
Action-Based Model Checking: Logic,
Automata, and Reduction

Stephen F. Siegel(B) and Yihao Yan

University of Delaware, Newark, DE 19716, USA
{siegel,yihaoyan}@udel.edu

Abstract. Stutter invariant properties play a special role in state-based
model checking: they are the properties that can be checked using par-
tial order reduction (POR), an indispensable optimization. There are
algorithms to decide whether an LTL formula or Büchi automaton (BA)
specifies a stutter-invariant property, and to convert such a BA to a form
that is appropriate for on-the-fly POR-based model checking.

The interruptible properties play the same role in action-based model
checking that stutter-invariant properties play in the state-based case.
These are the properties that are invariant under the insertion or dele-
tion of “invisible” actions. We present algorithms to decide whether an
LTL formula or BA specifies an interruptible property, and show how a
BA can be transformed to an interrupt normal form that can be used in
an on-the-fly POR algorithm. We have implemented these algorithms in
a new model checker named McRERS, and demonstrate their effective-
ness using the RERS 2019 benchmark suite.

Keywords: Model checking · Action · Event · LTL · Stutter-invariant

1 Introduction

To apply model checking to a concurrent system, one must formulate properties
that the system is expected to satisfy. A property may be expressed by specifying
acceptable sequences of states, or by specifying acceptable sequences of actions—
the events that cause the state to change. Each approach has advantages and
disadvantages, and in any particular context one may be more appropriate than
the other.

In the state-based context, there is a rich theory involving automata, logic,
and reduction for model checking. Some of the core ideas in this theory can be
summarized as follows. First, the behavior of the concurrent system is repre-
sented by a state-transition system T . One identifies a set AP of atomic proposi-
tions, and each state of T is labeled by the set of propositions which hold at that
state. An execution passes through an infinite sequence of states, which defines
a trace, i.e., a sequence of subsets of AP. A property is a set of traces, and T
satisfies the property if every trace of T is in P .

Y. Yan—Currently employed at Google.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 77–100, 2020.
https://doi.org/10.1007/978-3-030-53291-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_6&domain=pdf
http://orcid.org/0000-0001-9359-3332
http://orcid.org/0000-0001-7366-2003
https://doi.org/10.1007/978-3-030-53291-8_6

78 S. F. Siegel and Y. Yan

Properties may be specified by formulas in a temporal logic, such as LTL [26].
There are algorithms (e.g., [37]) to convert an LTL formula φ to an equivalent
Büchi automaton (BA) Bφ with alphabet 2AP. (Properties may also be specified
directly using BAs.) The system T satisfies φ if and only if the language of the
synchronous product T ⊗ B¬φ is empty. The emptiness of the language can be
determined on-the-fly, i.e., while the reachable states of the product are being
constructed.

A property P is stutter-invariant if it is closed under the insertion and dele-
tion of repetitions, i.e., s0s1 · · · ∈ P ⇔ si0

0 si1
1 · · · ∈ P holds for any positive

integers i0, i1, · · · . Many algorithms are known for deciding whether an LTL
formula or a BA specifies a stutter-invariant property [22,24]. There is also an
argument that only stutter-invariant properties should be used in practice. For
example, suppose that a trace is formed by sampling the state of a system once
every millisecond. If we sample the same system twice each millisecond, and
there are no state changes in the sub-millisecond intervals, the second trace will
be stutter-equivalent to the first. A meaningful property should be invariant
under this choice of time resolution.

Stutter-invariant properties are desirable for another reason: they admit the
most significant optimization in model checking, partial order reduction (POR,
[15,23,25]). At each state encountered in the exploration of the product space,
an on-the-fly POR scheme produces a subset of the enabled transitions. Restrict-
ing the search to the transitions in those subsets does not affect the language
emptiness question. Recent work has revealed that the BA must have a certain
form—“SI normal form”—when POR is used with on-the-fly model checking,
but any BA with a stutter-invariant language can be easily transformed into SI
normal form [27].

The purpose of this paper is to elaborate an analogous theory for event-
based models. Event-based models of concurrency are widely used and have
been extremely influential for over three decades. For example, process algebras,
such as CSP, are event-based and use labeled transition systems (LTSs) for the
semantic model. Event-based models are the main formalism used in assume-
guarantee reasoning (e.g, [10]), and in many other areas. There are mature model
checking and verification tools for process algebras and LTSs, and which have
significant industrial applications; see, e.g., [13]. Temporal logics, including LTL,
CTL, and CTL*, have long been used to specify event-based systems [3,7,12].

We call the class of properties in the action context that are analogous to
the stutter-invariant properties in the state context the interruptible properties
(Sect. 3). These properties are invariant under “action stuttering” [34], i.e., the
insertion or deletion of “invisible” actions. We present algorithms for deciding
whether an LTL formula or a BA specifies an interruptible property (Theorems
1 and 2); to the best of our knowledge, these are the first published algorithms
for deciding this property of formulas or automata.

Interruptible properties play the same role in action-based POR that stutter-
invariant properties play in state-based POR. In particular, we present an action-
based on-the-fly POR algorithm that works for interruptible properties (Sect. 4).

Action-Based Model Checking: Logic, Automata, and Reduction 79

As with the state-based case, the algorithm requires that the BA be in a cer-
tain normal form. We introduce a novel interrupt normal form (Definition 11) for
this purpose, and show how any BA with an interruptible language can be trans-
formed into that form. The relation to earlier work is discussed in Sect. 5. The
effectiveness of these reduction techniques is demonstrated by applying them to
problems in the 2019 RERS benchmark suite (Sect. 6).

2 Preliminaries

Let S be a set. 2S denotes the set of all subsets of S. S∗ denotes the set of
finite sequences of elements of S; Sω the infinite sequences. Let ζ = s0s1 · · · be
a (finite or infinite) sequence and i ≥ 0. If ζ is finite of length n, assume i < n.
Then ζ(i) denotes the element si. For any i ≥ 0, ζi denotes the suffix sisi+1 · · · .
(ζi is empty if ζ is finite and i ≥ n).

For ζ ∈ S∗ and η ∈ S∗ ∪ Sω, ζ ◦ η denotes the concatenation of ζ and η.
If S ⊆ T and η is a sequence of elements of T , η|S denotes the sequence

obtained by deleting from η all elements not in S.

2.1 Linear Temporal Logic

Let Act be a universal set of actions. We assume Act is infinite.

Definition 1. Form (the LTL formulas over Act) is the smallest set satisfying:

– true ∈ Form,
– if a ∈ Act then a ∈ Form, and
– if f and g are in Form, so are ¬f , f ∧ g, Xf , and fUg.

Additional operators are defined as shorthand for other formulas: false = ¬true,
f ∨ g = ¬((¬f) ∧ ¬g), f → g = (¬f) ∨ g, Ff = trueUf , Gf = ¬F¬f , and
fWg = (fUg) ∨ Gf . �
Definition 2. The alphabet of an LTL formula f , denoted αf , is the set of
actions that occur syntactically within f . �
Definition 3. The action-based semantics of LTL is defined by the relation
ζ |=A f , where ζ ∈ Actω and f ∈ Form, which is defined as follows:

– ζ |=A true,
– ζ |=A a iff ζ(0) = a,
– ζ |=A ¬f iff ζ �|=A f ,
– ζ |=A f ∧ g iff ζ |=A f and ζ |=A g,
– ζ |=A Xf iff ζ1 |=A f , and
– ζ |=A fUg iff ∃i ≥ 0 . (ζi |=A g ∧ ∀j ∈ 0..i − 1 . ζj |=A f). �
When using the action-based semantics, the logic is sometimes referred to as
“Action LTL” or ALTL [11,12].

80 S. F. Siegel and Y. Yan

The state-based semantics is defined by a relation ξ |=S f , where ξ ∈ (2Act)ω.
The definition of |=S is well-known, and is exactly the same as Definition 3,
except that ξ |=S a iff a ∈ ξ(0). The action semantics are consistent with
the state semantics in the following sense. Let f ∈ Form, and ζ = a0a1 · · · ∈
Actω. Let ξ = {a0}{a1} · · · ∈ (2Act)ω. Then ζ |=A f iff ξ |=S f . The main
difference between the state- and action-based formalisms is that in the state-
based formalism, any number of atomic propositions can hold at each step. In
the action-based formalism, precisely one action occurs in each step.

Definition 4. Let f, g ∈ Form. Define

– (action equivalence) f ≡A g if (ζ |=A f ⇔ ζ |=A g) for all ζ ∈ Actω

– (state equivalence) f ≡S g if (ξ |=S f ⇔ ξ |=S g) for all ξ ∈ (2Act)ω. �
The following fact about the state-based semantics can be proved by induc-

tion on the formula structure:

Lemma 1. Let f ∈ Form and ξ = s0s1 · · · ∈ (2Act)ω. Let ξ′ = s′
0s

′
1 · · · , where

s′
i = αf ∩ si. Then ξ |=S f iff ξ′ |=S f .

The following shows that action LTL, like ordinary state-based LTL, is a
decidable logic:

Proposition 1. Let f, g ∈ Form, A = αf ∪ αg, and

h = G
[(∧

a∈A

¬a
) ∨

∨
a∈A

(
a ∧

∧
b∈A\{a}

¬b
)]

.

Then f ≡A g ⇔ f ∧ h ≡S g ∧ h. In particular, action equivalence is decidable.

Proof. Note the meaning of h: at each step in a state-based trace, at most one
element of A is true.

Suppose f ∧ h ≡S g ∧ h. Let ζ = a0a1 · · · ∈ Actω. Let ξ = {a0}{a1} · · · . We
have ξ |=S h. By the consistency of the state and action semantics, we have

ζ |=A f ⇔ ξ |=S f ⇔ ξ |=S f ∧h ⇔ ξ |=S g ∧h ⇔ ξ |=S g ⇔ ζ |=A g,

hence f ≡A g.
Suppose instead that f ≡A g. We wish to show ξ |=S f ∧ h ⇔ ξ |=S g ∧ h for

any ξ = s0s1 · · · ∈ (2Act)ω. By Lemma 1, it suffices to assume si ⊆ A for all i.
Let τ be any element of Act \ A. (Here we are using the fact that Act is infinite,

while A is finite.) If |si| > 1 for some i, then ξ violates h and therefore violates both
f ∧h and g∧h. So suppose |si| ≤ 1 for all i, which means ξ |=S h. Let ζ = a0a1 · · · ,
where ai is the sole member of si if |si| = 1, or τ if |si| = 0. By Lemma 1, ξ |=S f
iff {a0}{a1} · · · |=S f . By the consistency of the action and state semantics, this is
equivalent to ζ |=A f . A similar statement holds for g. Hence

ξ |=S f ∧h ⇔ ξ |=S f ⇔ ζ |=A f ⇔ ζ |=A g ⇔ ξ |=S g ⇔ ξ |=S g ∧h.

The proposition reduces the question of action equivalence to one of ordinary
(state) equivalence of LTL formulas, which is known to be decidable ([26], see
also [36, Thm. 24]). �

Action-Based Model Checking: Logic, Automata, and Reduction 81

Definition 5. For A ⊆ Act and f ∈ Form with αf ⊆ A, let

L(f,A) = {ζ ∈ Aω | ζ |= f}.

�

2.2 Büchi Automata

Definition 6. A Büchi Automaton (BA) over Act is a tuple (S,Σ,→, S0, F)
where

1. S is a finite set of states,
2. Σ, the alphabet, is a finite subset of Act,
3. →⊆ S × Σ × S is the transition relation,
4. S0 ⊆ S is the set of initial states, and
5. F ⊆ S is the set of accepting states. �

We will use the following notation and terminology for a BA B. The source of
a transition (s, a, s′) is s, the destination is s′, and the label is a. We write s

a−→ s′

as shorthand for (s, a, s′) ∈→, and s
a0a1...an−−−−−−→ s′ for ∃s1, s2, . . . sn ∈ S . s

a0−→
s1

a1−→ s2 . . . sn
an−−→ s′. For a ∈ A and s ∈ S, we say a is enabled at s if s

a→ s′

for some s′ ∈ S. The set of all actions enabled at s is denoted enabled(B, s).
For s ∈ S, a path in B starting from s is a (finite or infinite) sequence π of

transitions such that (1) if π is not empty, the source of π(0) is s, and (2) the
destination of π(i) is the source of π(i + 1) for all i for which these are defined.
If π is not empty, define first(π) to be s; if π is finite, define last(π) to be the
destination of the last transition of π. We say π spells the word a0a1 · · · , where
ai is the label of π(i).

An infinite path is accepting if it visits a state in F infinitely often. An
(accepting) trace starting from s is a word spelled by an (accepting) path starting
from s. An (accepting) trace of B is an (accepting) trace starting from an initial
state. The language of B, denoted L(B), is the set of all accepting traces of B.

Proposition 2. There is an algorithm that consumes any finite subset A of Act
and an f ∈ Form with αf ⊆ A, and produces a BA B with alphabet A such that
L(B) = L(f,A).

Proof. There are well-known algorithms to produce a BA C with alphabet 2A

which accepts exactly the words satisfying f under the state semantics (e.g.,
[37]). Let B be the same as C, except the alphabet is A and there is a transition

s
a−→ s′ in B iff there is a transition s

{a}−−→ s′ in C. We have

a0a1 · · · ∈ L(B) ⇔ {a0}{a1} · · · ∈ L(C)
⇔ {a0}{a1} · · · |=S f

⇔ a0a1 · · · ∈ L(f,A).

�

82 S. F. Siegel and Y. Yan

In practice, tools that convert LTL formulas to BAs produce an automaton
in which an edge is labeled by a propositional formula φ over αf . Such an edge
represents a set of transitions, one for each P ⊆ A for which φ holds for the
valuation that assigns true to each element of P and false to each element of
A \ P . In this case, the conversion to B entails creating one transition for each
a ∈ A for which φ holds when true is assigned to a and false is assigned to all
other actions.

Definition 7. Let Bi = (Si, Σi,→i, S
0
i , Fi) (i = 1, 2) denote two BAs over Act.

The parallel composition of B1 and B2 is the BA

B1 ‖ B2 ≡ (S1 × S2, Σ1 ∪ Σ2,→, S0
1 × S0

2 , F1 × F2),

where → is defined by

s1
a−→1 s′

1 a �∈ Σ2

〈s1, s2〉 a−→ 〈s′
1, s2〉

s2
a−→2 s′

2 a �∈ Σ1

〈s1, s2〉 a−→ 〈s1, s′
2〉

s1
a−→1 s′

1 s2
a−→2 s′

2

〈s1, s2〉 a−→ 〈s′
1, s

′
2〉

.

�
If we flatten all tuples (e.g., identify (S1 × S2) × S3 with S1 × S2 × S3) then

‖ is an associative operator.
Note that in the special case where the two automata have the same alphabet

(Σ1 = Σ2), every action is synchronizing, and the parallel composition is the
usual “synchronous product.” In this case, L(B1 ‖ B2) = L(B1) ∩ L(B2).

2.3 Labeled Transition Systems

Definition 8. A labeled transition system (LTS) over Act is a tuple (Q,A,→, q0)
for which (Q,A,→, {q0}, Q) is a BA over Act. In other words, it is a BA in which
all states are accepting and there is only one initial state. �
Definition 9. Let M be an LTS with alphabet A, and f an LTL formula with
αf ⊆ A. We write M |= f if L(M) ⊆ L(f,A). �

The following observation is the basis of the automata-theoretic approach to
model checking (cf. [36, §4.2]):

Proposition 3. LetM be anLTSwith alphabetA and f anLTL formulawithαf ⊆
A. Let B be a BA with L(B) = L(¬f,A). Then M |= f ⇔ L(M ‖ B) = ∅.
Proof. M and B have the same alphabet, so L(M ‖ B) = L(M) ∩ L(B), hence

L(M ‖ B) = L(M) ∩ L(¬f,A) = L(M) ∩ (Aω \ L(f,A)) = L(M) \ L(f,A).

This set is empty iff L(M) ⊆ L(f,A). �
There are various algorithms to determine language emptiness of a BA; in this

paper we use the well-known Nested Depth First Search (NDFS) algorithm [2].

Action-Based Model Checking: Logic, Automata, and Reduction 83

3 Interruptible Properties

3.1 Definition and Examples

An LTS comes with an alphabet, which is a subset A of Act. By a property over
A we simply mean a subset P of Aω. We say a trace ζ ∈ Aω satisfies P if ζ ∈ P .
We have already seen two ways to specify properties. An LTL formula f with
αf ⊆ A specifies the property L(f,A). A Büchi automaton B with alphabet A
specifies the property L(B). We next define a special class of properties:

Definition 10. Given sets V ⊆ A ⊆ Act, we say a property P over A is V -
interruptible if

ζ|V = η|V ⇒ (ζ ∈ P ⇔ η ∈ P) for all ζ, η ∈ Aω.

An LTL formula f is V -interruptible if L(f,Act) is V -interruptible. We say f is
interruptible if f is αf -interruptible. The set of all interruptible LTL formulas
is denoted Intrpt. �
The set V is known as the visible set. The definition essentially says that the
insertion or deletion of invisible actions (those in A\V) has no bearing on whether
a trace satisfies P . Put another way, the question of whether a trace belongs to
P is determined purely by its visible actions. The following collects some basic
facts about interruptibility. All follow immediately from the definitions.

Proposition 4. Let V ⊆ A ⊆ Act, P ⊆ Aω and f, g ∈ Form. Then all of the
following hold:

1. P is A-interruptible.
2. If P is V -interruptible, and V ⊆ V ′, then P is V ′-interruptible.
3. If f is interruptible and αf ⊆ A, then L(f,A) is αf-interruptible.
4. f is interruptible iff the following holds:

∀ζ, η ∈ Actω . (ζ|αf = η|αf ∧ ζ |=A f) ⇒ η |=A f.

5. If αf = αg and f ≡A g then f is interruptible iff g is interruptible.

Many, if not most, properties that arise in practice are V -interruptible for
the set V of actions that are mentioned in the property. Assuming a, b, and c
are distinct actions, we have:

– For any n ≥ 0, the property “a occurs at most n times” is {a}-interruptible,
since the insertion or deletion of actions other than a cannot affect whether
a word satisfies that property. The same is true for the properties “a occurs
at least n times” and “a occurs exactly n times.” These are examples of
the bounded existence pattern with global scope in a widely used property
specification pattern system [5]. LTL formulas in this category include G¬a
(a occurs 0 times), Fa (a occurs at least once), and F(a ∧XFa) (a occurs at
least twice).

84 S. F. Siegel and Y. Yan

– The property “after any occurrence of a, b eventually occurs”, G(a → Fb), is
{a, b}-interruptible. This is the response pattern with global scope [5].

– The property “after any occurrence of a, c will eventually occur, and no b will
occur until c”, G(a → ((¬b)Uc)), is {a, b, c}-interruptible. This is a variation
on the absence pattern with after-until scope, and is used to specify mutual
exclusion [5].

On the other hand, the property “a occurs at time 0”, (LTL formula a) is
not {a}-interruptible. Neither is “an event other than a occurs at least once”
(F¬a) nor “only a occurs” (Ga). The property “every occurrence of a is followed
immediately by b,” formula G(a → Xb), is not {a, b}-interruptible. The property
“after any occurrence of a, c eventually occurs and until then only b occurs,”
G(a → X(bUc)), is not {a, b, c}-interruptible.

The following provides a useful way to show that two interruptible properties
are equal:

Lemma 2. Suppose V ⊆ A ⊆ Act and P1 and P2 are V -interruptible properties
over A. Let F = V ω ∪ V ∗ ◦ (A \ V)ω. Then P1 = P2 iff P1 ∩ F = P2 ∩ F .

Proof. Assume P1 ∩ F = P2 ∩ F . Let ζ ∈ P1. If ζ|V is infinite, then since
ζ|V |V = ζ|V , and P1 is V -interruptible, ζ|V ∈ P1. But ζ|V ∈ V ω, so ζ|V ∈ P1∩F ,
and therefore ζ|V ∈ P2. Since P2 is V -interruptible, ζ ∈ P2.

If ζ|V is finite, there is a prefix θ of ζ such that ζ = θ ◦ η, with η ∈ (V \ A)ω.
Let ξ = θ|V ◦ η. We have ξ ∈ V ∗ ◦ (A \ V)ω and ξ|V = ζ|V , hence ξ ∈ P1 ∩ F .
Therefore ξ ∈ P2, and since P2 is V -interruptible, ζ ∈ P2. �
The elements of F are known as the V -interrupt-free words over A.

3.2 Decidability of Interruptibility of LTL Formulas

We next show that interruptibility is a decidable property of LTL formulas.
Define intrpt : Form → Form as follows. Given f ∈ Form, let V = αf and V̂ =∨

a∈V a, and define β : Form → Form by

β(true) = true

β(a) = (¬V̂)Ua

β(¬f1) = ¬β(f1)
β(f1 ∧ f2) = β(f1) ∧ β(f2)

β(Xf1) = ((¬V̂)U(V̂ ∧ Xβ(f1))) ∨ ((G¬V̂) ∧ Xβ(f1))
β(f1Uf2) = β(f1)Uβ(f2).

for a ∈ Act and f1, f2 ∈ Form. Let intrpt(f) = β(f).

Theorem 1. Let f be an LTL formula over Act. The following hold:

1. intrpt(f) is interruptible.
2. f is interruptible iff intrpt(f) ≡A f .

In particular, interruptibility of LTL formulas is decidable.

Action-Based Model Checking: Logic, Automata, and Reduction 85

Before proving Theorem 1, we give some intuition regarding the definition of
intrpt. Function β can be thought of as consuming a property on V -interrupt-free
words (i.e., words in V ω ∪ V ∗ ◦ (A \ V)ω) and extending it to a property on all
words (Aω). It is designed so that β(g) is V -interruptible and agrees with g on
V -interrupt-free words. For example, the formula a means “a is the first action”
(in an interrupt-free word), which extends to the property “a is the first visible
action” (in an arbitrary word). The formula Xf1 states “f1 holds after removing
the first action,” so β(Xf1) should declare “β(f1) holds after removing the prefix
ending in the first visible action.” That is almost correct, but there is also the
possibility that an element of Aω has no visible action, which is the reason for
the second clause in the definition of β(Xf1).

The remainder of this subsection is devoted to the proof of Theorem 1. First
note that intrpt(f) and f have the same alphabet, i.e., αintrpt(f) = V .

Proof of Part 1. Say a subformula g of f is good if β(g) is V -interruptible,
i.e.,

∀ζ, η ∈ Actω . ζ|V = η|V ⇒ (ζ |=A β(g) ⇔ η |=A β(g)).

We show by induction on formula structure that every subformula of f is good.
The case g = f will show that intrpt(f) is interruptible. Assume throughout that
ζ|V = η|V .

If g = true then β(g) = true, so g is clearly good.
If g = a for some a ∈ Act, then ζ |=A β(g) = (¬V̂)Ua iff ζ|V is non-empty

and ζ|V (0) = a. Since this depends only on ζ|V , g is good.
If g = ¬f1 and f1 is good, then g is good because

ζ |=A β(g) ⇔ ζ �|=A β(f1) ⇔ η �|= β(f1) ⇔ η |=A β(g).

If g = f1 ∧ f2, and f1 and f2 are good, then g is good because

ζ |=A β(g) ⇔ ζ |=A β(f1) ∧ ζ |=A β(f2)
⇔ η |=A β(f1) ∧ η |=A β(f2) ⇔ η |=A β(g).

Suppose g = Xf1 and f1 is good. There are two cases:

– Case 1: ζ|V is empty. Then no suffix of ζ or η satisfies V̂ . Hence

θ |=A β(g) ⇔ θ |=A Xβ(f1) ⇔ θ1 |=A β(f1) (θ ∈ {ζ, η}).

Moreover, ζ1|V = η1|V (as both are empty), and β(f1) is good, so we have
ζ1 |=A β(f1) ⇔ η1 |=A β(f1). These show ζ |=A β(g) ⇔ η |=A β(g).

– Case 2: ζ|V is nonempty. Let i be the index of the first occurrence of an
element of V in ζ, and j the similar index for η. We have

ζi+1|V = (ζ|V)1 = (η|V)1 = ηj+1|V .

As f1 is good, it follows that ζi+1 |=A β(f1) ⇔ ηj+1 |=A β(f1). Hence

ζ |=A β(g) ⇔ ζi+1 |=A β(f1) ⇔ ηj+1 |=A β(f1) ⇔ η |=A β(g).

86 S. F. Siegel and Y. Yan

Suppose g = f1Uf2 and f1 and f2 are good. We have β(g) = β(f1)Uβ(f2).
If ζ |=A β(g) then there exists i ≥ 0 such that ζi |=A β(f2) and ζj |=A β(f1)
for j < i. Now there is some i′ ≥ 0 such that ηi′ |V = ζi|V and for all j′ < i′,
there is some j < i such that ηj′ |V = ζj |V . It follows that η |= β(g). Hence g is
good.

Proof of Part 2. Suppose first that intrpt(f) ≡A f . From part 1, intrpt(f) is
interruptible, so Proposition 4(5) implies f is interruptible.

Suppose instead that f is interruptible. We wish to show intrpt(f) ≡A f . By
Lemma 2, it suffices to show the two formulas agree on V -interrupt-free words.
We will show by induction that for each subformula g of f , ζ |=A g ⇔ ζ |=A

β(g) for all V -interrupt-free ζ. The case g = f will complete the proof.
If g = true, β(g) = true and the condition clearly holds.
If g = a for some a ∈ Act, ζ |=A β(g) ⇔ ζ |=A (¬V̂)Ua ⇔ ζ |=A a, as ζ

is V -interrupt-free.
If g = ¬f1 and the inductive hypothesis holds for f1, then

ζ |=A β(g) ⇔ ζ �|=A β(f1) ⇔ ζ �|=A f1 ⇔ ζ |=A g.

If g = f1 ∧ f2 and the inductive hypothesis holds for f1 and f2 then

ζ |=A β(g) ⇔ ζ |=A β(f1)∧ζ |=A β(f2) ⇔ ζ |=A f1∧ζ |=A f2 ⇔ ζ |=A g.

Suppose g = Xf1 and the inductive hypothesis holds for f1. Note that any
suffix of a V -interrupt-free word, e.g., ζ1, is also V -interrupt-free. If ζ|V is empty,

ζ |=A β(g) ⇔ ζ |=A Xβ(f1) ⇔ ζ1 |=A β(f1) ⇔ ζ1 |=A f1 ⇔ ζ |=A g.

If ζ|V is nonempty, then ζ |=A V̂ , so

ζ |=A β(g) ⇔ ζ |=A (¬V̂)U(V̂ ∧ Xβ(f1)) ⇔ ζ |=A Xβ(f1)

⇔ ζ1 |=A β(f1) ⇔ ζ1 |=A f1 ⇔ ζ |=A g.

If g = f1Uf2, then applying the inductive hypothesis to f1 and f2 yields

ζ |=A g ⇔ ∃i > 0 . ζi |=A f2 ∧ ∀j < i . ζj |=A f1

⇔ ∃i > 0 . ζi |=A β(f2) ∧ ∀j < i . ζj |=A β(f1)
⇔ ζ |=A β(g).

Decidability follows from part 2 and Proposition 1. This completes the proof
of Theorem 1.

Remark 1. The definition of β(Xf1) is convenient for the proof but shorter def-
initions also work. If the formula f1 is satisfied by some word ζ ∈ (A \V)ω, then
all such ζ satisfy f1, and the clause (G¬V̂) ∧ Xβ(f1) can be replaced by G¬V̂ .
Otherwise, that clause can be removed altogether. One can determine whether a
formula is satisfied by such a word by replacing every occurrence of every action
with false.

Action-Based Model Checking: Logic, Automata, and Reduction 87

3.3 Generation of Interruptible LTL Formulas

The following can be used to show that many formulas are interruptible. It
establishes a kind of parity pattern involving a class of positive formulas (Pos)
and a class of negative formulas (Neg). It is proved in [28].

Proposition 5. There exist Pos,Neg ⊆ Form such that (i) for all f, f ′ ∈ Form,

(f ∈ Pos ∧ f ′ ≡A f) ⇒ f ′ ∈ Pos

(f ∈ Neg ∧ f ′ ≡A f) ⇒ f ′ ∈ Neg,

and (ii) for all a ∈ Act, f1, f2 ∈ Intrpt, g1, g2 ∈ Pos, and h1, h2 ∈ Neg,

false, a, ¬h1, g1 ∧ g2, g1 ∨ g2, a ∧ f1, a ∧ Xf1 ∈ Pos

true, ¬a, ¬g1, h1 ∧ h2, h1 ∨ h2, ¬a ∨ f1, ¬a ∨ Xf1 ∈ Neg

true, false, f1 ∧ f2, f1 ∨ f2, ¬f1, Fg1, Gh1, f1Uf2, h1Ug1, h1Uf1 ∈ Intrpt.

Consider the examples from Sect. 3.1. The formula a is positive, so Fa is inter-
ruptible. Since ¬a is negative, G¬a is interruptible. Since Fa is interruptible,
a ∧ XFa is positive, hence F(a ∧ XFa) is interruptible.

Formula G(a → Fb) is seen to be interruptible as follows. Since b ∈ Pos,
Fb ∈ Intrpt, whence ¬a ∨ Fb ∈ Neg. Since this last formula is action-equivalent
to a → Fb, we have a → Fb ∈ Neg. Therefore G(a → Fb) ∈ Intrpt.

Similarly, (¬b)Uc ∈ Intrpt, so a → X((¬b)Uc) ∈ Neg. This negative formula
is action-equivalent to a → ((¬b)Uc), whence G(a → ((¬b)Uc)) ∈ Intrpt.

Note that Intrpt and the set of stutter-invariant formulas are not comparable.
For example, f = F(a ∧ XFa) is interruptible, but not stutter-invariant. In
fact f is not action-equivalent to any stutter-invariant formula g, since if there
were such a g, the sequence aabω would satisfy g, but the stutter-equivalent
sequence abω cannot satisfy g. Conversely, the formulas a and Ga are both
stutter-invariant, but neither is interruptible. The formula Fa is both stutter-
invariant and interruptible. Finally, the formula Xa is neither stutter-invariant
nor interruptible.

3.4 Decidability of Interruptibility of Büchi Automata

Definition 11. Let B be a BA with alphabet A, V ⊆ A (the visible actions),
and I = A \ V (the invisible actions). We say B is in V -interrupt normal form
if the following hold for any x ∈ I, a ∈ A, and states s1, s2, and s3:

1. If s1
a→ s2 then B has a state s′

1 such that s1
x→ s′

1
a→ s2.

2. If s1
x→ s2

a→ s3 then s1
a→ s3 and if s2 is accepting then s1 or s3 is accepting.

3. If s1
x→ s2 then s1

y→ s2 for all y ∈ I.

Proposition 6. Suppose B is in V -interrupt normal form. Then L(B) is V -
interruptible.

88 S. F. Siegel and Y. Yan

Proof. Suppose ζ, η ∈ Aω, ζ ∈ L(B), and ζ|V = η|V . We wish to show η ∈ L(B).
Let π be an accepting path for ζ.

Assume ζ|V is infinite. By Definition 11(2), we can remove all invisible tran-
sitions from the accepting path π, and the result is an accepting path that spells
ζ|V . By Definition 11(1), we can insert any arbitrary finite sequence of invisible
transition between two consecutive visible transitions; we can therefore construct
an accepting path for η.

If ζ|V is finite, proceed as above to form an accepting path which spells a finite
prefix of η followed by an infinite word of invisible actions. By Definition 11(3),
that infinite suffix can be transformed to spell any infinite word of invisibles,
and in that way one obtains an accepting path for η. �

Given any BA B = (S,A, T, S0, F) and a visible set V ⊆ A, define a BA
norm(B, V) as follows: if V = A, norm(B, V) = B, otherwise norm(B, V) is
B̂ = (Ŝ, A, T̂ , Ŝ0, F̂), where

D = {s ∈ S | there is an accepting path from s with all labels in I}
Ŝ = {û | u ∈ S} ∪ {u� | u ∈ F \ D} ∪ {DIV}

Ŝ0 = {û | u ∈ S0}
F̂ = {û | u ∈ F} ∪ {DIV}
T̂ = {(û, a, v̂) | a ∈ V ∧ u, v ∈ S ∧ (u, a, v) ∈ T } ∪

{(û, x, û) | x ∈ I ∧ u ∈ D ∪ (S \ F) } ∪
{(DIV, x,DIV) | x ∈ I } ∪
{(û, x,DIV) | x ∈ I ∧ u ∈ D \ F } ∪
{(û, x, u�), (u�, x, u�) | x ∈ I ∧ u ∈ F \ D } ∪
{(u�, a, v̂) | a ∈ V ∧ u ∈ F \ D ∧ v ∈ S ∧ (u, a, v) ∈ T }

The set Ŝ consists of the original states û, the sharp states u�, and one
additional state DIV. The mapping from S to Ŝ defined by u �→ û is injective
and preserves acceptability and visible transitions, i.e., for any u, v ∈ S and
a ∈ V , u

a→ v ⇔ û
a→ v̂. It follows that paths in B in which all labels are

visible correspond one-to-one with paths through original states in B̂ in which
all labels are visible. Note that every invisible transition in B̂ is a self-loop or
ends in a sharp state or DIV. Moreover, all transitions in B̂ ending in a sharp
state or DIV are invisible.

Proposition 7. For any BA B with alphabet A, and any visible set V ⊆ A,
norm(B, V) is in V -interrupt normal form.

Proof. To see Definition 11(1), suppose s1
a→ s2. If s1

x→ s1, take s′
1 = s1.

Otherwise, s1 = û for some u ∈ F \ D, and we can take s′
1 = u�.

For Definition 11(2), suppose s1
x→ s2

a→ s3. We need to show s1
a→ s3 and if

s2 is accepting then s1 or s3 is accepting. If s1 = s2, the result is clear, so assume
s1 �= s2. There are then two cases: s2 = DIV or s2 = u� for some u ∈ F \ D.

Action-Based Model Checking: Logic, Automata, and Reduction 89

If s2 = DIV, then a ∈ I and s3 = DIV, and we have s1
a→ DIV. As DIV is

accepting, the desired conclusion holds.
If s2 = u�, then s1 = û, which is accepting. There are again two cases: either

s3 = u� or s3 = v̂ for some v ∈ S. If s3 = u� then a ∈ I and û
a→ u�, as required.

If s3 = v̂, then a ∈ V and therefore u
a→ v, hence û

a→ v̂, as required.
Definition 11(3) is clear from the definition of T̂ . �

Theorem 2. L(B) is V -interruptible iff L(norm(B, V)) = L(B). In particular
interruptibility for Büchi Automata is decidable.

Proof. Let P1 = L(B) and P2 = L(norm(B, V)). By Proposition 7, norm(B, V)
is in V -interrupt normal form, so by Proposition 6, P2 is V -interruptible. Hence
one direction is clear: if P1 = P2, then P1 is V -interruptible.

So suppose P1 is V -interruptible. We wish to show P1 = P2. By Lemma 2, it
suffices to show the two languages contain the same V -interrupt-free words.

Suppose ζ is a V -interrupt-free word in P1. If ζ ∈ V ω then an accepting path
θ in B maps to the accepting path θ̂ in B̂, and ζ ∈ P2. So assume ζ ∈ V ∗Iω.
Then an accepting path in B has a prefix θ of visible transitions ending in a
state u ∈ D. That prefix corresponds to a path θ̂ in B̂ ending in û. As u ∈ D,
û

x→ û for all x ∈ I. If u is accepting, we get an accepting path for ζ that follows
θ̂ and then loops at û. If u is not accepting then u ∈ D \ F , and û

x→ DIV for
all x ∈ I. Since DIV is accepting and DIV

x→ DIV for all x ∈ I, we again get an
accepting path for ζ in B̂.

Suppose now that ζ is a V -interrupt-free word in P2. Assume ζ ∈ V ω. An
accepting path for ζ cannot pass through a sharp state or DIV, because only
invisible transitions end in those states. So the path passes through only original
states, and therefore corresponds to an accepting path in B.

Suppose ζ ∈ V ∗Iω. An accepting path for ζ in B̂ consists of a prefix θ̂ of
visible transitions followed by an infinite accepting path ξ of invisible transitions.
As above, θ̂ corresponds to a path θ in B ending in a state u.

We claim that ξ cannot pass through a sharp state. This is because all invis-
ible transitions departing from a sharp state are self loops. But sharp states are
not accepting, while ξ is an accepting path of invisible transitions. It follows that
each transition in ξ is a self-loop or terminates in DIV.

We now claim u ∈ D. For suppose the first transition in ξ is a self-loop on û.
According to the definition of T̂ , this implies u ∈ D ∪ (S \ F). Hence, if u �∈ D
then u is not accepting, and all invisible transitions departing from û are self-
loops, contradicting the fact that ξ is an accepting path. If, on the other hand,
the first transition in ξ is û

x→ DIV, for some x ∈ I, then the definition of T̂
implies u ∈ D, establishing the claim.

So u ∈ D, i.e., there is an accepting path ρ in B starting from u and consisting
of all invisible transitions. The accepting path obtained by concatenating θ and
ρ spells a word which, projected onto V , equals ζ|V . Since P1 is V -interruptible,
ζ ∈ P1. This completes the proof that P1 = P2.

The theorem reduces the problem of determining V -interruptibility to a prob-
lem of determining equivalence of two Büchi Automata, which can be done using
language intersection, complement, and emptiness algorithms for BAs [37]. �

90 S. F. Siegel and Y. Yan

4 On-the-Fly Partial Order Reduction

4.1 General Theory and Soundness Theorem

Let M = (Q,A, T, q0) be an LTS, V ⊆ A, and B = (S,A, δ, S0, F) a
V -interruptible BA. The goal of on-the-fly POR is to explore a sub-automaton R′

of R = M ‖ B with the property that L(R) = ∅ ⇔ L(R′) = ∅.
A function amp : Q×S → 2A is an ample selector if amp(q, s) ⊆ enabled(M, q)

for all q ∈ Q, s ∈ S. Each amp(q, s) is an ample set. An ample selector determines
a BA R′ = reduced(R, amp) which has the same states, accepting states, and
initial state as R, but only a subset of the transitions:

R′ = (Q × S,A, δ′, {q0} × S0, Q × F)
δ′ = {((q, s), a, (q′, s′)) | a ∈ amp(q, s) ∧ (q, a, q′) ∈ T ∧ (s, a, s′) ∈ δ}.

We now define some constraints on an ample selector that will be used to
guarantee the reduced product space has nonempty language if the full space
does. First we need the usual notion of independence:

Definition 12. Let M be an LTS with alphabet A, and a, b ∈ A. We say a and
b are independent if both of the following hold for all states q and q′ of M :

1. (q a→ q′ ∧ b ∈ enabled(M, q)) ⇒ b ∈ enabled(M, q′)
2. q

ab−→ q′ ⇔ q
ba−→ q′.

We say a and b are dependent if they are not independent. �
Note that, in contrast with [1], we do not assume actions are deterministic. We
can now define the four constraints:

C0 For all q ∈ Q, s ∈ S: enabled(M, q) �= ∅ ⇒ amp(q, s) �= ∅.
C1 For all q ∈ Q, s ∈ S: on any trace in M starting from q, no action outside

of amp(q, s) but dependent on an action in amp(q, s) can occur without an
action in amp(q, s) occurring first.

C2 For all q ∈ Q, s ∈ S: if amp(q, s) �= enabled(M, q), then amp(q, s) ∩ V = ∅.
C3 For all a ∈ A: on any cycle in R′ for which a is enabled in R at each state,

there is some state (q, s) on the cycle for which a ∈ amp(q, s).

Theorem 3. Let M be an LTS with alphabet A, V ⊆ A, B a BA with alphabet A
in V -interrupt normal form, R = M ‖ B, and amp an ample selector satisfying
C0–C3. Then L(reduced(R, amp)) = ∅ ⇔ L(R) = ∅.

The requirement that B be in interrupt normal form is necessary. A coun-
terexample when that condition is not met is given in Fig. 1. Note a and b are
independent, and a is invisible. The ample set for product states 0 and 1 is {a};
the ample set for product state 2 is {a, b}. Hence C3 holds because a state on
the sole cycle is fully enabled. After normalizing B (and removing unreachable
states), this problem goes away: in any reduced space, the ample sets must retain

Action-Based Model Checking: Logic, Automata, and Reduction 91

the a-transitions, and state 0� must be fully enabled since it has an a-self-loop,
so the accepting cycle involving the two states will remain.

The remainder of this section is devoted to the proof of Theorem 3. The
proof is similar to that of the analogous theorem in the state-based case [27],
but some changes are necessary and we include the proof for completeness.

Let θ be an accepting path in R. An infinite sequence of accepting paths
π0, π1, . . . will be constructed, where π0 = θ. For each i ≥ 0, πi will be decom-
posed as ηi ◦ θi, where ηi is a finite path of length i in R′, θi is an infinite path,
and ηi is a prefix of ηi+1. For i = 0, η0 is empty and θ0 = θ.

Assume i ≥ 0 and we have defined ηj and θj for j ≤ i. Write

θi = 〈q0, s0〉 a1−→ 〈q1, s1〉 a2−→ · · · (1)

Then ηi+1 and θi+1 are defined as follows. Let E = amp(q0, s0). There are two
cases:

Case 1: a1 ∈ E. Let ηi+1 be the path obtained by appending the first transition
of θi to ηi, and θi+1 the path obtained by removing the first transition from θi.

Case 2: a1 �∈ E. Then there are two sub-cases:

Case 2a: Some operation in E occurs in θi. Let n be the index of the first such
occurrence. By C1, aj and an are independent for 1 ≤ j < n. By repeated
application of the independence property, there is a path in M of the form

q0
an→ q′

1
a1→ q′

2
a2→ · · · an−2→ q′

n−1

an−1→ qn
an+1→ qn+1

an+2→ · · · .

By C2, an is invisible. By Definition 11, B has an accepting path of the form

s0
an→ s′

0
a1→ s1

a2→ · · · an−2→ sn−2
an−1→ sn−1

an+1→ sn+1
an+2→ · · · .

Composing these two paths yields a path in R. Removing the first transition
(labeled an) yields θi+1. Appending that transition to ηi yields ηi+1.

a b

0

2

b

b

1

a
a

a

a

0

2

b

b

1

a
a

a

a

0

0#

b

ab
a

(a) (b) (c) (d)

Fig. 1. Counterexample to Theorem 3 if B is not in interrupt normal form: (a) the
LTS M , (b) the BA B representing GFb, (c) the product space—dashed edges are in
the full, but not reduced, space, and (d) the result of normalizing B and removing
unreachable states, which also depicts the resulting full product space.

92 S. F. Siegel and Y. Yan

Case 2b: No operation in E occurs in θi. By C0, E is nonempty. Let b ∈ E.
By C2, every action in θi is independent of b. As in the case above, we obtain a
path in R

〈q0, s0〉 b→ 〈q′
1, s

′
0〉 a1→ 〈q′

2, s1〉 a2→ 〈q′
3, s2〉 a3→ · · · .

and define θi+1 and ηi+1 as above.
Let η be the limit of the ηi, i.e., η(i) = ηi+1(i). It is clear that η is an infinite

path in R′, but we must show it passes through an accepting state infinitely
often. To see this, define integers di for i ≥ 0 as follows. Let ξi = s0s1 · · · be the
sequence of BA states traced by θi. Let di be the minimum j ≥ 0 such that sj

is accepting. Note that di = 0 iff last(ηi) is accepting.
Suppose i ≥ 0 and di > 0. If Case 1 holds, then di+1 = di−1, since ξi+1 = ξ1i .

It is not hard to see that if Case 2 holds, di+1 ≤ di. Note that in Case 2a, if
di = n, the accepting state sn is removed, but Definition 11(2) guarantees that at
least one of sn−1 and sn+1 is accepting. In the worst case (sn−1 is not accepting),
we still have di+1 = n.

We claim there are an infinite number of i ≥ 0 such that Case 1 holds.
Otherwise, there is some i > 0 such that Case 2 holds for all j ≥ i. Let a be the
first action in θi. Then for all j ≥ i, a is the first action of θj and a is not in
the ample set of last(ηj). Since the number of states of R is finite, there is some
k > i such that last(ηk) = last(ηi). Hence there is a cycle in R′ for which a is
always enabled but never in the ample set, contradicting C3.

If η does not pass through an accepting state infinitely often, there is some
i ≥ 0 such that for all j ≥ i, first(θj) is not accepting. But then (dj)j≥i is
a nondecreasing sequence of positive integers which strictly decreases infinitely
often, a contradiction.

4.2 Ample Sets for a Parallel Composition of LTSs

We now describe the specific method used by McRERS to select ample sets.
Since this method is similar to existing approaches, such as [32, Algorithm 4.3],
we just outline the main ideas.

Let n ≥ 1, P = {1, . . . , n}, and let M1, . . . , Mn be LTSs over Act. Write
Mi = (Qi, Ai,→i, q

0
i) and

M = M1 ‖ · · · ‖ Mn = (Q,A,→, q0).

For a ∈ A, let procs(a) = {i ∈ P | a ∈ Ai}. It can be shown that if a and b are
dependent actions, then procs(a) ∩ procs(b) �= ∅.

Let q = (q1, . . . , qn) ∈ Q and Ei = enabled(Mi, qi) for i ∈ P . Let

Rq = {(i, j) ∈ P × P | Ei ∩ Aj �= ∅}.

Suppose C ⊆ P is closed under Rq, i.e., for all i ∈ C and j ∈ P , (i, j) ∈ Rq ⇒
j ∈ C. This implies that if a ∈ Ei for some i ∈ C then procs(a) ⊆ C. Define

enabled(C, q) = enabled(M, q) ∩
⋃
i∈C

Ai.

Action-Based Model Checking: Logic, Automata, and Reduction 93

Let E = enabled(C, q). Note E ⊆ ⋃
i∈C Ei. Hence for any a ∈ E, procs(a) ⊆ C.

Lemma 3. On any trace in M starting from q, no action outside of E but
dependent on an action in E can occur without an action in E occurring first.

Proof. Let ζ be a trace in M starting from q, such that no element of E occurs in
ζ. We claim no action involving C (i.e., an action a for which procs(a) ∩ C �= ∅)
can occur in ζ. Otherwise, let x be the first such action. Then x ∈ Ei, for
some i ∈ C, so procs(x) ⊆ C. As x �∈ E, x �∈ enabled(M, q). So some earlier
action y in ζ caused x to become enabled, and therefore procs(x)∩ procs(y) �= ∅,
hence procs(y)∩C �= ∅, contradicting the assumption that x was the first action
involving C in ζ.

Now any action b dependent on an action a ∈ E must satisfy procs(a) ∩
procs(b) is nonempty. Since procs(a) ⊆ C, procs(b) ∩ C is nonempty. Hence no
action dependent on an action in E can occur in ζ. �

We now describe how to find an ample set in the context of NDFS. Let (q, s)
be a new product state that has just been pushed onto the outer DFS stack. The
relation Rq defined above gives P the structure of a directed graph. Suppose that
graph has a strongly connected component C0 such that all of the following hold
for E = enabled(C0, q):

1. E �= ∅,
2. E ∩ V = ∅,
3. enabled(C ′, q) = ∅ for all SCCs C ′ reachable from C0 other than C0, and
4. E does not contain a “back edge”, i.e., if (q, s) a→ σ for some a ∈ E and

σ ∈ Q × S, then σ is not on the outer DFS stack.

Then set amp(q, s) = E. If no such SCC exists, set amp(q, s) = enabled(M, q). It
follows that C0–C4 hold. Note that the union C of all SCCs reachable from C0

is closed under Rq, and enabled(C, q) = E, so Lemma 3 guarantees C1. For C3,
we actually have the stronger condition that in any cycle in the reduced space, at
least one state is fully enabled. In our implementation, the SCCs are computed
using Tarjan’s algorithm. Among all SCCs C0 satisfying the conditions above,
we choose one for which |enabled(C0, q)| is minimal.

One known issue when combining NDFS with on-the-fly POR is that the
inner DFS must explore the same subspace as the outer DFS, i.e., amp must be
a deterministic function of its input (q, s) [18]. To accomplish this, McRERS
stores one additional integer j in the state: j is the root node of the SCC C0, or
−1 if the state is fully enabled. The outer search saves j in the state, and the
inner search uses j to reconstruct the SCC C0 and the ample set E.

5 Related Work

There has been significant earlier research on the use of partial order reduction
to model check LTSs (or the closely related concept of process algebras); see, e.g.,
[14,16,30–33,35]. To understand how this previous work relates to this paper,

94 S. F. Siegel and Y. Yan

we must explain a subtle, but important, distinction concerning how a property
is specified. In much of this literature, a property of an LTS with alphabet A
is essentially a pair π = (V, T), where V ⊆ A is a set of visible actions and T
is a set of (finite and infinite) words over V . A property in this sense specifies
acceptable behaviors after invisible actions have been removed. (See, e.g., Def.
2.4 and preceding comments in [32].) We can translate π to a property P in our
sense by taking its inverse image under the projection map:

P = {ζ ∈ Aω | ζ|V ∈ T}.

Note that P is V -interruptible by definition. Hence the need to distinguish inter-
ruptible properties does not arise in this context.

Much of the earlier work on POR for LTSs deals with the “offline” case, i.e.,
the construction of a subspace of M that preserves certain classes of properties.
In contrast, Theorem 3 deals with an on-the-fly algorithm, i.e., the construction
of a subspace of M ‖ B. The on-the-fly approach is an essential optimization in
model checking, but recent work in the state-based formalism has shown that
offline POR schemes do not always generalize easily to on-the-fly algorithms [27].

One work that does describe an on-the-fly model checking algorithm for LTSs
is [32] (see also [17], which deals with the same ideas in a state formalism). The
property is specified by a tester process B. Consistent with the notion of property
described above, the alphabet of B does not include the invisible actions. Hence,
in the parallel composition M ‖ B, the tester does not move when M executes
an invisible action. In order to specify both finite and infinite words of visible
actions, the tester has two kinds of accepting states: “livelock monitor states”
and “infinite trace monitor states.” (Two additional classes of states for detecting
other kinds of violations are not relevant to the discussion here.) A version of the
stubborn set theory is used to define the reduced space, and a special condition is
used to solve the “ignoring problem” (instead of our C3). It would be interesting
to compare this algorithm with the one described here.

There are many algorithms for reducing or even minimizing the size of an
LTS while preserving various properties, e.g., bisimulation equivalence [8] or
divergence preserving bisimilarity [6]. These algorithms could be applied to the
individual components of a parallel composition (taking all visible and commu-
nication actions to be “visible”), as a preprocessing step before beginning the
model checking search. An exploration of these algorithms, and how they impact
POR, is beyond the scope of this paper, but we hope to explore that avenue in
future work.

The RERS Challenge [9,19–21] is an annual event involving a number of
different categories of large model checking problems. The “parallel LTL cate-
gory,” offered from 2016 on, is directly relevant to this paper. Each problem in
that category consists of a Graphviz “dot” file specifying an LTS as a parallel
composition, and a text file containing 20 LTL formulas. The goal is to identify
the formulas satisfied by the LTS. The solutions are initially known only to the
organizers, and are published after the event. The RERS semantics for LTSs,
LTL, and satisfiability are exactly the same as in this paper.

Action-Based Model Checking: Logic, Automata, and Reduction 95

The methods for generating the LTS and the properties are complicated, and
have varied over the years, but are designed to satisfy certain hardness guaran-
tees. The approach described in [29] is “. . . based on the weak refinement . . . of
convergent systems which preserves an interesting class of temporal properties.”
It can be seen that the properties preserved by weak refinement are exactly the
interruptible properties. While [29] does not describe a method for determin-
ing whether a property is interruptible, the authors have informed us that they
developed a sufficient condition for an LTL formula to be interruptible, and used
this in combination with a random method to generate the formulas for 2016
and 2019. Our analysis (Sect. 6) confirms that all formulas from 2016 and 2019
are interruptible, while 2017 and 2018 contain some non-interruptible formulas.

There is a well-known way to translate a system and property expressed
in an action-based formalism to a state-based formalism. The idea is to add a
shared variable last which records the last action executed. An LTL formula over
actions can be transformed to one over states by replacing each action a with the
predicate last = a. This is the approach taken in the Promela representations of
the parallel problems provided with the RERS challenges.

This translation is semantics-preserving but performance-destroying. Every
transition writes to the shared variable last, so any state-based POR scheme
will assume that no two transitions commute. Furthermore, since the property
references last, all transitions are visible. This effectively disables POR, even
when the property is stutter-invariant, as can be seen in the poor performance
of Spin on the RERS Promela models (Sect. 6). It is possible that there are
more effective Spin translations; [34, §2.2], for example, suggests not updating
last on invisible actions, and adding a global boolean variable that is flipped on
every visible action (in addition to updating last). We note that this would also
require modifying the LTL formula, or specifying the property in some other
way. In any case, it suggests another interesting avenue for future work.

6 Experimental Results and Conclusions

We implemented a model checker named McRERS based on the algorithms
described in this paper. McRERS is a library and set of command line tools.
It is written in sequential C and uses the Spot library [4] for several tasks: (1)
determining equivalence of LTL formulas, (2) determining language equivalence
of BAs, and (3) converting an LTL formula to a BA. The source code for McR-
ERS as well as all artifacts related to the experiments discussed in this section,
are available at https://vsl.cis.udel.edu/cav2020. The experiments were run on
an 8-core 3.7GHz Intel Xeon W-2145 Linux machine with 256 GB RAM, though
McRERS is a sequential program and most experiments required much less
memory.

As described in Sect. 5, each edition of RERS includes a number of prob-
lems, each of which comes with 20 LTL formulas. The numbers of problems for
years 2016–2019 are, in order, 20, 15, 3, and 9, for a total of 47 problems, or
47 ∗ 20 = 940 distinct model checking tasks. (Some formulas become identical

https://vsl.cis.udel.edu/cav2020

96 S. F. Siegel and Y. Yan

after renaming propositions.) We used the McRERS property analyzer to ana-
lyze these formulas to determine which are interruptible; the algorithm used is
based on Theorem 1. The results show that all formulas from 2016 and 2019
are interruptible, which agrees with the expectations of the RERS organizers. In
2017, 22 of the 300 formulas are not interruptible; these include

– GF¬a111_SIGTRAP,
– G[a71_SIGVTALRM → X¬a71_SIGVTALRM], and
– G[(a59_SIGUSR1 ∧ X[(¬a112_SIGHUP)Ua59_SIGUSR1]) → FGa104_SIGPIPE].

In 2018, 3 of the 60 formulas are not interruptible. In summary, only 25 of the
940 tasks involve non-interruptible formulas. The total runtime for the analysis
of all 940 formulas was 6 s.

We next used the McRERS automaton analyzer to create BAs from each of
the interruptible formulas, and then to determine which of these Spot-generated
BAs was not in interrupt normal form. This uses a straightforward algorithm
that iterates over all states and checks the conditions of Definition 11. For each
BA not in normal form, the analyzer transforms it to normal form using function
norm of Sect. 3.4. Interestingly, all of the Spot-generated BAs in 2016 and 2019
were already in normal form. Four of the BAs from interruptible formulas in 2017
were not in normal form; all of these formulas had the form F[a ∨ ((¬b)Wc)].
In 2018, 6 interruptible formulas have non-normal BAs; these formulas have
several different non-isomorphic forms, some of which are quite complex. The
details can be seen on the online archive. The total runtime for this analysis
(including writing all BAs to a file) was 11 s.

The McRERS model checker parses RERS “dot” and property files to con-
struct an internal representation of a parallel composition M = M1 ‖ · · · ‖ Mn

of LTSs and a list of LTL formulas. Each formula f is converted to a BA B; if f
is interruptible and B is not already in normal form, B is transformed to normal
form. The NDFS algorithm is used to determine language emptiness, and if f is
interruptible, the POR scheme described in Sect. 4 is also used. States are saved
in a hash table.

One other simple optimization is used regardless of whether f is interruptible.
Let αM denote the set of actions labeling at least one transition in M , and
define αB similarly. If αM �= αB, then all transitions labeled by an action
in (αM \ αB) ∪ (αB \ αM) are removed from the Mi and B; all unreachable
states and transitions in the Mi and B are also removed. This is repeated until
αM = αB.

We applied the model checker to all problems in the 2019 benchmarks. Inter-
estingly, all 180 tasks completed, with the correct results, using at most 8 GB
RAM; the times are given in Fig. 2.

We also ran these problems with POR turned off, to measure the impact
of that optimization. As is often the case with POR schemes, the difference is
dramatic. The non-POR tests ran out of memory on our 256 GB machine after
problem 106. We show the resources consumed for a representative task in Fig. 3;
this property holds, so a complete search is required. In terms of number of states
or time, the performance differs by about 5 orders of magnitude.

Action-Based Model Checking: Logic, Automata, and Reduction 97

Problem 101 102 103 104 105 106 107 108 109
Components 8 10 12 15 20 25 50 60 70

Time (s) 1 1 1 1 1 1 14 54 432

Fig. 2. Time to solve RERS 2019 parallel LTL problems using McRERS. Each problem
comprises 20 LTL formulas. Memory limited to 8 GB. Rows: problem number, number
of components in the LTS, and total McRERS wall time rounded up to nearest second.

POR? States saved Transitions Memory (MB) Time (s)
YES 1.55× 104 1.55× 104 1.26× 102 < 0.1
NO 1.89× 109 1.35× 1010 2.61× 105 7865.0

Fig. 3. Performance impact of POR on solving RERS 2019 problem 106, formula 1,
(a6 → Fa7)W(a7 ∨ a88).

Tool States Transitions Memory(MB) Time(s)
Spin 8.16× 107 2.01× 108 1.09× 104 292.0
McRERS 1.80× 102 1.93× 102 5.06× 101 < 0.1

Fig. 4. Performance of Spin v6.5.1 and McRERS on RERS 2019 problem 101, property
1. Both tools used POR. Spin used -DCOLLAPSE for state compression and -m100000000

for search depth bound.

As explained in Sect. 5, the RERS Spin models can not be expected to per-
form well. We ran the latest version of Spin on these using -DCOLLAPSE compres-
sion. We show the result for just the first task in Fig. 4. There is at least a 4
order of magnitude performance difference (measured in states or time) between
the tools. An examination of Spin’s output in verbose mode reveals the problem
to be as described in Sect. 5: the full set of enabled transitions is explored at
each transition due to the update of the shared variable.

The 2016 RERS problems are more challenging for McRERS. The problems
are numbered from 101 to 120. To scale beyond problem 111, with a memory
bound of 256 GB, additional reduction techniques, such as the component min-
imization methods discussed in Sect. 5, must be used. We plan to carry out a
thorough study of those methods and how they interact with POR.

Acknowledgements. We are grateful to Marc Jasper of TU Dortmund for answer-
ing many of our questions about the RERS benchmarks, and for coining the term
“interruptible” to describe the class of properties that are the topic of this paper. This
material is based upon work by the RAPIDS Institute, supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC) program. Funding was
also provided by DoE award DE-SC0012566, and by the U.S. National Science Foun-
dation award CCF-1319571.

98 S. F. Siegel and Y. Yan

References

1. Clarke Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing, 2nd edn. MIT press, Cambridge (2018). https://mitpress.mit.edu/books/
model-checking-second-edition

2. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des. 1(2),
275–288 (1992). https://doi.org/10.1007/BF00121128

3. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

4. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, FMSP 1998, pp. 7–15. ACM, New York (1998). https://
doi.org/10.1145/298595.298598

6. Eloranta, J., Tienari, M., Valmari, A.: Essential transitions to bisimulation equiv-
alences. Theor. Comput. Sci. 179(1–2), 397–419 (1997). https://doi.org/10.1016/
S0304-3975(96)00281-2

7. Fantechi, A., Gnesi, S., Ristori, G.: Model checking for action-based logics. Formal
Methods Syst. Des. 4(2), 187–203 (1994). https://doi.org/10.1007/BF01384084

8. Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation
equivalence. Sci. Comput. Programm. 13(2), 219–236 (1990). https://doi.org/10.
1016/0167-6423(90)90071-K

9. Geske, M., Jasper, M., Steffen, B., Howar, F., Schordan, M., van de Pol, J.: RERS
2016: parallel and sequential benchmarks with focus on LTL verification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 787–803. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 59

10. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 14

11. Giannakopoulou, D.: Model checking for concurrent software architec-
tures. Ph.D. thesis, Imperial College of Science, Technology and Medicine,
University of London (1999). https://pdfs.semanticscholar.org/0215/
b74b21112520569f6e6b930312e228c90e0b.pdf

12. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Proceedings of the 9th European Software Engineering Conference Held Jointly
with 11th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 257–266. ESEC/FSE-11, Association for Computing Machinery,
New York (2003). https://doi.org/10.1145/940071.940106

13. Gibson-Robinson, T., et al.: FDR: from theory to industrial application. In: Gibson-
Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles.
LNCS, vol. 10160, pp. 65–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-51046-0 4

https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1016/S0304-3975(96)00281-2
https://doi.org/10.1016/S0304-3975(96)00281-2
https://doi.org/10.1007/BF01384084
https://doi.org/10.1016/0167-6423(90)90071-K
https://doi.org/10.1016/0167-6423(90)90071-K
https://doi.org/10.1007/978-3-319-47169-3_59
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://pdfs.semanticscholar.org/0215/b74b21112520569f6e6b930312e228c90e0b.pdf
https://pdfs.semanticscholar.org/0215/b74b21112520569f6e6b930312e228c90e0b.pdf
https://doi.org/10.1145/940071.940106
https://doi.org/10.1007/978-3-319-51046-0_4
https://doi.org/10.1007/978-3-319-51046-0_4

Action-Based Model Checking: Logic, Automata, and Reduction 99

14. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order
reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015.
LNCS, vol. 9058, pp. 188–203. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17524-9 14

15. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7

16. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) Methods for Modelling Software Sys-
tems (MMOSS). No. 06351 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, Dagstuhl, Germany (2007). http://drops.dagstuhl.de/opus/volltexte/2007/
862

17. Hansen, H., Penczek, W., Valmari, A.: Stuttering-insensitive automata for on-the-
fly detection of livelock properties. Electron. Notes Theor. Comput. Sci. 66(2), 178–
193 (2002). https://doi.org/10.1016/S1571-0661(04)80411-0. FMICS 2002, 7th
International ERCIM Workshop in Formal Methods for Industrial Critical Sys-
tems (ICALP 2002 Satellite Workshop)

18. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: The
Spin Verification System, DIMACS - Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 32, pp. 23–31. AMS and DIMACS (1997). https://
bookstore.ams.org/dimacs-32/

19. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In:
SPIN 2017, pp. 11–20. ACM (2017). https://doi.org/10.1145/3092282.3098206

20. Jasper, M., et al.: RERS 2019: combining synthesis with real-world models. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 101–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 7

21. Jasper, M., Mues, M., Schlüter, M., Steffen, B., Howar, F.: RERS 2018: CTL,
LTL, and reachability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 433–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 27

22. Michaud, T., Duret-Lutz, A.: Practical stutter-invariance checks for ω-regular lan-
guages. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp.
84–101. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 7

23. Peled, D.: Combining partial order reductions with on-the-fly model-checking. For-
mal Methods Syst. Des. 8(1), 39–64 (1996). https://doi.org/10.1007/BF00121262

24. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997). https://doi.org/
10.1016/S0020-0190(97)00133-6

25. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32

27. Siegel, S.F.: What’s wrong with on-the-fly partial order reduction. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 478–495. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 27

https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/3-540-60761-7
http://drops.dagstuhl.de/opus/volltexte/2007/862
http://drops.dagstuhl.de/opus/volltexte/2007/862
https://doi.org/10.1016/S1571-0661(04)80411-0
https://bookstore.ams.org/dimacs-32/
https://bookstore.ams.org/dimacs-32/
https://doi.org/10.1145/3092282.3098206
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-17502-3_7
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-319-23404-5_7
https://doi.org/10.1007/BF00121262
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-25543-5_27

100 S. F. Siegel and Y. Yan

28. Siegel, S.F., Yan, Y.: Action-based model checking: Logic, automata, and reduction
(extended version). Technical report UD-CIS-2020-0515, University of Delaware
(2020). http://vsl.cis.udel.edu/pubs/action.html

29. Steffen, B., Jasper, M.: Property-preserving parallel decomposition. In: Aceto, L.,
et al. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 125–145.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 7

30. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
307–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 22

31. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

32. Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993). https://doi.
org/10.1007/3-540-56922-7 33

33. Valmari, A.: Stubborn set methods for process algebras. In: Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification, POMIV 1996, pp.
213–231. American Math. Soc., New York (1997). http://dl.acm.org/citation.cfm?
id=266557.266608

34. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

35. Valmari, A.: More stubborn set methods for process algebras. In: Gibson-Robinson,
T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol.
10160, pp. 246–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51046-0 13

36. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency: Structure versus Automata. LNCS,
vol. 1043, pp. 238–266. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60915-6 6

37. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1 10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://vsl.cis.udel.edu/pubs/action.html
https://doi.org/10.1007/978-3-319-63121-9_7
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-56922-7_33
https://doi.org/10.1007/3-540-56922-7_33
http://dl.acm.org/citation.cfm?id=266557.266608
http://dl.acm.org/citation.cfm?id=266557.266608
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-51046-0_13
https://doi.org/10.1007/978-3-319-51046-0_13
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-540-69738-1_10
http://creativecommons.org/licenses/by/4.0/

	Action-Based Model Checking: Logic, Automata, and Reduction
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Büchi Automata
	2.3 Labeled Transition Systems

	3 Interruptible Properties
	3.1 Definition and Examples
	3.2 Decidability of Interruptibility of LTL Formulas
	3.3 Generation of Interruptible LTL Formulas
	3.4 Decidability of Interruptibility of Büchi Automata

	4 On-the-Fly Partial Order Reduction
	4.1 General Theory and Soundness Theorem
	4.2 Ample Sets for a Parallel Composition of LTSs

	5 Related Work
	6 Experimental Results and Conclusions
	References

