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Abstract. The Swarm Intelligence (SI) algorithms have been proved
to be a comprehensive method to solve complex optimization problems
by simulating the emergence behaviors of biological swarms. Nowadays,
data science is getting more and more attention, which needs quick man-
agement and analysis of massive data. Most traditional methods can
only be applied to continuous and differentiable functions. As a set of
population-based approaches, it is proven by some recent research works
that the SI algorithms have great potential for relevant tasks in this field.
In order to gather better insight into the utilization of these methods in
data science and to provide a further reference for future researches, this
paper focuses on the relationship between data science and swarm intel-
ligence. After introducing the mainstream swarm intelligence algorithms
and their common characteristics, both the theoretical and real-world
applications in the literature which utilize the swarm intelligence to the
related domains of data analytics are reviewed. Based on the summary of
the existing works, this paper also analyzes the opportunities and chal-
lenges in this field, which attempts to shed some light on designing more
effective algorithms to solve the problems in data science for real-world
applications.
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1 Introduction

Data science has been widely concerned in recent years. One of the most impor-
tant aspects of data science is data analytics, which aims to automatic extraction
of knowledge from massive data. Traditional model-based methods are mainly
on fitting the collected data to some predefined mathematical models. How-
ever, these models may fail when encountering problem varieties such as the
volume, the dynamical changes, noise, and so forth. With the increase of the
above varieties, traditional data processing approaches will become inefficient
or even ineffective. Because of the above difficulties, new and efficient methods
should be developed to deal with data analysis tasks [11]. Now the mainstream
methods are shifting from traditional model-driven to data-driven paradigms.
Many applications in data science can be transferred to optimization problems.
Thus it requires the algorithms to have the ability to search the solution space
and find the optimums [9]. Traditional model-based methods need the problems
that can be written into the form of continuous and differentiable functions.
However, in the face of a large amount of data and complex tasks, it is often
difficult to achieve.

The population-based meta-heuristic algorithms are good at solving those
problems, which the traditional methods can not deal with or, at least, be chal-
lenging to solve [10]. Swarm Intelligence (SI), a kind of meta-heuristic algorithms,
is attracting more and more attention and has been proven to be sufficient to
handle the large scale, dynamic, multi-objective problems in data analytics. As
shown in Fig.1, there are mainly two categories of approaches that utilize SI
algorithms in data science [41]. The first approach uses swarm intelligence as a
parameter tuning/optimizing method of data mining technologies may includ-
ing machine learning, statistics, and others. The second category directly applies
the ST algorithms on data organization, i.e., move data instances place on a low-
dimensional feature space to reach a suitable clustering or reduce the dimension-
ality of the data.
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Fig. 1. Two approaches of Swarm Intelligence for data science

Swarm Intelligence is a group of nature-inspired searching and optimization
techniques that studies collective intelligence in a population of low complex-
ity individuals [32]. The SI algorithms are inspired by the interactions among
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individuals within a group or several groups, which involves the patterns of com-
petition and cooperation [16]. SI algorithms use a population of individuals to
search in a problem domain. Each individual represents a potential solution for
the problem being optimized. During a guided search process, SI algorithms
maintain and improve a collection of potential solutions successively until some
predefined stopping condition is met, i.e., either the result is acceptable, or the
number of iterations is reached [26].

In order to gather better insight into the utilization of these methods in data
science and to provide a further reference for future researches, this paper focuses
on the data science related works that utilizing swarm intelligence in the past
few years. After introducing the mainstream swarm intelligence algorithms and
their common characteristics, both the theoretical and real-world applications in
the literature which utilize the swarm intelligence to the related domains of data
analytics are reviewed. Based on the summary of the existing works, this paper
also analyzes the opportunities and challenges in this field, which attempts to
shed some light on designing more effective algorithms to solve the problems in
data science for real-world applications. The remaining of the paper is organized
as follows. Section 2 briefly reviews the development of swarm intelligence and
some major algorithms in this field. Section 3 introduces some theoretical appli-
cations in the literature that adopt swarm intelligence algorithms in data science.
Section 4 gives a set of real-world applications. The opportunities and challenges
of applying SI algorithms to data science are discussed in Sect. 5, followed by
the conclusions reached in Sect. 6.

2 Swarm Intelligence Algorithms

2.1 General Procedure of SI Algorithms

SI Algorithms is a set of artificial intelligence techniques inspired by biologi-
cal swarm behaviors at both macro and micro levels. They generally have self-
organizing and decentralizing paradigms with the characteristics of scalability,
adaptability, robustness, and individual simplicity. In ST algorithms, a population
of individuals, which indicates potential candidate solutions, cooperating among
themselves and statistically becoming better and better over iterations, then
eventually finding good enough solutions [45]. In recent years, a large number of
swarm intelligence methods have been proposed. These methods have different
inspiration sources and various operations. In general, these different operations
are trying to balance the convergence and diversity of the search process, i.e.,
the balance between exploration and exploitation.

The general procedure of swarm intelligence algorithms can be summarized
in Algorithm 1. Starting from the random initialization of a population of indi-
viduals in solution space, followed by the corresponding evaluation process and
new solution generation process, after a certain number of iterations, swarm
intelligence algorithms can eventually find acceptable solutions.

As a general principle, the expected fitness value of a solution should improve
as more computational resources in time and/or space are given. More desirable,
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Algorithm 1. General procedure of swarm intelligence algorithms

=

Population Initialization: Generate random solutions for an optimized problem,
repair solutions if solutions violate any of the constraints;
Evaluate all initialized individuals;
while not terminated do
Reproduce individuals to form a new population;
Evaluate the fitness of each solution;
Select solutions with better fitness values;
Update solutions in the archive;

N O v wN

Result: Relatively good solution(s)

the quality of the solution should improve monotonically over iterations, i.e., the
fitness value of the solution at time ¢ + 1 should be no worse than the fitness at
time ¢.

2.2 Developments

In the past 30years, a large number of swarm intelligence algorithms have
emerged. They get inspiration from different phenomena, and design correspond-
ing new solution generation operations with the considerations of balancing con-
vergence and diversity of the swarm. As shown in Table 1, the source of inspira-
tions are varying from human society (BSO, TLBO), animals (BA, GWO, MA,
LOA), insects and birds (PSO, ACO, ABC, FA, CS, GSO), bacterias (BFO),
and also some human-made phenomenon (FWA).

With the increasing prominence of NP-hard problems, it is almost impossi-
ble to find the optimal solutions in real-time. The number of potential solutions
to these problems is often infinite. In this case, it is essential to find a feasi-
ble solution within the time limit. SI algorithms have found its practicability
in the practical application of solving nonlinear problems in almost all fields of
science, engineering, and industrial fields: From data mining to optimization,
computational intelligence, business planning, bioinformatics, as well as indus-
trial applications. Now is the era of big data, those mentioned above scientific
and engineering problems, more or less, are related to data issues. Swarm intel-
ligence has made a lot of successful applications in data relevant applications.
Meanwhile, with the increasing dynamics, noises, and complexity of tasks, there
still are many opportunities along with challenges in the applications of swarm
intelligence with data sciences.

3 Theoretical Applications

For decades, data mining has been a hot academic topic in the field of com-
puter science statistics. As mentioned, the SI algorithm is mainly used in data
mining tasks in two forms: parameter tuning or data organizing. Main applica-
tions, including dimensionality reduction, classification, and clustering, as well
as automated machine learning.
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Table 1. Some Swarm Intelligence algorithms with source of inspiration

Algorithms Source of inspiration

Brain Storm Opt., BSO [49] Brainstorming process of human Human society
Teaching-learning-based Opt., TLBO [48] | How teachers influence learners

Particle Swarm Opt., PSO [31] Bird flocking and foraging Insects, birds, etc.
Ant Colony Opt., ACO [15] Ants foraging mechanisms

Artificial Bee Colony, ABC [29] Foraging behavior of honey bees

Firefly Algorithms, FA [66] Bioluminescence of fireflies

Glowworm Swarm Opt., GSO [36] Luciferin induced glow of a glowworm

Cuckoo Search, CS [67] Obligate brood parasitism in cuckoos

Bat Algorithm, BA [68] Echolocation behaviors of micro-bats | Animals

Grey Wolf Opt., GWO [42] Leadership and hunting of grey wolves

Monkey Algorithm, MA [73] Climbing techniques used by monkeys

Lion Opt. Algorithm, LOA [69] Cooperation characteristics of lions

Bacterial Foraging Opt, BFO [13] Group foraging behavior of bacteria Microscopic
Fireworks Algorithm, FWA [57] Fireworks explosion Other

3.1 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of random vari-
ables or attributes in a dataset under consideration. It plays a vital role in data
preprocessing for data mining. There are generally two operations for dimen-
sionality reduction: feature selection and feature extraction. Feature selection is
a process of selecting an optimal subset of relevant features for use in model
construction. While feature extraction is a process of project original data in a
high dimensional space onto a smaller space. The accuracy of a model will be
enhanced by using wisely selected/projected features rather than all available
features in a large amount of data.

Since feature selection is an NP-hard combinatorial optimization problem,
SI algorithms are found to be a promise option to solve those kinds of problems.
A lot of related works has emerged recently, the following are some examples:
Gu et al. proposed a feature selection method for high dimensional classification
based on a very recent PSO variant, known as Competitive Swarm Optimizer
(CSO) [23]. Hang et al. designed an FA based method for feature selection, which
has the ability to prevent premature convergence [72]. Pourpanah et al. combine
the Fuzzy ARTMAP (FAM) model with the BSO algorithm for feature selection
tasks [47], etc. A more detailed survey about SI powered feature selection can
be found in [44].

3.2 Classification and Clustering

Classification and clustering are essential aspects of data science. They have been
studied widely in the domain of statistics, neural networks, machine learning, and
knowledgeable systems over the decades. In general, classification is to predict
the target class by analyzing the training dataset, while clustering is to group
the similar kind of targets by considering the most satisfying condition.
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The SI applications in those two aspects are mainly related to parameter
tuning. For classification, works can be found in literature that combine SI algo-
rithms with regression model [53], support vector machine [7,14,60], k-nearest
neighbor classifiers [58,65], Decision trees [3,35], as well as the neural networks
[30,62]. For clustering, some recent works are related to utilizing ST with k-means
[28,59,61], c-means [21], and other linear or non-linear clustering algorithms
[19,27].

3.3 Automated Machine Learning

In the past decade, the research and application of machine learning have seen
explosive growth, especially the Deep neural networks (DNNs) [37] has made
great progress in many application fields. However, the performance of many
machine learning methods is very sensitive to too many design decisions. In
particular, the architecture designing of DNNs is very complex and highly rely on
the experts’ prior knowledge. To address this problem, many SI based methods
are proposed to automatically design DNNs [54].

Wang et al. [64] propose an efficient particle swarm optimisation (EPSOCNN)
approach to automatically design the architectures of convolutional neural net-
works (CNNs). Specifically, in order to reduce the computation cost, EPSOCNN
minimises the hyperparameter space of CNNs to a single block and evaluates
the candidate CNNs with the small subset of the training set. Wang et al.
[63] propose a multi-objective evolutionary CNNs (MOCNN) to search the non-
dominant CNN architectures at the Pareto front in terms of the classification
accuracy objective and the computational cost objective. It introduces a novel
encoding strategy to encode CNNs and utilizes a multi-objective particle swarm
optimization (OMOPSO) to optimize the candidate CNNs architectures.

4 Real-World Applications

Social Community Network Analysis. Social network analysis plays an
important role in many real-world problems, such as the community detection
techniques [20,46] which aims to mine the implicit community structures in the
networks. Recently, many SI methods have shown a promising potential in many
community detection problems. Lyu et al. [40] propose a novel local community
detection method called evolutionary-based local community detection (ECLD),
which utilizes the entire obtained information and PSO algorithm to find the
local community structures in the complex networks. Sun et al. [55] introduce
a Parallel Self-organizing Overlapping Community Detection (PSOCD) method
inspired by the swarm intelligence system to detect the overlapping communities
in the large scale dynamic complex networks. It treats the complex networks as a
decentralized, self-organized, and self-evolving system. They can iteratively find
the community structures. Other releavant works can be refer to [6,22,25].
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Scheduling and Routing. Scheduling and routing problems are very common
in real world, as long as there are resources to manage. For example, the PSO
algorithm was used in power systems for demand response management [17],
consumer demand management [38], etc.

Internet of Things. Internet of Things (IoT) is another real-world application
in which ST algorithms have been widely used [5]. For example, in IoT-based
systems, the SI algorithm has been used for task scheduling [4]. In IoT-based
smart cities, SI algorithms have been used due to its population-based feature
to make the system flexible and scalable [70].

Bioinformatics is an interdisciplinary field that develops algorithms and soft-
ware tools for processing biological data samples. Various biological problems
could be represented as an optimization problem and solved by SI algorithms.
For example, the protein design problem could be represented as a combinatorial
optimization problem [24]. More information is summarized in [56].

Resource Allocation. Resource allocation is the process of allocating and
managing assets in an optimized way to support the strategic objectives of an
organization. SI algorithms have been used in many related applications such as
Cloud service resource allocation [8], wireless network planning [2], etc.

Others. Apart from the real-world applications discussed above, SI algorithms
have also been applied to many other real-world systems that are data related.
For example, the wind farm decision system [74] to reduce the cost of wind farms,
autonomous DDoS attack detection [33], anomaly intrusion detection [18], image
analysis [34,51], facial recognition [43], Medical Image Segmentation [52], and
natural language processing [1,39], etc.

5 Opportunities and Challenges

Unified Swarm Intelligence. Unified Swarm Intelligence Are there any uni-
versal rules behind this growing field? What are the fundamental components of
a good swarm intelligence algorithm to have? There are dozens of SI algorithms
proposed so far and sharing similar operations on solving problems. Is there a
unified framework for SI algorithms that has the ability to develop its learn-
ing capacity that can better solve an optimization problem which is unknown at
the algorithms design or implementation time [50]. How to correctly identify and
extract the fundamental components of SI algorithms, so that they can form new
algorithms automatically according to the character of the problem on hand, is
a challenge. Some efforts are trying to solve this problem [12,50,71], but more
work is needed to make it a reality.
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Handling High Dimensional and Dynamical Data. The “curse of dimen-
sionality” happens on high-dimensional data mining problems when the dimen-
sion of the data space increases. For example, the nearest neighbor approaches
are instrumental in categorization. However, for high dimensional data, it is com-
plicated to solve the similarity search problem due to the computational com-
plexity, which was caused by the increase of dimensionality. Furthermore, when
the problems are in non-stationary environments, or uncertain environments,
i.e., the conditions of data dynamically change over time, additional measures
must be taken, so that swarm intelligence algorithms are still able to solve sat-
isfactorily dynamic problems.

SI Based AutoML. As mentioned before, swarm intelligence algorithms can
not only be used for automatic optimization of hyper-parameters of the machine
learning model, but also the automated design of the model structure. With the
development of AutoML, the swarm intelligence algorithm has great potential in
this field. However, in addition to hyper-parameter optimization, the represen-
tation of learning model and the mechanism of model evaluation are also come
with challenges.

6 Conclusion

This paper has reviewed related works that applying swarm intelligence algo-
rithms in data science. The fundamentals and developments of swarm intelligence
are briefly summarized. The theoretical applications such as SI based dimension-
ality reduction, classification, clustering, as well as automated machine learning
are also introduced. A short review of real-world applications, including social
community network analysis, scheduling and routing, internet of things, bioinfor-
matics, and resource allocation, are also given, then followed by the opportunities
and challenges in this field. Generally speaking, the swarm intelligence algorithm
has been widely used in the field of data science in the past decades, including
theoretical and practical applications. Moreover, with the development of artifi-
cial intelligence technology and data science, swarm intelligence algorithms have
great opportunities in different aspects of data science. Nevertheless, it also faces
a series of challenges, which need more in-depth research.
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