) = {
α1,0, . . . , αj,0, . . . , αJ ,0

}
.

(5)

PMN operation may be considered as sequence semi-steps, which may be done
either from places to transitions,

(
αj,0, ζj,0

)
,
(
αj,m,j(e), ζj,1

)
, 1 ≤ j ≤ J , 1 ≤ m ≤ M ,

1 ≤ j(e) ≤ J (e), or from transitions to places,
(
ζj,0, αj,m

)
, 1 ≤ m ≤ M , 1 ≤ j ≤ J ;(

ζj,1, α1,0
)
, …,

(
ζj,1, αl,0

)
, …,

(
ζj,1, αJ ,0

)
, 1 ≤ j ≤ J . For semi-step execution from

places αj,0, αj,1, . . . , αj,m, . . . , αj,M into corresponding transitions random time interval
t should be spent, which begins from the moment, when semi-step was done into this
place. Time intervals are determined with an accuracy to time densities fj,0(t), fj,m,j(e)(t),
1 ≤ j ≤ J , 1 ≤ m ≤ M , 1 ≤ j(e) ≤ J (e). For semi-step execution from transition
ζj,0 simultaneously to all places αj,1, . . . ,αj,m, . . . , αj,M , constituting its output function
o
(
ζj,0

)
only semi-step

(
αj,0, ζj,0

)
should be done. For execution of one of semi-step from

the transition ζj,1, the proper
(
αj,m,j(e), ζj,1

)
semi-steps combination to named transition

must be done, due to only one direction of the set {1(e), . . . , j(e), . . . , J (e)} may be
choose for doing semi-step (Fig. 1).

In such a way, transitions ζj,0, and ζj,1, are the synchronized one: transition ζj,0
in the sense that all semi-steps, included into its output function o

(
ζj,0

)
, are executed

simultaneously (synchronous start), but transition ζj,1 in the sense, that semi-step from
it would not be done until all semi-steps from places of ι

(
ζj,1

)
will be done.

PMN timing elements are places. Time of residence PMN at places
α1,0, . . . , αj,0, . . . , αJ ,0 is as follows

fj,0(t) = δ(t), (6)

where δ(t) is the Dirac δ-function.
Time of residence PMN at places α1,1, . . . , α1,m, . . . , α1,M , …,

αj,1, . . . , αj,m, . . . , αj,M , …, αJ ,1, . . . , αJ ,m, . . . , αJ ,M is defined as the time of wan-
dering through semi-Markov processes [9, 10] μj,m(t), 1 ≤ j ≤ J , 1 ≤ m ≤ M ,
which are abstract analogues of swarmunit onboard computers operation, and are defined
as follows (Fig. 2):

μj,m = {
Aj,m, rj,m,hj,m(t)

}
, (7)

where Aj,m,
∣∣Aj,m

∣∣ = J (a)+1, is the set of states, which are abstract analogues of swarm
unit onboard computer algorithm operators; rj,m is the [J (a) + 1]×[J (a) + 1] adjacency
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Fig. 2. Semi-Markov process μj,m(t)

matrix, which describes links between operators; hj,m(t) is the [J (a) + 1]× [J (a) + 1]
semi-Markov matrix, which define time intervals of operators interpretation;

Aj,m = {
aj,m,0(a), aj,m,1(a), . . . , aj,m,J (a)−J (e), . . . , aj,m,J (a)−J (e)

}; (8)

rj,m = [
rj,m,j(a),n(a)

]; (9)

hj,m(t) = [
hj,m,j(a),n(a)(t)

]
. (10)

The set Aj,m is divided onto two disjoint subsets, subset of non-absorbing states

Ēj,m = {
aj,m,0(a), aj,m,1(a), . . . , aj,m,j(a), . . . , aj,m,J (a)−J (e)

}
, (11)

and subset of absorbing states Ej,m.

Ēj,m = {
aj,m,J (a)−J (e)+1, . . . , aj,m,j(e), . . . , aj,m,J (a)

}
. (12)

Wandering through states of semi-Markov process hj,m(t) start at the state aj,m,0(a),
which is the abstract analogue of “begin” operator. States aj,m,j(e) ∈ Ēj,m are the abstract
analogues of “end” operators for different outcomes of algorithm operation.

Element hj,m,j(a),n(a)(t) ∈ hj,m(t) performs weighted time density of m-th swarm
unit residence in the state aj,m,j(a) when decision was made about next switch into the
state aj,m,n(a).

Weighted time density of the semi-Markov process μj,m wandering from the state
aj,m,0(a) till the state aj,m,J (a)−J (e)+j(e) ∈ E is as follows:

hj,m,j(e)(t) = rI0(a) · L−1

[ ∞∑

k=1

{
L
[
hj,m(t)

]}k
]

· cIJ (a)−J (e)+j(e), (13)



Synchronized Swarm Operation 19

where RI0(a) is the row vector of size [J (a) + 1], whose 0(a)-th element is equal to
one, and all other elements are equal to zeros; cIJ (a)−J (e)+j(e) is column vector, whose[
J (a) − J (e) + j(e)

]
-th element is equal to one, and all other elements are equal to zeros;

L[. . .] i L−1[. . .] are correspondingly direct and inverse Laplace transforms.
When J (e) = 1 the algorithm simulated has the only outcome, and consequently

hj,m,J (e)(t) = fj,m,J (e)(t). When J (e) > 1, then semi-Markov process μj,m gets subset
E, veraciously, but the state aj,m,J (a)−J (e)+j(e) it gets with probability [12]

pj,m,j(e) =
∞∫

0

hj,m,j(e)(t)dt. (14)

Pure (non-weighted) time density, expectation and dispersion are equal, correspond-
ingly [13]

fj,m,j(e)(t) = hj,m,j(e)(t)

pj,m,j(e)
. (15)

Tj,m,j(e) =
∞∫

0

t · fj,m,j(e)(t)dt; (16)

Dj,m,j(e) =
∞∫

0

(
t − Tm(�),n(�)

)2 · fj,m,j(e)(t)dt. (17)

Due to μj,m gets subset E, veraciously,

J (e)∑

j(e)=1(e)

pj,m,j(e) = 1. (18)

3 Transformation PMN to Complex Semi-Markov Process

With use formulae (13), (14), (15) obtained, Petri-Markov sublet, circled on the Fig. 2
with dashed line, may be replaced with the single state, and so the PMN � may be
replaced with complex semi-Markov process, which describes behavior of the swarm as
a whole. Circled with dashed line subset is as follows

�j = {
Aj,Zj, ι

(
Zj

)
, o

(
Zj

)}
, (19)

Aj = {
αj,0, αj,1, . . . , αj,m, . . . ,αj,M

}
, (20)

⎧
⎨

⎩

Zj = {
ζj,0, ζj,1

};
ι
(
ζj,0

) = αj,0;
ι
(
ζj,1

) = {
αj,1, . . . , αj,m, . . . ,αj,M

};
, (21)
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⎧
⎨

⎩

o
(
Zj

) = {
o
(
ζj,0

)
, o

(
ζj,1

)};
o
(
ζj,0

) = {
αj,1, . . . , αj,m, . . . , αj,M

};
o
(
ζj,1

) = {
α1,0, . . . , αj,0, . . . , αJ ,0

} , (22)

Semi-Markov process is as follows

μ = {B, r,h(t)}, (23)

where B = {
b1, . . . , bj, . . . , bJ

}
is the set of states, which are abstract analogues of

execution by swarm the complex operation due to algorithm of swarm behavior;
r = [

rj,n
]
is the J ×J adjacencymatrix; hj,m(t) = [

hj,n(t)
]
is the J ×J semi-Markov

matrix.
Let us define probabilities and time densities of switch from the complex state bj ∈ B

to the complex state bn ∈ B. Semi-steps
(
αj,0, ζj,0

)
and

(
ζj,0, αj,m

)
, 1 ≤ m ≤ M are

executed during the time which is defined with Dirac δ-function. Semi-steps
(
ζj,1, α0,n

)
,

1 ≤ n ≤ J are executed after logical conditions fulfillment also during defied with
Dirac δ-function time. So time of residence the complex semi-Markov process in the state
bj till switch to the complex state bn may be defined as result of competition between
ordinary semi-Markov processes μj,m, with taking into account outcomes of getting
subsets Ej,m states.

For definition of all possible outcomes, from indexes trios
[
j,m, j(e)

]
, 1 ≤ m ≤ M ,

following set may be constructed

J̃j,m = {[
j,m, 1(e)

]
, . . . ,

[
j,m, j(e)

]
, . . . ,

[
j,m, J (e)

]}
, 1 ≤ m ≤ M . (24)

Cartesian product of sets J̃j,m gives all possible combinations of outcomes of swarm
units operation:

J̃j =
M∐

m=1

J̃j,m = {([
j, 1, 1(e)

]
, . . . ,

[
j,m, 1(e)

]
, . . . ,

[
j,M , 1(e)

])
, . . . ,

([
j, 1, j(e)

]
, . . . ,

[
j,m, j(e)

]
, . . . ,

[
j,M , j(e)

])
, . . . ,

([
j, 1, J (e)

]
, . . . ,

[
j,m, J (e)

]
, . . . ,

[
j,M , J (e)

])}; (25)

From (25) may be selected those vectors, combination of trios of which permit to do
emi-step

(
ζj,1, αn,0

)
:

J̃j ⊇ J̃j(n) = {([
j, 1, i(e, n)

]
, . . . ,

[
j,m, j(e, n)

]
, . . . ,

[
j,M , k(e, n)

])
,

. . . ,
([
j, 1, l(e, n)

]
, . . . ,

[
j,m, q(e, n)

]
, . . . ,

[
j,M , s(e, n)

])}; (26)

∣∣∣J̃j(n)
∣∣∣ = K(n) (27)

Probability of κ(n)-th combination emergence is as follows:

pj,κ(n) =
M∏

m=1

pj,m,j[e,κ(n)], 1 ≤ κ(n) ≤ K(n). (28)
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So, probability pj,n of switch the complex semi-Markov process μ from bj to bn is
equal to the sum

pj,n =
K(n)∑

κ(n)=1

pj(n),κ(n). (29)

For calculation of time density fj,n(t) one should consider the competition [9, 14]
on the transition ζj,1 between ordinary semi-Markov processes μj,m. Residence at the
state bj is considered as completed, when last ordinary semi-Markov process reaches its
Ej,m state according the combination (25). This is why semi-Markov processes compete
for not being the last in the competition. Time of reaching subset Ej,m by all M may be
described with the following formula:

fj,j[e,κ(n)](t) =
d

M∏

m=1
Fj,m,j[e,κ(n)](t)

dt

=
M∑

m=1

fj,m,j[e,κ(n)](t)
M∏

i=1,
i �=m

Fj,i,j[e,κ(n)](t). (30)

where fj,m,j[e,κ(n)](t) is the time density of reaching the transition ζj,1 by m-th semi-

Markov process due to κ(n)-th combination; F...(t) =
t∫

0
f...(τ)dτ if the function of

distribution of probabilities.
With taking into account combination of outcomes, weighted and pure time densities

of switch from the state bj to the state bn are as follows:

hj,n(t) =
K(n)∑

κ(n)=1

pj,κ(n)fj,j[e,κ(n)](t). (31)

fj,n(t) = hj,n(t)

pj,n
. (32)

After transformation for investigation of swarm behavior investigation and calcula-
tion of wandering time intervals all possible methods of semi-Markov process analysis
may be used [9–12].

4 Effectiveness of Synchronization

One of the important aspects of swarm operation organization is elimination of unpro-
ductive units downtime when corporative task is solved. Parameter, which defines effec-
tiveness,may be any, butwhen investigation of relay-races, distributed forfeit is ofwidely
used. Let us considered competition of m-th i l-th swarm units, first of which gets the
transition ζj,1 during time fj,m,j[e,κ(n)](t), but second - during the time fj,l,j[e,κ(n)](t). In
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the case of winning in competition the first swarm unit he waits until l-th swarm unit
gets ζj,1. Waiting time is calculated as follows [15]:

fj,m→l,j[e,κ(n)](t) =
η(t)

∞∫

0
fj,m,j[e,κ(n)](τ)fj,l,j[e,κ(n)](t + τ)dτ

∞∫

0
Fj,m,j[e,κ(n)](t)dFj,l,j[e,κ(n)](t)

, (33)

where τ is an auxiliary argument; η(t) is the Heaviside function.
Probability of such event, expectation and dispersion of waiting time are as follows

pj,m→l,j[e,κ(n)] =
∞∫

0

Fj,m,j[e,κ(n)](t)dFj,l,j[e,κ(n)](t); (34)

Tj,m→l,j[e,κ(n)] =
∞∫

0

t · fj,m→l,j[e,κ(n)](t)dt; (35)

Dj,m→l,j[e,κ(n)] =
∞∫

0

[
t − Tj,m→l,j[e,κ(n)]

]2
fj,m→l,j[e,κ(n)](t)dt. (36)

Every of value (34), (35), (36) may characterized those or that effectiveness
aspect, but more universal is the criterion, which is defined as distributed forfeit [15]
cj,m→l,j[e,κ(n)](t). Forfeit, receivesm-th swarm unit from the l-th swarm unit if it gets the
transition ζj,1 earlier. Latecomer pays forfeit during whole the time until he m-th swarm
unit waits him. In this case weighted forfeit sum is equal to

Cj,m→l,j[e,κ(n)] = pj,m→l,j[e,κ(n)]

∞∫

o

cj,m→l,j[e,κ(n)](t)fj,m→l,j[e,κ(n)](t)dt; (37)

Common forfeit sum, whichm-th swarm unit receives from all other units by κ(n)-th
combination variant is as follows:

Cj,m,j[e,κ(n)] =
M∑

l=1,
l �=m

Cj,m→l,j[e,κ(n)]. (38)

Common forfeit sum, whichm-th swarm unit receives from all other units in the case
of further switch into state bn is equal to

Cj,m,n =
K(n)∑

κ(n)=1

pj,m,j[e,κ(n)] · Cj,m,j[e,κ(n)]. (39)

Sum Cj(b),m depends on parameters of ordinary semi-Markov processes (7), and
forfeit discipline. Such summaybe used as optimization criterion in the task of producing
optimal swarm behavior.
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5 Conclusion

Working out the model of swarm synchronized operation opens new page in parallel
systems theory because it permits to link real physical parameters of hardware with
structure and logics of operation oh corporative algorithm, distributed among swarm
units. Algorithm splitting may be done with those or that way, but with use approach
proposed, swarm program designer for every mode of splitting may evaluate main char-
acteristics both corporative algorithm as a whole, and parts of it, realized on swarm
units.

Further investigation in this area should be directed to working out an algorithm
splitting optimization method, based on proposed approach to parallelization modeling
and evaluation of effectiveness.

The research was supported by the Foundation for Basic Research under the project
19-47-710004 r_a.
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