
Synthesizing JIT Compilers
for In-Kernel DSLs

Jacob Van Geffen1(B), Luke Nelson1, Isil Dillig2, Xi Wang1,
and Emina Torlak1

1 University of Washington, Seattle, USA
jsvg@cs.washington.edu

2 University of Texas at Austin, Austin, USA

Abstract. Modern operating systems allow user-space applications to
submit code for kernel execution through the use of in-kernel domain spe-
cific languages (DSLs). Applications use these DSLs to customize system
policies and add new functionality. For performance, the kernel executes
them via just-in-time (JIT) compilation. The correctness of these JITs
is crucial for the security of the kernel: bugs in in-kernel JITs have led
to numerous critical issues and patches.

This paper presents JitSynth, the first tool for synthesizing veri-
fied JITs for in-kernel DSLs. JitSynth takes as input interpreters for
the source DSL and the target instruction set architecture. Given these
interpreters, and a mapping from source to target states, JitSynth syn-
thesizes a verified JIT compiler from the source to the target. Our key
idea is to formulate this synthesis problem as one of synthesizing a per-
instruction compiler for abstract register machines. Our core technical
contribution is a new compiler metasketch that enables JitSynth to
efficiently explore the resulting synthesis search space. To evaluate Jit-
Synth, we use it to synthesize a JIT from eBPF to RISC-V and compare
to a recently developed Linux JIT. The synthesized JIT avoids all known
bugs in the Linux JIT, with an average slowdown of 1.82× in the perfor-
mance of the generated code. We also use JitSynth to synthesize JITs
for two additional source-target pairs. The results show that JitSynth
offers a promising new way to develop verified JITs for in-kernel DSLs.

Keywords: Synthesis · Just-in-time compilation · Symbolic execution

1 Introduction

Modern operating systems (OSes) can be customized with user-specified pro-
grams that implement functionality like system call whitelisting, performance
profiling, and power management [11,12,24]. For portability and safety, these
programs are written in restricted domain-specific languages (DSLs), and the
kernel executes them via interpretation and, for better performance, just-in-time
(JIT) compilation. The correctness of in-kernel interpreters and JITs is crucial
for the reliability and security of the kernel, and bugs in their implementations
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 564–586, 2020.
https://doi.org/10.1007/978-3-030-53291-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_29

Synthesizing JIT Compilers for In-Kernel DSLs 565

have led to numerous critical issues and patches [15,30]. More broadly, embed-
ded DSLs are also used to customize—and compromise [6,18]—other low-level
software, such as font rendering and anti-virus engines [8]. Providing formal guar-
antees of correctness for in-kernel DSLs is thus a pressing practical and research
problem with applications to a wide range of systems software.

Prior work has tackled this problem through interactive theorem proving. For
example, the Jitk framework [40] uses the Coq interactive theorem prover [38] to
implement and verify the correctness of a JIT compiler for the classic Berkeley
Packet Filter (BPF) language [24] in the Linux kernel. But such an approach
presents two key challenges. First, Jitk imposes a significant burden on DSL
developers, requiring them to implement both the interpreter and the JIT com-
piler in Coq, and then manually prove the correctness of the JIT compiler with
respect to the interpreter. Second, the resulting JIT implementation is extracted
from Coq into OCaml and cannot be run in the kernel; rather, it must be run
in user space, sacrificing performance and enlarging the trusted computing base
(TCB) by relying on the OCaml runtime as part of the TCB.

This paper addresses these challenges with JitSynth, the first tool for syn-
thesizing verified JIT compilers for in-kernel DSLs. JitSynth takes as input
interpreters for the source DSL and the target instruction set architecture (ISA),
and it synthesizes a JIT compiler that is guaranteed to transform each source
program into a semantically equivalent target program. Using JitSynth, DSL
developers write no proofs or compilers. Instead, they write the semantics of
the source and target languages in the form of interpreters and a mapping from
source to target states, which JitSynth trusts to be correct. The synthesized
JIT compiler is implemented in C; thus, it can run directly in the kernel.

At first glance, synthesizing a JIT compiler seems intractable. Even the sim-
plest compiler contains thousands of instructions, whereas existing synthesis tech-
niques scale to tens of instructions.To tackle this problem in our setting,we observe
that in-kernel DSLs are similar to ISAs: both take the form of bytecode instructions
for an abstract register machine, a simple virtual machine with a program counter,
a few registers, and limited memory store [40]. We also observe that in practice,
the target machine has at least as many resources (registers and memory) as the
source machine; and that JIT compilers for such abstract register machines per-
form register allocation statically at compile time. Our main insight is that we can
exploit these properties to make synthesis tractable through decomposition and
prioritization, while preserving soundness and completeness.

JitSynth works by decomposing the JIT synthesis problem into the problem
of synthesizing individual mini compilers for every instruction in the source lan-
guage. Each mini compiler is synthesized by generating a compiler metasketch [7],
a set of ordered sketches that collectively represent all instruction sequences in
the target ISA. These sketches are then solved by an off-the-shelf synthesis tool
based on reduction to SMT [39]. The synthesis tool ensures that the target
instruction sequence is semantically equivalent to the source instruction, accord-
ing to the input interpreters. The order in which the sketches are explored is key
to making this search practical, and JitSynth contributes two techniques for
biasing the search towards tightly constrained, and therefore tractable, sketches
that are likely to contain a correct program.

566 J. Van Geffen et al.

First, we observe that source instructions can often be implemented with
target instructions that access the same parts of the state (e.g., only registers).
Based on this observation, we develop read-write sketches, which restrict the
synthesis search space to a subset of the target instructions, based on a sound and
precise summary of their semantics. Second, we observe that hand-written JITs
rely on pseudoinstructions to generate common target sequences, such as loading
immediate (constant) values into registers. We use this observation to develop
pre-load sketches, which employ synthesized pseudoinstructions to eliminate the
need to repeatedly search for common target instruction subsequences.

We have implemented JitSynth in Rosette [39] and used it to synthesize JIT
compilers for three widely used in-kernel DSLs. As our main case study, we used
JitSynth to synthesize a RISC-V [32] compiler for extended BPF (eBPF) [12],
an extension of classic BPF [24], used by the Linux kernel. Concurrently with
our work, Linux developers manually built a JIT compiler for the same source
and target pair, and a team of researchers found nine correctness bugs in that
compiler shortly after its release [28]. In contrast, our JIT compiler is verified by
construction; it supports 87 out of 102 eBPF instructions and passes all the Linux
kernel tests within this subset, including the regression tests for these nine bugs.
Our synthesized compiler generates code that is 5.24× faster than interpreted
code and 1.82× times slower than the code generated by the Linux JIT. We also
used JitSynth to synthesize a JIT from libseccomp [10], a policy language for
system call whitelisting, to eBPF, and a JIT from classic BPF to eBPF. The
synthesized JITs avoid previously found bugs in the existing generators for these
source target pairs, while incurring, on average, a 2.28–2.61× slowdown in the
performance of the generated code.

To summarize, this paper makes the following contributions:

1. JitSynth, the first tool for synthesizing verified JIT compilers for in-kernel
DSLs, given the semantics of the source and target languages as interpreters.

2. A novel formulation of the JIT synthesis problem as one of synthesizing a
per-instruction compiler for abstract register machines.

3. A novel compiler metasketch that enables JitSynth to solve the JIT synthesis
problem with an off-the-shelf synthesis engine.

4. An evaluation of JitSynth’s effectiveness, showing that it can synthesize
verified JIT compilers for three widely used in-kernel DSLs.

The rest of this paper is organized as follows. Section 2 illustrates JitSynth
on a small example. Section 3 formalizes the JIT synthesis problem for in-kernel
DSLs. Section 4 presents the JitSynth algorithm for generating and solving
compiler metasketches. Section 5 provides implementation details. Section 6 eval-
uates JitSynth. Section 7 discusses related work. Section 8 concludes.

2 Overview

This section provides an overview of JitSynth by illustrating how it synthesizes
a toy JIT compiler (Fig. 1). The source language of the JIT is a tiny subset of

Synthesizing JIT Compilers for In-Kernel DSLs 567

Fig. 1. Subsets of eBPF and RISC-V used as source and target languages, respectively,
in our running example: R[r] denotes the value of register r; M [a] denotes the value at
memory address a; ⊕ denotes concatenation of bitvectors; superscripts (e.g., 032) denote
repetition of bits; sext32(x) and sext64(x) sign-extend x to 32 and 64 bits, respectively;
and extract(i, j, x) produces a subrange of bits of x from index i down to j.

eBPF [12] consisting of one instruction, and the target language is a subset of
64-bit RISC-V [32] consisting of seven instructions. Despite the simplicity of our
languages, the Linux kernel JIT used to produce incorrect code for this eBPF
instruction [27]; such miscompilation bugs not only lead to correctness issues, but
also enable adversaries to compromise the OS kernel by crafting malicious eBPF
programs [40]. This section shows how JitSynth can be used to synthesize a JIT
that is verified with respect to the semantics of the source and target languages.

In-Kernel Languages. JitSynth expects the source and target languages to be
a set of instructions for manipulating the state of an abstract register machine
(Sect. 3). This state consists of a program counter (pc), a finite sequence of
general-purpose registers (reg), and a finite sequence of memory locations (mem),
all of which store bitvectors (i.e., finite precision integers). The length of these
bitvectors is defined by the language; for example, both eBPF and RISC-V
store 64-bit values in their registers. An instruction consists of an opcode and
a finite set of fields, which are bitvectors representing either register identifiers
or immediate (constant) values. For instance, the addi32 instruction in eBPF
has two fields: dst is a 4-bit value representing the index of the output register,
and imm32 is a 32-bit immediate. (eBPF instructions may have two additional
fields src and off , which are not shown here as they are not used by addi32).
An abstract register machine for a language gives meaning to its instructions:
the machine consumes an instruction and a state, and produces a state that is
the result of executing that instruction. Figure 1 shows a high-level description
of the abstract register machines for our languages.

JitSynth Interface. To synthesize a compiler from one language to another,
JitSynth takes as input their syntax, semantics, and a mapping from source
to target states. All three inputs are given as a program in a solver-aided host
language [39]. JitSynth uses Rosette as its host, but the host can be any lan-
guage with a symbolic evaluation engine that can reduce the semantics of host

568 J. Van Geffen et al.

programs to SMT constraints (e.g., [37]). Figure 2 shows the interpreters for the
source and target languages (i.e., emulators for their abstract register machines),
as well as the state-mapping functions regST, pcST, and memST that JitSynth
uses to determine whether a source state σS is equivalent to a target state
σT . In particular, JitSynth deems these states equivalent, denoted by σS

∼=
σT , whenever reg(σT)[regST(r)] = reg(σS)[r], pc(σT) = pcST(pc(σS)), and
mem(σT)[memST(a)] = mem(σS)[a] for all registers r and memory addresses a.

Fig. 2. Snippets of inputs to JitSynth: the interpreters for the source (eBPF) and
and target (RISC-V) languages and state-mapping functions.

Decomposition into Per-instruction Compilers. Given these inputs, JitSynth
generates a per-instruction compiler from the source to the target language. To
ensure that the resulting compiler is correct (Theorem 1), and that one will be
found if it exists (Theorem 2), JitSynth puts two restrictions on its inputs.
First, the inputs must be self-finitizing [39], meaning that both the interpreters
and the mapping functions must have a finite symbolic execution tree when
applied to symbolic inputs. Second, the target machine must have at least as
many registers and memory locations as the source machine; these storage cells
must be as wide as those of the source machine; and the state-mapping functions
(pcST, regST, and memST) must be injective. Our toy inputs satisfy these
restrictions, as do the real in-kernel languages evaluated in Sect. 6.

Synthesis Workflow. JitSynth generates a per-instruction compiler for a given
source and target pair in two stages. The first stage uses an optimized com-
piler metasketch to synthesize a mini compiler from every instruction in the
source language to a sequence of instructions in the target language (Sect. 4).

Synthesizing JIT Compilers for In-Kernel DSLs 569

The second stage then simply stitches these mini compilers into a full C com-
piler using a trusted outer loop and a switch statement. The first stage is a core
technical contribution of this paper, and we illustrate it next on our toy example.

Metasketches. To understand how JitSynth works, consider the basic problem
of determining if every addi32 instruction can be emulated by a sequence of
k instructions in toy RISC-V. In particular, we are interested in finding a pro-
gram Caddi32 in our host language (which JitSynth translates to C) that takes
as input a source instruction s = addi32 dst , imm32 and outputs a semanti-
cally equivalent RISC-V program t = [t1, . . . , tk]. That is, for all dst , imm32 ,
and for all equivalent states σS

∼= σT , we have run(s, σS ,ebpf-interpret) ∼=
run(t, σT ,rv-interpret), where run(e, σ, f) executes the instruction inter-
preter f on the sequence of instructions e, starting from the state σ (Definition 3).

We can solve this problem by asking the host synthesizer to search for Caddi32

in a space of candidate mini compilers of length k. We describe this space with
a syntactic template, or a sketch, as shown below:

(define (compile-addi32 s) ; Returns a list of k instruction holes, to be
(define dst (ebpf-insn-dst s)) ; filled with toy RISC-V instructions. Each
(define imm (ebpf-insn-imm s)) ; hole represents a set of choices, defined
(list (??insn dst imm) ...)) ; by the ??insn procedure.

(define (??insn . sf) ; Takes as input source instruction fields and
(define rd (??reg sf)) ; uses them to construct target field holes.
(define rs1 (??reg sf)) ; ??reg and ??imm field holes are bitvector
(define rs2 (??reg sf)) ; expressions over sf and arbitrary constants.
(choose* ; Returns an expression that chooses among

(rv-insn lui rd rs1 rs2 (??imm 20 sf)) ; lui, addiw,
... ; ..., and
(rv-insn sb rd rs1 rs2 (??imm 12 sf)))) ; sb instructions.

Here, (??insn dst imm) stands for a missing expression—a hole—that
the synthesizer needs to fill with an instruction from the toy RISC-V language. To
fill an instruction hole, the synthesizer must find an expression that computes the
value of the target instruction’s fields. JitSynth limits this expression language
to bitvector expressions (of any depth) over the fields of the source instruction
and arbitrary bitvector constants.

Given this sketch, and our correctness specification for Caddi32, the synthesizer
will search the space defined by the sketch for a program that satisfies the specifi-
cation. Below is an example of the resulting toy compiler from eBPF to RISC-V,
synthesized and translated to C by JitSynth (without the outer loop):

void compile(struct bpf_insn *insn, struct rv_insn *tgt_prog) {
switch (insn->op) {
case BPF_ADDI32:

tgt_prog[0] = /* lui x6, extract(19, 0, (imm + 0x800) >> 12) */
rv_lui(6, extract(19, 0, (insn->imm + 0x800) >> 12));

tgt_prog[1] = /* addiw x6, x6, extract(11, 0, imm) */
rv_addiw(6, 6, extract(11, 0, insn->imm));

tgt_prog[2] = /* add rd, rd, x6 */
rv_add(regmap(insn->dst), regmap(insn->dst), 6);

tgt_prog[3] = /* slli rd, rd, 32 */
rv_slli(regmap(insn->dst), regmap(insn->dst), 32);

tgt_prog[4] = /* srli rd, rd, 32 */
rv_srli(regmap(insn->dst), regmap(insn->dst), 32);

break;
}

}

Once we know how to synthesize a compiler of length k, we can easily extend
this solution into a naive method for synthesizing a compiler of any length.

570 J. Van Geffen et al.

We simply enumerate sketches of increasing lengths, k = 1, 2, 3, . . ., invoke the
synthesizer on each generated sketch, and stop as soon as a solution is found (if
ever). The resulting ordered set of sketches forms a metasketch [7]—i.e., a search
space and a strategy for exploring it—that contains all candidate mini compilers
(in a subset of the host language) from the source to the target language. This
naive metasketch can be used to find a mini compiler for our toy example in
493 min. However, it fails to scale to real in-kernel DSLs (Sect. 6), motivating
the need for JitSynth’s optimized compiler metasketches.

Compiler Metasketches. JitSynth optimizes the naive metasketch by extending
it with two kinds of more tightly constrained sketches, which are explored first.
A constrained sketch of size k usually contains a correct solution of a given size
if one exists, but if not, JitSynth will eventually explore the naive sketch of
the same length, to maintain completeness. We give the intuition behind the two
optimizations here, and present them in detail in Sect. 4.

First, we observe that practical source and target languages include similar
kinds of instructions. For example, both eBPF and RISC-V include instructions
for adding immediate values to registers. This similarity often makes it possible
to emulate a source instruction with a sequence of target instructions that access
the same part of the state (the program counter, registers, or memory) as the
source instruction. For example, addi32 reads and writes only registers, not
memory, and it can be emulated with RISC-V instructions that also access only
registers. To exploit this observation, we introduce read-write sets, which sum-
marize, soundly and precisely, how an instruction accesses state. JitSynth uses
these sets to define read-write sketches for a given source instruction, includ-
ing only target instructions that access the state in the same way as the source
instruction. For instance, a read-write sketch for addi32 excludes both lb and
sb instructions because they read and write memory as well as registers.

Second, we observe that hand-written JITs use pseudoinstructions to sim-
plify their implementation of mini compilers. These are simply subroutines or
macros for generating target sequences that implement common functionality.
For example, the Linux JIT from eBPF to RISC-V includes a pseudoinstruction
for loading 32-bit immediates into registers. JitSynth mimics the way hand-
written JITs use pseudoinstructions with the help of pre-load sketches. These
sketches first use a synthesized pseudoinstruction to create a sequence of concrete
target instructions that load source immediates into scratch registers; then, they
include a compute sequence comprised of read-write instruction holes. Apply-
ing these optimizations to our toy example, JitSynth finds a mini compiler for
addi32 in 5 s—a roughly 6000× speedup over the naive metasketch.

3 Problem Statement

This section formalizes the compiler synthesis problem for in-kernel DSLs. We
focus on JIT compilers, which, for our purposes, means one-pass compilers [11].
To start, we define abstract register machines as a way to specify the syntax

Synthesizing JIT Compilers for In-Kernel DSLs 571

and semantics of in-kernel languages. Next, we formulate our compiler synthesis
problem as one of synthesizing a set of sound mini compilers from a single source
instruction to a sequence of target instructions. Finally, we show that these mini
compilers compose into a sound JIT compiler, which translates every source
program into a semantically equivalent target program.

Abstract Register Machines. An abstract register machine (ARM) provides a
simple interface for specifying the syntax and semantics of an in-kernel language.
The syntax is given as a set of abstract instructions, and the semantics is given
as a transition function over instructions and machine states.

An abstract instruction (Definition 1) defines the name (op) and type signa-
ture (F) of an operation in the underlying language. For example, the abstract
instruction (addi32 , r �→ Reg , imm32 �→ BV (32)) specifies the name and signa-
ture of the addi32 operation from the eBPF language (Fig. 1). Each abstract
instruction represents the (finite) set of all concrete instructions that instantiate
the abstract instruction’s parameters with values of the right type. For example,
addi32 0, 5 is a concrete instantiation of the abstract instruction for addi32. In
the rest of this paper, we will write “instruction” to mean a concrete instruction.

Definition 1 (Abstract and Concrete Instructions). An abstract instruc-
tion ι is a pair (op,F) where op is an opcode and F is a mapping from fields
to their types. Field types include Reg, denoting register names, and BV (k),
denoting k-bit bitvector values. The abstract instruction ι represents all concrete
instructions p = (op, F) with the opcode op that bind each field f ∈ dom(F) to a
value F (f) of type F(f). We write P (ι) to denote the set of all concrete instruc-
tions for ι, and we extend this notation to sets of abstract instructions in the
usual way, i.e., P (I) =

⋃
ι∈I P (ι) for the set I.

Instructions operate on machine states (Definition 2), and their semantics are
given by the machine’s transition function (Definition 3). A machine state consists
of a program counter, a map from register names to register values, and a map from
memory addresses to memory values. Each state component is either a bitvector or
a map over bitvectors, making the set of all states of an ARM finite. The transition
function of an ARM defines an interpreter for the ARM’s language by specifying
how to compute the output state for a given instruction and input state. We can
apply this interpreter, together with the ARM’s fuel function, to define an execu-
tion of the machine on a program and an initial state. The fuel function takes as
input a sequence of instructions and returns a natural number that bounds the
number of steps (i.e., state transitions) the machine can make to execute the given
sequence. The inclusion of fuel models the requirement of in-kernel languages for
all program executions to terminate [40]. It also enables us to use symbolic exe-
cution to soundly reduce the semantics of these languages to SMT constraints, in
order to formulate the synthesis queries in Sect. 4.5.

Definition 2 (State). A state σ is a tuple (pc, reg ,mem) where pc is a value,
reg is a function from register names to values, and mem is a function from
memory addresses to values. Register names, memory addresses, and all values

572 J. Van Geffen et al.

are finite-precision integers, or bitvectors. We write |σ| to denote the size of
the state σ. The size |σ| is defined to be the tuple (r,m, kpc , kreg , kmem), where
r is the number of registers in σ, m is the number of memory addresses, and
kpc, kreg , and kmem are the width of the bitvector values stored in the pc, reg,
and mem, respectively. Two states have the same size if |σi| = |σj |; one state is
smaller than another, |σi| ≤ |σj |, if each element of |σi| is less than or equal to
the corresponding element of |σj |.

Definition 3 (Abstract Register Machines and Executions). An
abstract register machine A is a tuple (I, Σ, T , Φ) where I is a set of abstract
instructions, Σ is a set of states of the same size, T : P (I) → Σ → Σ is a tran-
sition function from instructions and states to states, and Φ : List(P (I)) → N

is a fuel function from sequences of instructions to natural numbers. Given a
state σ0 ∈ Σ and a sequence of instructions p drawn from P (I), we define the
execution of A on p and σ0 to be the result of applying T to p at most Φ(p)
times. That is, A(p, σ0) = run(p, σ0, T , Φ(p)), where

run(p, σ, T , k) =

{
σ, if k = 0 or pc(σ) �∈ [0, |p|)
run(p, T (p[pc(σ)], σ), T , k − 1), otherwise.

Synthesizing JIT Compilers for ARMs. Given a source and target ARM, our
goal is to synthesize a one-pass JIT compiler that translates source programs
to semantically equivalent target programs. To make synthesis tractable, we fix
the structure of the JIT to consist of an outer loop and a switch statement
that dispatches compilation tasks to a set of mini compilers (Definition 4). Our
synthesis problem is therefore to find a sound mini compiler for each abstract
instruction in the source machine (Definition 5).

Definition 4 (Mini Compiler). Let AS = (IS , ΣS , TS , ΦS) and AT =
(IT , ΣT , TT , ΦT) be two abstract register machines, ∼= an equivalence relation
on their states ΣS and ΣT , and C : P (ι) → List(P (IT)) a function for some
ι ∈ IS. We say that C is a sound mini compiler for ι with respect to ∼= iff

∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι). σS
∼= σT ⇒ AS(p, σS) ∼= AT (C(p), σT)

Definition 5 (Mini Compiler Synthesis). Given two abstract register
machines AS = (IS , ΣS , TS , ΦS) and AT = (IT , ΣT , TT , ΦT), as well as an
equivalence relation ∼= on their states, the mini compiler synthesis problem is to
generate a sound mini compiler Cι for each ι ∈ IS with respect to ∼=.

The general version of our synthesis problem, defined above, uses an arbi-
trary equivalence relation ∼= between the states of the source and target machines
to determine if a source and target program are semantically equivalent. Jit-
Synth can, in principle, solve this problem with the naive metasketch described
in Sect. 2. In practice, however, the naive metasketch scales poorly, even on small
languages such as toy eBPF and RISC-V. So, in this paper, we focus on source

Synthesizing JIT Compilers for In-Kernel DSLs 573

and target ARMs that satisfy an additional assumption on their state equiva-
lence relation: it can be expressed in terms of injective mappings from source to
target states (Definition 6). This restriction enables JitSynth to employ opti-
mizations (such as pre-load sketches described in Sect. 4.4) that are crucial to
scaling synthesis to real in-kernel languages.

Definition 6 (Injective State Equivalence Relation). Let AS and AT be
abstract register machines with states ΣS and ΣT such that |σS | ≤ |σT | for
all σS ∈ ΣS and σT ∈ ΣT . Let M be a state mapping (Mpc ,Mreg ,Mmem)
from ΣS and ΣT , where Mpc multiplies the program counter of the states in
ΣS by a constant factor, Mreg is an injective map from register names in ΣS

to those in ΣT , and Mmem is an injective map from memory addresses in ΣS

to those in ΣT . We say that two states σS ∈ ΣS and σT ∈ ΣT are equivalent
according to M, written σS

∼=M σT , iff Mpc(pc(σS)) = pc(σT), reg(σS)[r] =
reg(σT)[Mreg(r)] for all register names r ∈ dom(reg(σS)), and mem(σS)[a] =
mem(σT)[Mmem(a)] for all memory addresses a ∈ dom(mem(σS)). The binary
relation ∼=M is called an injective state equivalence relation on AS and AT .

Soundness of JIT Compilers for ARMs. Finally, we note that a JIT compiler
composed from the synthesized mini compilers correctly translates every source
program to an equivalent target program. We formulate and prove this theorem
using the Lean theorem prover [25].

Theorem 1 (Soundness of JIT compilers). Let AS = (IS , ΣS , TS , ΦS) and
AT = (IT , ΣT , TT , ΦT) be abstract register machines, ∼=M an injective state
equivalence relation on their states such that Mpc(pc(σS)) = Npcpc(σS), and
{C1, . . . , C|IS |} a solution to the mini compiler synthesis problem for AS, AT ,
and ∼=M where ∀s ∈ P (ι). |Ci(s)| = Npc. Let C : P (IS) → List(P (IT)) be a
function that maps concrete instructions s ∈ P (ι) to the compiler output Cι(s)
for ι ∈ IS. If s = s1, . . . , sn is a sequence of concrete instructions drawn from
IS, and t = C(s1) · . . . · C(sn) where · stands for sequence concatenation, then
∀σS ∈ ΣS , σT ∈ ΣT . σS

∼=M σT ⇒ AS(s, σS) ∼=M AT (t, σT).

4 Solving the Mini Compiler Synthesis Problem

This section presents our approach to solving the mini compiler synthesis prob-
lem defined in Sect. 3. We employ syntax-guided synthesis [37] to search for an
implementation of a mini compiler in a space of candidate programs. Our core
contribution is an effective way to structure this space using a compiler metas-
ketch. This section presents our algorithm for generating compiler metasketches,
describes its key subroutines and optimizations, and shows how to solve the
resulting sketches with an off-the-shelf synthesis engine.

4.1 Generating Compiler Metasketches

JitSynth synthesizes mini compilers by generating and solving metasketches [7].
A metasketch describes a space of candidate programs using an ordered set of

574 J. Van Geffen et al.

syntactic templates or sketches [37]. These sketches take the form of programs
with missing expressions or holes, where each hole describes a finite set of can-
didate completions. JitSynth sketches are expressed in a host language H that
serves both as the implementation language for mini compilers and the specifica-
tion language for ARMs. JitSynth expects the host to provide a synthesizer for
completing sketches and a symbolic evaluator for reducing ARM semantics to
SMT constraints. JitSynth uses these tools to generate optimized metasketches
for mini compilers, which we call compiler metasketches.

Figure 3 shows our algorithm for generating compiler metasketches. The algo-
rithm, CMS, takes as input an abstract source instruction ι for a source machine
AS , a target machine AT , and a state mapping M from AS to AT . Given
these inputs, it lazily enumerates an infinite set of compiler sketches that col-
lectively represent the space of all straight-line bitvector programs from P (ι) to
List(P (IT)). In particular, each compiler sketch consists of k target instruction
holes, constructed from field holes that denote bitvector expressions (over the
fields of ι) of depth d or less. For each length k and depth d, the CMS loop
generates three kinds of compiler sketches: the pre-load, the read-write, and the
naive sketch. The naive sketch (Sect. 4.2) is the most general, consisting of all
candidate mini compilers of length k and depth d. But it also scales poorly, so
CMS first yields the pre-load (Sect. 4.4) and read-write (Sect. 4.3) sketches. As
we will see later, these sketches describe a subset of the programs in the naive
sketch, and they are designed to prioritize exploring small parts of the search
space that are likely to contain a correct mini compiler for ι, if one exists.

Fig. 3. Compiler metasketch for the abstract source instruction ι, source machine AS ,
target machine AT , and state mapping M from AS to AT .

4.2 Generating Naive Sketches

The most general sketch we consider, Naive(k, d, ι,AS ,AT ,M), is shown in
Fig. 4. This sketch consists of k instruction holes that can be filled with any
instruction from IT . An instruction hole chooses between expressions of the form
(opT ,H), where opT is a target opcode, and H specifies the field holes for that
opcode. Each field hole is a bitvector expression (of depth d) over the fields of
the input source instruction and arbitrary bitvector constants. This lets target
instructions use the immediates and registers (modulo M) of the source instruc-
tion, as well as arbitrary constant values and register names. Letting field holes

Synthesizing JIT Compilers for In-Kernel DSLs 575

include constant register names allows the synthesized mini compilers to use tar-
get registers unmapped by M as temporary, or scratch, storage. In essence, the
naive sketch describes all straight-line compiler programs that can make free use
of standard C arithmetic and bitwise operators, as well as scratch registers.

The space of such programs is intractably large, however, even for small
inputs. For instance, it includes at least 2350 programs of length k = 5 and
depth d ≤ 3 for the toy example from Sect. 2. JitSynth therefore employs
two effective heuristics to direct the exploration of this space toward the most
promising candidates first, as defined by the read-write and pre-load sketches.

Fig. 4. Naive sketch of length k and maximum depth d for ι, AS , AT , and M. Here,
Expr creates an expression in the host language, using M to map from source to target
register names and memory addresses; Choose(E) is a hole that chooses an expression
from the set E; and Field(τ, d, E) is a hole for a bitvector expression of type τ and
maximum depth d, constructed from arbitrary bitvector constants and expressions E.

4.3 Generating Read-Write Sketches

The read-write sketch, RW(k, d, ι,AS ,AT ,M), is based on the observation that
many practical source and target languages provide similar functionality, so a
source instruction ι can often be emulated with target instructions that access
the same parts of the state as ι. For example, the addi32 instruction from eBPF
reads and writes only registers (not, e.g., memory), and it can be emulated with
RISC-V instructions that also touch only registers (Sect. 2). Moreover, note that
the semantics of addi32 ignores the values of its src and off fields, and that
the target RISC-V instructions do the same. Based on these observations, our
optimized sketch for addi32 would therefore consists of instruction holes that
allow only register-register instructions, with field holes that exclude src and off .
We first formalize this intuition with the notion of read and write sets, and then
describe how JitSynth applies such sets to create RW sketches.

576 J. Van Geffen et al.

Read and Write Sets. Read and write sets provide a compact way to summarize
the semantics of an abstract instruction ι. This summary consists of a set of
state labels, where a state label is one of Lreg , Lmem , and Lpc (Definition 7).
Each label in a summary set represents a state component (registers, memory,
or the program counter) that a concrete instance of ι may read or write during
some execution. We compute three such sets of labels for every ι: the read set
Read(ι), the write set Write(ι), and the write set Write(ι, f) for each field f of
ι. Figure 5 shows these sets for the toy eBPF and RISC-V instructions.

Fig. 5. Read and write sets for the addi32, lui, and sb instructions from Fig. 1.

The read set Read(ι) specifies which components of the input state may
affect the execution of ι (Definition 8). For example, if Read(ι) includes Lreg ,
then some concrete instance of ι produces different output states when executed
on two input states that differ only in register values. The write set Write(ι)
specifies which components of the output state may be affected by executing
ι (Definition 9). In particular, if Write(ι) includes Lreg (or Lmem), then exe-
cuting some concrete instance of ι on an input state produces an output state
with different register (or memory) values. The inclusion of Lpc is based on a
separate condition, designed to distinguish jump instructions from fall-through
instructions. Both kinds of instructions change the program counter, but fall-
through instructions always change it in the same way. So, Lpc ∈ Write(ι) if two
instances of ι can write different values to the program counter. Finally, the field
write set, Write(ι, f), specifies the parts of the output state are affected by the
value of the field f ; Ln ∈ Write(ι, f) means that two instances of ι that differ
only in f can produce different outputs when applied to the same input state.

JitSynth computes all read and write sets from their definitions, by using
the host symbolic evaluator to reduce the reasoning about instruction semantics
to SMT queries. This reduction is possible because we assume that all ARM
interpreters are self-finitizing, as discussed in Sect. 2.

Definition 7 (State Labels). A state label is an identifier Ln where n is a
state component, i.e., n ∈ {reg ,mem, pc}. We write N for the set of all state
components, and L for the set of all state labels. We also use state labels to
access the corresponding state components: Ln(σ) = n(σ) for all n ∈ N .

Definition 8 (Read Set). Let ι ∈ I be an abstract instruction in (I, Σ, T , Φ).
The read set of ι, Read(ι), is the set of all state labels Ln ∈ L such that ∃p ∈
P (ι).∃Lw ∈ Write(ι).∃σa, σb ∈ Σ. (Ln(σa) �= Ln(σb) ∧ (

∧
m∈N\{n} Lm(σa) =

Lm(σb)) ∧ Lw(T (p, σa)) �= Lw(T (p, σb)).

Synthesizing JIT Compilers for In-Kernel DSLs 577

Definition 9 (Write Set). Let ι ∈ I be an abstract instruction in (I, Σ, T , Φ).
The write set of ι, Write(ι), includes the state label Ln ∈ {Lreg , Lmem} iff
∃p ∈ P (ι).∃σ ∈ Σ.Ln(σ) �= Ln(T (p, σ)), and it includes the state label Lpc iff
∃pa, pb ∈ P (ι).∃σ ∈ Σ.Lpc(T (pa, σ)) �= Lpc(T (pb, σ)).

Definition 10 (Field Write Set). Let f be a field of an abstract instruc-
tion ι = (op,F) in (I, Σ, T , Φ). The write set of ι and f , Write(ι, f),
includes the state label Ln ∈ L iff ∃pa, pb ∈ P (ι).∃σ ∈ Σ. (pa.f �= pb.f) ∧
(
∧

g∈dom(F)\{f} pa.g = pb.g) ∧ Ln(T (pa, σ)) �= Ln(T (pb, σ)), where p.f denotes
F (f) for p = (op, F).

Using Read and Write Sets. Given the read and write sets for a source instruction
ι and target instructions IT , JitSynth generates the RW sketch of length k and
depth d by modifying the Naive algorithm (Fig. 4) as follows. First, it restricts
each target instruction hole (line 7) to choose an instruction ιT ∈ IT with
the same read and write sets as ι, i.e., Read(ι) = Read(ιT) and Write(ι) =
Write(ιT). Second, it restricts the target field holes (line 9) to use the source
fields with the matching field write set, i.e., the hole for a target field fT uses the
source field f when Write(ιT , ft) = Write(ι, f). For example, given the sets from
Fig. 5, the RW instruction holes for addi32 exclude sb but include lui, and
the field holes for lui use only the dst and imm source fields. More generally,
the RW sketch for addi32 consists of register-register instructions over dst and
imm, as intended. This sketch includes 2290 programs of length k = 5 and depth
d ≤ 3, resulting in a 260 fold reduction in the size of the search space compared
to the Naive sketch of the same length and depth.

4.4 Generating Pre-load Sketches

The pre-load sketch, PLD (k, d, ι,AS ,AT ,M), is based on the observation that
hand-written JITs use macros or subroutines to generate frequently used target
instruction sequences. For example, compiling a source instruction with immedi-
ate fields often involves loading the immediates into scratch registers, and hand-
written JITs include a subroutine that generates the target instructions for per-
forming these loads. The pre-load sketch shown in Fig. 6 mimics this structure.

In particular, PLD generates a sequence of m concrete instructions that
load the (used) immediate fields of ι, followed by a sequence of k − m instruc-
tion holes. The instruction holes can refer to both the source registers (if any)
and the scratch registers (via the arbitrary bitvector constants included in the
Field holes). The function Load(Expr(p.f),AT ,M) returns a sequence of target
instructions that load the immediate p.f into an unused scratch register. This
function itself is synthesized by JitSynth using a variant of the RW sketch.

As an example, the pre-load sketch for addi32 consists of two Load instruc-
tions (lui and addiw in the generated C code) and k−2 instruction holes. The
holes choose among register-register instructions in toy RISC-V, and they can
refer to the dst register of addi32, as well as any scratch register. The resulting
sketch includes 2100 programs of length k = 5 and depth d ≤ 3, providing a 2190

fold reduction in the size of the search space compared to the RW sketch.

578 J. Van Geffen et al.

Fig. 6. Pre-load sketch of length k and maximum depth d for ι, AS , AT , and M.
The Load(E, AT , M) function returns a sequence of target instructions that load the
immediate value described by the expression E into an unused scratch register; see
Fig. 4 for descriptions of other helper functions.

4.5 Solving Compiler Metasketches

JitSynth solves the metasketch CMS(ι,AS ,AT ,M) by applying the host syn-
thesizer to each of the generated sketches in turn until a mini compiler is found.
If no mini compiler exists in the search space, this synthesis process runs forever.
To check if a sketch S contains a mini compiler, JitSynth would ideally ask the
host synthesizer to solve the following query, derived from Definitions 4–6:

∃C ∈ S. ∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι).σS
∼=M σT ⇒ AS(p, σS) ∼=M AT (C(p), σT)

But recall that the state equivalence check ∼=M involves universally quantified
formulas over memory addresses and register names. In principle, these inner-
most quantifiers are not problematic because they range over finite domains
(bitvectors) so the formula remains decidable. In practice, however, they lead to
intractable SMT queries. We therefore solve a stronger soundness query (Defini-
tion 11) that pulls these quantifiers out to obtain the standard ∃∀ formula with
a quantifier-free body. The resulting formula can be solved with CEGIS [37],
without requiring the underlying SMT solver to reason about quantifiers.

Definition 11 (Strongly Sound Mini Compiler). Let AS = (IS , ΣS , TS ,
ΦS) and AT = (IT , ΣT , TT , ΦT) be two abstract register machines, ∼=M an injec-
tive state equivalence relation on their states ΣS and ΣT , and C : P (ι) →

Synthesizing JIT Compilers for In-Kernel DSLs 579

List(P (IT)) a function for some ι ∈ IS. We say that C is a strongly sound
mini compiler for ιM with respect to ∼= iff

∀σS ∈ ΣS , σT ∈ ΣT , p ∈ P (ι), a ∈ dom(mem(σS)), r ∈ dom(reg(σS)).
σS

∼=M,a,r σT ⇒ AS(p, σS) ∼=M,a,r AT (C(p), σT)

where ∼=M,a,r stands for the ∼=M formula with a and r as free variables.

The JitSynth synthesis procedure is sound and complete with respect to this
stronger query (Theorem 2). The proof follows from the soundness and complete-
ness of the host synthesizer, and the construction of the compiler metasketch.
We discharge this proof using Lean theorem prover [25].

Theorem 2 (Strong soundness and completeness of JitSynth). Let C =
CMS(ι,AS ,AT ,M) be the compiler metasketch for the abstract instruction ι,
machines AS and AT , and the state mapping M. If JitSynth terminates and
returns a program C when applied to C, then C is a strongly sound mini compiler
for ι and AT (soundness). If there is a strongly sound mini compiler in the most
general search space {Naive(k, d, ι,AS ,AT ,M) | k, d ∈ N}, then JitSynth will
terminate on C and produce a program (completeness).

5 Implementation

We implemented JitSynth as described in Sect. 2 using Rosette [39] as our
host language. Since the search spaces for different compiler lengths are dis-
joint, the JitSynth implementation searches these spaces in parallel [7]. We use
Φ(p) = length(p) as the fuel function for all languages studied in this paper.
This provides sufficient fuel for evaluating programs in these languages that are
accepted by the OS kernel. For example, the Linux kernel requires eBPF pro-
grams to be loop-free, and it enforces this restriction with a conservative static
check; programs that fail the check are not passed to the JIT [13].

6 Evaluation

This section evaluates JitSynth by answering the following research questions:

RQ1: Can JitSynth synthesize correct and performant compilers for real-world
source and target languages?
RQ2: How effective are the sketch optimizations described in Sect. 4?

6.1 Synthesizing Compilers for Real-World Source-Target Pairs

To demonstrate the effectiveness of JitSynth, we applied JitSynth to synthe-
size compilers for three different source-target pairs: eBPF to 64-bit RISC-V,
classic BPF to eBPF, and libseccomp to eBPF. This subsection describes our
results for each of the synthesized compilers.

580 J. Van Geffen et al.

Fig. 7. Execution time of eBPF benchmarks on the HiFive Unleashed RISC-V devel-
opment board, using the existing Linux eBPF to RISC-V compiler, the JitSynth
compiler, and the Linux eBPF interpreter. Measured in processor cycles.

eBPF to RISC-V. As a case study, we applied JitSynth to synthesize a com-
piler from eBPF to 64-bit RISC-V. It supports 87 of the 102 eBPF instruc-
tion opcodes; unsupported eBPF instructions include function calls, endianness
operations, and atomic instructions. To validate that the synthesized compiler is
correct, we ran the existing eBPF test cases from the Linux kernel; our compiler
passes all test cases it supports. In addition, our compiler avoids bugs previously
found in the existing Linux eBPF-to-RISC-V compiler in Linux [27]. To evalu-
ate performance, we compared against the existing Linux compiler. We used the
same set of benchmarks used by Jitk [40], which includes system call filters from
widely used applications. Because these benchmarks were originally for classic
BPF, we first compile them to eBPF using the existing Linux classic-BPF-to-
eBPF compiler as a preprocessing step. To run the benchmarks, we execute the
generated code on the HiFive Unleashed RISC-V development board [35], mea-
suring the number of cycles. As input to the filter, we use a system call number
that is allowed by the filter to represent the common case execution.

Figure 7 shows the results of the performance evaluation. eBPF programs com-
piled by JitSynth JIT compilers show an average slowdown of 1.82× compared
to programs compiled by the existing Linux compiler. This overhead results from
additional complexity in the compiled eBPF jump instructions. Linux compil-
ers avoid this complexity by leveraging bounds on the size of eBPF jump offsets.
JitSynth-compiled programs get an average speedup of 5.24× compared to inter-
preting the eBPF programs. This evidence shows that JitSynth can synthesize
a compiler that outperforms the current Linux eBPF interpreter, and nears the
performance of the Linux compiler, while avoiding bugs.

Classic BPF to eBPF. Classic BPF is the original, simpler version of BPF used
for packet filtering which was later extended to eBPF in Linux. Since many
applications still use classic BPF, Linux must first compile classic BPF to eBPF
as an intermediary step before compiling to machine instructions. As a second
case study, we used JitSynth to synthesize a compiler from classic BPF to
eBPF. Our synthesized compiler supports all classic BPF opcodes. To evalu-
ate performance, we compare against the existing Linux classic-BPF-to-eBPF

Synthesizing JIT Compilers for In-Kernel DSLs 581

OpenSSH NaCl QEMU Chrome Firefox vsftpd Tor
Benchmark

0

10

20

30

40
In

st
ru

ct
io

ns
ex

ec
ut

ed
Classic BPF to eBPF benchmarks

Linux
JitSynth

ctags lepton libreoffice openssh vsftpd
Benchmark

0

100

200

300

In
st

ru
ct

io
ns

ex
ec

ut
ed

libseccomp to eBPF benchmarks

libseccomp
JitSynth

Fig. 8. Performance of code generated by JitSynth compilers compared to existing
compilers for the classic BPF to eBPF benchmarks (left) and the libseccomp to eBPF
benchmarks (right). Measured in number of instructions executed.

compiler. Similar to the RISC-V benchmarks, we run each eBPF program with
input that is allowed by the filter. Because eBPF does not run directly on hard-
ware, we measure the number of instructions executed instead of processor cycles.

Figure 8 shows the performance results. Classic BPF programs generated by
JitSynth compilers execute an average of 2.28× more instructions than those
compiled by Linux.

Libseccomp to eBPF. libseccomp is a library used to simplify construction of
BPF system call filters. The existing libseccomp implementation compiles to
classic BPF; we instead choose to compile to eBPF because classic BPF has
only two registers, which does not satisfy the assumptions of JitSynth. Since
libseccomp is a library and does not have distinct instructions, libseccomp itself
does not meet the definition of an abstract register machine; we instead introduce
an intermediate libseccomp language which does satisfy this definition. Our full
libseccomp to eBPF compiler is composed of both a trusted program to translate
from libseccomp to our intermediate language and a synthesized compiler from
our intermediate language to eBPF.

To evaluate performance, we select a set of benchmark filters from real-world
applications that use libseccomp, and measure the number of eBPF instructions
executed for an input the filter allows. Because no existing compiler exists from
libseccomp to eBPF directly, we compare against the composition of the existing
libseccomp-to-classic-BPF and classic-BPF-to-eBPF compilers.

Figure 8 shows the performance results. libseccomp programs generated by
JitSynth execute 2.61× more instructions on average compared to the existing
libseccomp-to-eBPF compiler stack. However, the synthesized compiler avoids
bugs previously found in the libseccomp-to-classic-BPF compiler [16].

6.2 Effectiveness of Sketch Optimizations

In order to evaluate the effectiveness of the search optimizations described in
Sect. 4, we measured the time JitSynth takes to synthesize each of the three
compilers with different optimizations enabled. Specifically, we run JitSynth in

582 J. Van Geffen et al.

Compiler Naive sketch RW sketch PLD sketch

eBPF to RISC-V X X 44.4h
classic BPF to eBPF X X 1.2h
libseccomp to eBPF 4.0h 43.5m 7.1m

Fig. 9. Synthesis time for each source-target pair, broken down by set of optimizations
used in the sketch. An X indicates that synthesis either timed out or ran out of memory.

three different configurations: (1) using Naive sketches, (2) using RW sketches,
and (3) using PLD sketches. For each configuration, we ran JitSynth with
a timeout of 48 hours (or until out of memory). Figure 9 shows the time to
synthesize each compiler under each configuration. Note that these figures do
not include time spent computing read and write sets, which takes less than
11 min for all cases. Our results were collected using an 8-core AMD Ryzen 7
1700 CPU with 16 GB memory, running Racket v7.4 and the Boolector [29]
solver v3.0.1-pre.

When synthesizing the eBPF-to-RISC-V compiler, JitSynth runs out of
memory with Naive sketches, reaches the timeout with RW sketches, and com-
pletes synthesis with PLD sketches. For the classic-BPF-to-eBPF compiler, Jit-
Synth times out with both Naive sketches and RW sketches. JitSynth only
finishes synthesis with PLD sketches. For the libseccomp-to-eBPF compiler, all
configurations finish, but JitSynth finishes synthesis about 34× times faster
with PLD sketches than with Naive sketches. These results demonstrate that
the techniques JitSynth uses are essential to the scalability of JIT synthesis.

7 Related Work

JIT Compilers for In-kernel Languages. JIT compilers have been widely used
to improve the extensibility and performance of systems software, such as OS
kernels [8,11,12,26]. One notable system is Jitk [40]. It builds on the CompCert
compiler [20] to compile classic BPF programs to machine instructions. Both
Jitk and CompCert are formally verified for correctness using the Coq interac-
tive theorem prover. Jitk is further extended to support eBPF [36]. Like Jitk,
JitSynth provides formal correctness guarantees of JIT compilers. Unlike Jitk,
JitSynth does not require developers to write either the implementation or
proof of a JIT compiler. Instead, it takes as input interpreters of both source
and target languages and state-mapping functions, using automated verification
and synthesis to produce a JIT compiler.

An in-kernel extension system such as eBPF also contains a verifier, which
checks for safety and termination of input programs [13,40]. JitSynth assumes a
well-formed input program that passes the verifier and focuses on the correctness
of JIT compilation.

Synthesizing JIT Compilers for In-Kernel DSLs 583

Synthesis-Aided Compilers. There is a rich literature that explores generating
and synthesizing peephole optimizers and superoptimizers based on a given ISA
or language specification [4,9,14,17,23,33,34]. Bansal and Aiken described a
PowerPC-to-x86 binary translator using peephole superoptimization [5]. Chloro-
phyll [31] applied synthesis to a number of compilation tasks for the GreenAr-
rays GA144 architecture, including code partitioning, layout, and generation.
JitSynth bears the similarity of translation between a source-target pair of
languages and shares the challenge of scaling up synthesis. Unlike existing work,
JitSynth synthesizes a compiler written in a host language, and uses compiler
metasketches for efficient synthesis.

Compiler Testing. Compilers are complex pieces of software and are known
to be difficult to get right [22]. Recent advances in compiler testing, such as
Csmith [41] and EMI [42], have found hundreds of bugs in GCC and LLVM
compilers. Alive [19,21] and Serval [28] use automated verification techniques to
uncover bugs in the LLVM’s peephole optimizer and the Linux kernel’s eBPF
JIT compilers, respectively. JitSynth complements these tools by providing a
correctness-by-construction approach for writing JIT compilers.

8 Conclusion

This paper presents a new technique for synthesizing JIT compilers for in-kernel
DSLs. The technique creates per-instruction compilers, or compilers that inde-
pendently translate single source instructions to sequences of target instructions.
In order to synthesize each per-instruction compiler, we frame the problem as
search using compiler metasketches, which are optimized using both read and
write set information as well as pre-synthesized load operations. We implement
these techniques in JitSynth and evaluate JitSynth over three source and tar-
get pairs from the Linux kernel. Our evaluation shows that (1) JitSynth can
synthesize correct and performant compilers for real in-kernel languages, and (2)
the optimizations discussed in this paper make the synthesis of these compilers
tractable to JitSynth. As future in-kernel DSLs are created, JitSynth can
reduce both the programming and proof burden on developers writing compil-
ers for those DSLs. The JitSynth source code is publicly available at https://
github.com/uw-unsat/jitsynth.

References

1. Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 2006

2. Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2011

3. Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2014

https://github.com/uw-unsat/jitsynth
https://github.com/uw-unsat/jitsynth

584 J. Van Geffen et al.

4. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) [1], pp. 394–403 (2006)

5. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Pro-
ceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), San Diego, CA, pp. 177–192, December 2008

6. Blazakis, D.: Interpreter exploitation: Pointer inference and JIT spraying. In: Black
Hat DC, Arlington, VA, February 2010

7. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: Proceedings of the 43rd ACM Symposium on Principles of Program-
ming Languages (POPL), St. Petersburg, FL, pp. 775–788, January 2016

8. Chen, H., et al.: Security bugs in embedded interpreters. In: Proceedings of the
4th Asia-Pacific Workshop on Systems, 6 p. Singapore (2013)

9. Davidson, J.W., Fraser, C.W.: Automatic generation of peephole optimizations.
In: Proceedings of the SIGPLAN Symposium on Compiler Construction, Montreal,
Canada, pp. 111–116, June 1984

10. Edge, J.: A library for seccomp filters, April 2012. https://lwn.net/Articles/
494252/

11. Engler, D.R.: VCODE: a retargetable, extensible, very fast dynamic code genera-
tion system. In: Proceedings of the 17th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Philadephia, PA, pp. 160–170,
May 1996

12. Fleming, M.: A thorough introduction to eBPF, December 2017. https://lwn.net/
Articles/740157/

13. Gershuni, E., et al.: Simple and precise static analysis of untrusted Linux kernel
extensions. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), Phoenix, AZ , pp. 1069–1084,
June 2019

14. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI) [2], pp. 62–73 (2011)

15. Horn, J.: Issue 1454: arbitrary read+write via incorrect range tracking in eBPF,
January 2018. https://bugs.chromium.org/p/project-zero/issues/detail?id=1454

16. Horn, J.: libseccomp: incorrect compilation of arithmetic comparisons, March 2019.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1769

17. Joshi, R., Nelson, G., Randall, K.: Denali: a goal-directed superoptimizer. In:
Proceedings of the 23rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, pp. 304–314, June 2002

18. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Proceedings
of the 40th IEEE Symposium on Security and Privacy, San Francisco, CA, pp. 19–
37, May 2019

19. Lee, J., Hur, C.K., Lopes, N.P.: AliveInLean: a verified LLVM peephole optimiza-
tion verifier. In: Proceedings of the 31st International Conference on Computer
Aided Verification (CAV), New York, NY, pp. 445–455, July 2019

20. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

21. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Portland, OR, pp.
22–32, June 2015

https://lwn.net/Articles/494252/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1454
https://bugs.chromium.org/p/project-zero/issues/detail?id=1769

Synthesizing JIT Compilers for In-Kernel DSLs 585

22. Marcozzi, M., Tang, Q., Donaldson, A., Cadar, C.: Compiler fuzzing: how
much does it matter? In: Proceedings of the 2019 Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Athens, Greece, October 2019

23. Massalin, H.: Superoptimizer: a look at the smallest program. In: Proceedings of
the 2nd International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Palo Alto, CA, pp. 122–126, October
1987

24. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: Proceedings of the Winter 1993 USENIX Technical Conference,
San Diego, CA, pp. 259–270, January 1993

25. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

26. Myreen, M.O.: Verified just-in-time compiler on x86. In: Proceedings of the 37th
ACM Symposium on Principles of Programming Languages (POPL), pp. 107–118.
Association for Computing Machinery, New York, January 2010

27. Nelson, L.: bpf, riscv: clear high 32 bits for ALU32 add/sub/neg/lsh/r-
sh/arsh, May 2019. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=1e692f09e091

28. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling sym-
bolic evaluation for automated verification of systems code with serval. In: Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
Huntsville, Ontario, Canada, pp. 225–242, October 2019

29. Niemetz, A., Preiner, M., Biere, A.: Boolector 20 system description. J. Satisfiabil.
Boolean Model. Comput. 9, 53–58 (2014). (published 2015)

30. Paul, M.: CVE-2020-8835: linux kernel privilege escalation via improper eBPF pro-
gram verification, April 2020. https://www.thezdi.com/blog/2020/4/8/cve-2020-
8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification

31. Phothilimthana, P.M., Jelvis, T., Shah, R., Totla, N., Chasins, S., Bodik, R.:
Chlorophyll: synthesis-aided compiler for low-power spatial architectures. In: Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) [3], pp. 396–407 (2014)

32. RISC-V Foundation: The RISC-V Instruction Set Manual, Volume I: Unprivileged
ISA, Document Version 2019121, December 2019

33. Sasnauskas, R., et al.: Souper: a synthesizing superoptimizer, November 2017.
https://arxiv.org/abs/1711.04422

34. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceedings
of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, pp. 305–316, March
2013

35. SiFive: SiFive FU540-C000 manual, v1p0, April 2018. https://www.sifive.com/
boards/hifive-unleashed

36. Sobel, L.: eJitk: extending Jitk to eBPF, May 2015. https://css.csail.mit.edu/6.
888/2015/papers/ejitk sobel.pdf

37. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) [1], pp. 404–415 (2006)

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e692f09e091
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1e692f09e091
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.thezdi.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://arxiv.org/abs/1711.04422
https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unleashed
https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf
https://css.csail.mit.edu/6.888/2015/papers/ejitk_sobel.pdf

586 J. Van Geffen et al.

38. The Coq Development Team: The Coq Proof Assistant, version 8.9.0, January
2019. https://doi.org/10.5281/zenodo.2554024

39. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) [3], pp. 530–541 (2014)

40. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: a trustworthy in-
kernel interpreter infrastructure. In: Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Broomfield, CO, pp.
33–47, October 2014

41. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI) [2], pp. 283–294 (2011)

42. Zhang, Q., Sun, C., Su, Z.: Skeletal program enumeration for rigorous compiler
testing. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Barcelona, Spain, pp. 347–361 June
2017

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.2554024
http://creativecommons.org/licenses/by/4.0/

	Synthesizing JIT Compilers for In-Kernel DSLs
	1 Introduction
	2 Overview
	3 Problem Statement
	4 Solving the Mini Compiler Synthesis Problem
	4.1 Generating Compiler Metasketches
	4.2 Generating Naive Sketches
	4.3 Generating Read-Write Sketches
	4.4 Generating Pre-load Sketches
	4.5 Solving Compiler Metasketches

	5 Implementation
	6 Evaluation
	6.1 Synthesizing Compilers for Real-World Source-Target Pairs
	6.2 Effectiveness of Sketch Optimizations

	7 Related Work
	8 Conclusion
	References

