)

Check for
updates

1

Replicated systems consist of a fully symmetric finite-state program executed by
an unknown number of indistinguishable agents, communicating by rendez-vous

Michael Blondin is supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Fonds de recherche
du Québec — Nature et technologies (FRQNT). Javier Esparza, Martin Helfrich and
Philipp J. Meyer have received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 787367 (PaVeS). Antonin Kucera is supported by the Czech Science

Checking Qualitative Liveness Properties
of Replicated Systems with Stochastic
Scheduling

Michael Blondin'®, Javier Esparza?®, Martin Helfrich?®,
Antonin Kucera®®, and Philipp J. Meyer?(®)

! Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca
2 Technical University of Munich, Munich, Germany
{esparza,helfrich,meyerphi}@in.tum.de
3 Masaryk University, Brno, Czechia
tony@fi.muni.cz

Abstract. We present a sound and complete method for the verification
of qualitative liveness properties of replicated systems under stochastic
scheduling. These are systems consisting of a finite-state program, exe-
cuted by an unknown number of indistinguishable agents, where the next
agent to make a move is determined by the result of a random experi-
ment. We show that if a property of such a system holds, then there is
always a witness in the shape of a Presburger stage graph: a finite graph
whose nodes are Presburger-definable sets of configurations. Due to the
high complexity of the verification problem (non-elementary), we intro-
duce an incomplete procedure for the construction of Presburger stage
graphs, and implement it on top of an SMT solver. The procedure makes
extensive use of the theory of well-quasi-orders, and of the structural the-
ory of Petri nets and vector addition systems. We apply our results to a
set of benchmarks, in particular to a large collection of population pro-
tocols, a model of distributed computation extensively studied by the
distributed computing community.

Keywords: Parameterized verification - Liveness - Stochastic systems

Introduction

Foundation, grant No. 18-11193S.

© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 372-397, 2020.
https://doi.org/10.1007/978-3-030-53291-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_20&domain=pdf
http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0002-3191-8098
http://orcid.org/0000-0002-6602-8028
http://orcid.org/0000-0003-1334-9079
https://doi.org/10.1007/978-3-030-53291-8_20

Checking Qualitative Liveness Properties of Replicated Systems 373

or via shared variables [14,16,41,46]. Examples include distributed protocols and
multithreaded programs, or abstractions thereof. The communication graph of
replicated systems is a clique. They are a special class of parameterized systems,
i.e., infinite families of systems that admit a finite description in some suitable
modeling language. In the case of replicated systems, the (only) parameter is
the number of agents executing the program.

Verifying a replicated system amounts to proving that an infinite family of
systems satisfies a given property. This is already a formidable challenge, made
even harder by the fact that we want to verify liveness (more difficult than safety)
against stochastic schedulers. Loosely speaking, stochastic schedulers select the
set of agents that should execute the next action as the result of a random
experiment. Stochastic scheduling often appears in distributed protocols, and
in particular also in population protocols—a model much studied in distributed
computing with applications in computational biology!—that supplies many of
our case studies [9,58]. Under stochastic scheduling, the semantics of a replicated
system is an infinite family of finite-state Markov chains. In this work, we study
qualitative liveness properties, stating that the infinite runs starting at config-
urations of the system satisfying a precondition almost surely reach and stay
in configurations satisfying a postcondition. In this case, whether the property
holds or not depends only on the topology of the Markov chains, and not on the
concrete probabilities.

We introduce a formal model of replicated systems, based on multiset rewrit-
ing, where processes can communicate by shared variables or multiway synchro-
nization. We present a sound and complete verification method called Presburger
stage graphs. A Presburger stage graphs is a directed acyclic graphs with Pres-
burger formulas as nodes. A formula represents a possibly infinite inductive set
of configurations, i.e., a set of configurations closed under reachability. A node &
(which we identify with the set of configurations it represents) has the following
property: A run starting at any configuration of S almost surely reaches some
configuration of some successor &’ of S, and, since &’ is inductive, get trapped in
S’. A stage graph labels the node S with a witness of this property in the form
of a Presburger certificate, a sort of ranking function expressible in Presburger
arithmetic. The completeness of the technique, i.e., the fact that for every prop-
erty of the replicated system that holds there exists a stage graph proving it,
follows from deep results of the theory of vector addition systems (VASs) [52-54].

Unfortunately, the theory of VASs also shows that, while the verification
problems we consider are decidable, they have non-elementary computational
complexity [33]. As a consequence, verification techniques that systematically
explore the space of possible stage graphs for a given property are bound to be
very inefficient. For this reason, we design an incomplete but efficient algorithm
for the computation of stage graphs. Inspired by theoretical results, the algorithm
combines a solver for linear constraints with some elements of the theory of well-
structured systems [2,39]. We report on the performance of this algorithm for a
large number of case studies. In particular, the algorithm automatically verifies

1 Under the name of chemical reaction networks.

374 M. Blondin et al.

many standard population protocols described in the literature [5,8,20,22,23,
28,31], as well as liveness properties of distributed algorithms for leader election
and mutual exclusion [3,40,42,44,50,59,61,64].

Related Work. The parameterized verification of replicated systems was first
studied in [41], where they were modeled as counter systems. This allows one to
apply many efficient techniques [11,24,37,47]. Most of these works are inherently
designed for safety properties, and some can also handle fair termination [3§],
but none of them handles stochastic scheduling. To the best of our knowledge,
the only works studying parameterized verification of liveness properties under
our notion of stochastic scheduling are those on verification of population proto-
cols. For fized populations, protocols can be verified with standard probabilistic
model checking [13,65], and early works follow this approach [28,31,60,63]. Sub-
sequently, an algorithm and a tool for the parameterized verification of popula-
tion protocols were described in [21,22], and a first version of stage graphs was
introduced in [23] for analyzing the expected termination time of population pro-
tocols. In this paper we overhaul the framework of [23] for liveness verification,
drawing inspiration from the safety verification technology of [21,22]. Compared
to [21,22], our approach is not limited to a specific subclass of protocols, and
captures models beyond population protocols. Furthermore, our new techniques
for computing Presburger certificates subsume the procedure of [22]. In compar-
ison to [23], we provide the first completeness and complexity results for stage
graphs. Further, our stage graphs can prove correctness of population protocols
and even more general liveness properties, while those of [23] can only prove
termination. We also introduce novel techniques for computing stage graphs,
which compared to [23] can greatly reduce their size and allows us to prove more
examples correct.

There is also a large body of work on parameterized verification via cut-
off techniques: one shows that a specification holds for any number of agents
iff it holds for any number of agents below some threshold called the cutoff
(see [6,26,30,34,46], and [16] for a comprehensive survey). Cut-off techniques
can be applied to systems with an array or ring communication structure, but
they require the existence and effectiveness of a cutoff, which is not the case
in our setting. Further parameterized verification techniques are regular model
checking [1,25] and automata learning [7]. The classes of communication struc-
tures they can handle are orthogonal to ours: arrays and rings for regular model
checking and automata learning, and cliques in our work. Regular model checking
and learning have recently been employed to verify safety properties [29], live-
ness properties under arbitrary schedulers [55] and termination under finitary
fairness [51]. The classes of schedulers considered in [51,55] are incomparable to
ours: arbitrary schedulers in [55], and finitary-fair schedulers in [51]. Further,
these works are based on symbolic state-space exploration, while our techniques
are based on automatic construction of invariants and ranking functions [16].

Checking Qualitative Liveness Properties of Replicated Systems 375

2 Preliminaries

Let N denote {0,1,...} and let FE be a finite set. A unordered vector over E is
a mapping V: E — Z. In particular, a multiset over E is an unordered vector
M: E — N where M (e) denotes the number of occurrences of e in M. The sets
of all unordered vectors and multisets over E are respectively denoted Z¥ and
NF. Vector addition, subtraction and comparison are defined componentwise.
The size of a multiset M is denoted |M| =Y, M(e). We let E*) denote the
set of all multisets over F of size k. We sometimes describe multisets using a
set-like notation, e.g.M = { f,g,g§ or equivalently M = {f,2 - g§ is such that
M(f)=1,M(g) =2 and M(e) =0 for all e & {f, g}

Presburger Arithmetic. Let X be a set of variables. The set of formulas of Pres-
burger arithmetic over X is the result of closing atomic formulas, as defined in
the next sentence, under Boolean operations and first-order existential quan-
tification. Atomic formulas are of the form Zle a;x; ~ b, where a; and b are
integers, x; are variables and ~ is either < or =,,, the latter denoting the con-
gruence modulo m for any m > 2. Formulas over X are interpreted on NX. Given
a formula ¢ of Presburger arithmetic, we let [¢] denote the set of all multisets
satisfying ¢. A set E C NX is a Presburger set if E = [¢] for some formula ¢.

2.1 Replicated Systems

A replicated system over @ of arity n is a tuple P = (Q,T), where T C
Ur—o Q%) x Q¥ is a transition relation containing the set of silent transitions
Ur—ol(z,) | * € Q%))}2. A configuration is a multiset C' of states, which we
interpret as a global state with C(q) agents in each state ¢ € Q.

Forevery t = (x,y) € T withx = { X1, Xs,..., X Jand y = (Y1, Y5, ..., Y% §,
we write X1 X Xj, — YiYs-- Y}, and let *t &z, t* & y and A(t) L pe o,
A transition t is enabled at a configuration C if C > *¢ and, if so, can occur,
leading to the configuration C’ = C'+ A(t). If ¢ is not enabled at C, then we say
that it is disabled. We use the following reachability notation:

C 15 ' <= tis enabled at C and its occurrence leads to C,

C—C < CLC forsometeT,

CLC = C=C 0 2% C, = C' for some Cy,Ch,...,C, € N9
C5C «— C5 ' for some w e T*.

Observe that, by definition of transitions, C — C’ implies |C| = |C’|, and
likewise for C' = C’. Intuitively, transitions cannot create or destroy agents.

123
A run is an infinite sequence Cyt;C1t2Cs -+ such that C; REALN i1 for

every i > 0. Given L C T™ and a set of configurations C, we let
post; (C) = {C':CeCwel,C*% ('Y, post*(C) = postp.(C),
pre, (C) = {C:C" €C,we L,C % C'Y, pre* (C) = prep. (C).

2 In the paper, we will omit the silent transitions when giving replicated systems.

376 M. Blondin et al.

Stochastic Scheduling. We assume that, given a configuration C', a probabilistic
scheduler picks one of the transitions enabled at C'. We only make the following
two assumptions about the random experiment determining the transition: first,
the probability of a transition depends only on C, and, second, every transition
enabled at C' has a nonzero probability of occurring. Since C' = C’ implies
|C| = |C’|, the number of configurations reachable from any configuration C' is
finite. Thus, for every configuration C', the semantics of P from C'is a finite-state
Markov chain rooted at C'.

Ezample 1. Consider the replicated system P = (Q,T) of arity 2 with states
Q = {Avy, AN, Py, Pn} and transitions T = {t1, to, t3,t4}, where

tltAyANHPyPN, tQIAyPNHAyPy,
t32 AprHANPN, t42 PYpNHPNPN.

Intuitively, at every moment in time, agents are either Active or Passive, and
have output Yes or No, which corresponds to the four states of (). This system
is designed to satisfy the following property: for every configuration C' in which
all agents are initially active, i.e., C satisfies C(Py) = C(Px) =0, if C(Ay) >
C(AN), then eventually all agents stay forever in the “yes” states {Avy, Py}, and
otherwise all agents eventually stay forever in the “no” states {An,Pn}. N

2.2 Qualitative Model Checking

Let us fix a replicated system P = (Q,T). Formulas of linear temporal logic
(LTL) on P are defined by the following grammar:

pu=9|lplevelpnp|[Xe|pUep

where ¢ is a Presburger formula over (). We look at ¢ as an atomic proposition
over the set N? of configurations. Formulas of LTL are interpreted over runs of
P in the standard way. We abbreviate ¢y = true U ¢ and Op = =0

Let us now introduce the probabilistic interpretation of LTL. A configuration
C of P satisfies an LTL formula ¢ with probability p if Pr[C,¢] = p, where
Pr[C, ¢] denotes the probability of the set of runs of P starting at C' that satisfy
® in the finite-state Markov chain rooted at C. The measurability of this set of
runs for every C' and ¢ follows from well-known results [65]. The qualitative model
checking problem consists of, given an LTL formula ¢ and a set of configurations
Z, deciding whether Pr[C, ¢] = 1 for every C € Z. We will often work with the
complement problem, i.e., deciding whether Pr[C, -] > 0 for some C € .

In contrast to the action-based qualitative model checking problem of [35],
our version of the problem is undecidable due to adding atomic propositions over
configurations (see the full version of the paper [19] for a proof):

Theorem 1. The qualitative model checking problem is not semi-decidable.

It is known that qualitative model checking problems of finite-state proba-
bilistic systems reduces to model checking of non-probabilistic systems under an
adequate notion of fairness.

Checking Qualitative Liveness Properties of Replicated Systems 377

Definition 1. A run of a replicated system P is fair if for every possible step

cLc of P the following holds: if the run contains infinitely many occurrences
of C, then it also contains infinitely many occurrences of CtC".

So, intuitively, if a run can execute a step infinitely often, it eventually will. It
is readily seen that a fair run of a finite-state transition system eventually gets
“trapped” in one of its bottom strongly connected components, and visits each
of its states infinitely often. Hence, fair runs of a finite-state Markov chain have
probability one. The following proposition was proved in [35] for a model slightly
less general than replicated systems; the proof can be generalized without effort:

Proposition 1 ([35, Prop. 7]). Let P be a replicated system, let C' be a config-
uration of P, and let ¢ be an LTL formula. It is the case that Pr[C,] = 1 iff
every fair run of P starting at C satisfies .

We implicitly use this proposition from now on. In particular, we define:

Definition 2. A configuration C satisfies ¢ with probability 1, or just satisfies
©, if every fair run starting at C satisfies ¢, denoted by C = p. We let [¢]
denote the set of configurations satisfying p. A set C of configurations satisfies
v if C C], i.e., if C = ¢ for every C € C.

Liveness Specifications for Replicated Systems. We focus on a specific class of
temporal properties for which the qualitative model checking problem is decid-
able and which is large enough to formalize many important specifications. Using
well-known automata-theoretic technology, this class can also be used to verify
all properties describable in action-based LTL, see e.g. [35].

A stable termination property is given by a pair IT = (¢pre, Ppost), Where
Dpost = {cpllmst, cee @’gost} and @pre, cpll)ost, ceey cp’gost are Presburger formulas over
@ describing sets of configurations. Whenever k = 1, we sometimes simply write
IT = (Ypre; Ppost)- The pair IT induces the LTL property

k
Y = <> \/ D@;ost'
i=1
Abusing language, we say that a replicated system P satisfies IT if [opre] [@m],
that is, if every configuration C satisfying ¢pr. satisfies p; with probability 1.
The stable termination problem is the qualitative model checking problem for
7 = [¢pre] and ¢ = @7 given by a stable termination property II = (¢pre, Ppost)-

Ezxample 2. Let us reconsider the system from Example 1. We can formally spec-
ify that all agents will eventually agree on the majority output Yes or No. Let
HY = (‘pgrcv (pgost) and HN = (QOlljm, wgost) be defined by:

(p?)(re = (AY > AN A PY + PN = 0)7 wgost = (AN + PN = 0)7
‘Pgre:(AYSAN/\Py+PN:O), @gost:(AY+PY:0).

The system satisfies the property specified in Example 1 iff it satisfies ITY and
ITN. As an alternative (weaker) property, we could specify that the system always
stabilizes to either output by IT = (¢, V @N., {0Xosts Phost })- q

378 M. Blondin et al.

3 Stage Graphs

In the rest of the paper, we fix a replicated system P = (Q,T) and a stable
termination property II = (@pre, Ppost), Where Pposr = {@hoss - - - Phog }, and
address the problem of checking whether P satisfies II. We start with some basic
definitions on sets of configurations.

Definition 3 (inductive sets, leads to, certificates)

— A set of configurations C is inductive if C € C and C — C' implies C' € C.

— Let C,C’ be sets of configurations. We say that C leads to C’, denoted C ~~ C’,
if for all C € C, every fair run from C eventually visits a configuration of C'.

— A certificate for C ~ C’ is a function f: C — N satisfying that for every
C € C\C, there exists an evecution C' = C' such that f(C) > f(C").

Note that certificates only require the existence of some executions decreasing
f, not for all of them to to decrease it. Despite this, we have:

Proposition 2. For all inductive sets C,C' of configurations, it is the case that:
C leads to C' iff there exists a certificate for C ~ C’.

The proof, which can be found in the full version [19], depends on two prop-
erties of replicated systems with stochastic scheduling. First, every configuration
has only finitely many descendants. Second, for every fair run and for every finite
execution C' —- (", if C' appears infinitely often in the run, then the run contains
infinitely many occurrences of C' = C’. We can now introduce stage graphs:

Definition 4 (stage graph). A stage graph of P for the property II is a
directed acyclic graph whose nodes, called stages, are sets of configurations sat-
1sfying the following conditions:

1. every stage is an inductive set;

2. every configuration of [[cpprc]} belongs to some stage;

8. if C is a non-terminal stage with successors Cy,...,Cn, then there exists a
certificate for C ~~ (CyU---UCy);

4. if C is a terminal stage, then C |= ¢y for some i.

The existence of a stage graph implies that P satisfies I1. Indeed, by con-
ditions 2-3 and repeated application of Proposition 2, every run starting at a
configuration of [¢pre] eventually reaches a terminal stage, say C, and, by con-
dition 1, stays in C forever. Since, by condition 4, all configurations of C satisfy
some pp., after its first visit to C every configuration satisfies ¢p -

Example 3. Figure 1 depicts stage graphs for the system of Example 1 and the
properties defined in Example 2. The reader can easily show that every stage C is
inductive by checking that for every C' € C and every transition ¢ € {t1,...,t4}

enabled at C, the step C' 2 C satisfies O’ € C. For example, if a configuration
satisfies Ay > AN, so does any successor configuration. <

Checking Qualitative Liveness Properties of Replicated Systems 379

Stage graph for IV Stage graph for 1TV
Ay>AN AYgAN,PY:OVAN+PN>O
Cert.: Ay + Ax Cert.: Ay + Ax
Ay>0,AN:0 AY:O7AN>0 Ay+AN:0,PN>O
Cert.: Py Cert.: Py Cert.: Py
Ay+Py=0 Avy+Py =0

Fig. 1. Stage graphs for the system of Example 1.

The following proposition shows that stage graphs are a sound and complete
technique for proving stable termination properties.

Proposition 3. System P satisfies II iff it has a stage graph for 1.

Proposition 3 does not tell us anything about the decidability of the sta-
ble termination problem. To prove that the problem is decidable, we introduce
Presburger stage graphs. Intuitively these are stage graphs whose stages and
certificates can be expressed by formulas of Presburger arithmetic.

Definition 5 (Presburger stage graphs)

— A stage C is Presburger if C = [¢] for some Presburger formula ¢.

- A bounded certificate for C ~ C’ is a pair (f, k), where f: C — N and k € N,

satisfying that for every C € C\ C', there exists an execution C ~> C' such

that f(C) > f(C') and |w| < k.

A Presburger certificate is a bounded certificate (f, k) satisfying f(C) =

n <= ¢(C,n) for some Presburger formula o(x,y).

— A Presburger stage graph is a stage graph whose stages and certificates are
all Presburger.

Using a powerful result from [36], we show that: (1) P satisfies IT iff it has a
Presburger stage graph for IT (Theorem 2); (2) there exists a denumerable set of
candidates for a Presburger stage graph for IT; and (3) there is an algorithm that
decides whether a given candidate is a Presburger stage graph for IT (Theorem 3).
Together, (1-3) show that the stable termination problem is semi-decidable. To
obtain decidability, we observe that the complement of the stable termination
problem is also semi-decidable. Indeed, it suffices to enumerate all initial config-
urations C' |= @pre, build for each such C' the (finite) graph G¢ of configurations
reachable from C, and check if some bottom strongly connected component 5
of G satisfies B [~ ¢!, for all 4. This is the case iff some fair run starting at
C visits and stays in B, which in turn is the case iff P violates II.

380 M. Blondin et al.

Theorem 2. System P satisfies II iff it has a Presburger stage graph for II.

We observe that testing whether a given graph is a Presburger stage graph
reduces to Presburger arithmetic satisfiability, which is decidable [62] and whose
complexity lies between 2-NEXP and 2-EXPSPACE [15]:

Theorem 3. The problem of deciding whether an acyclic graph of Presburger
sets and Presburger certificates is a Presburger stage graph, for a given stable
termination property, is reducible in polynomial time to the satisfiability problem
for Presburger arithmetic.

4 Algorithmic Construction of Stage Graphs

At the current state of our knowledge, the decision procedure derived from Theo-
rem 3 has little practical relevance. From a theoretical point of view, the TOWER-
hardness result of [33] implies that the stage graph may have non-elementary size
in the system size. In practice, systems have relatively small stage graphs, but,
even so, the enumeration of all candidates immediately leads to a prohibitive
combinatorial explosion.

For this reason, we present a procedure to automatically construct (not guess)
a Presburger stage graph G for a given replicated system P and a stable termi-
nation property I = (@pre; Ppost). The procedure may fail, but, as shown in the
experimental section, it succeeds for many systems from the literature.

The procedure is designed to be implemented on top of a solver for the exis-
tential fragment of Presburger arithmetic. While every formula of Presburger
arithmetic has an equivalent formula within the existential fragment [32,62],
quantifier-elimination may lead to a doubly-exponential blow-up in the size of
the formula. Thus, it is important to emphasize that our procedure never requires
to eliminate quantifiers: If the pre- and postconditions of IT are supplied as
quantifier-free formulas, then all constraints of the procedure remain in the exis-
tential fragment.

We give a high-level view of the procedure (see Algorithm 1), which uses
several functions, described in detail in the rest of the paper. The procedure
maintains a workset WS of Presburger stages, represented by existential Pres-
burger formulas. Initially, the only stage is an inductive Presburger overapprox-
imation PotReach([¢pre])) of the configurations reachable from [¢pre] (PotReach
is an abbreviation for “potentially reachable”). Notice that we must necessarily
use an overapproximation, since post*([¢pre]) is not always expressible in Pres-
burger arithmetic?. We use a refinement of the overapproximation introduced
in [22,37], equivalent to the overapproximation of [24].

In its main loop (lines 2-9), Algorithm 1 picks a Presburger stage S from
the workset, and processes it. First, it calls Terminal(S, $p0s:) to check if S is
terminal, i.e., whether S = gpipost for some @fmst € Dpost- This reduces to checking

3 This follows easily from the fact that post* (1) is not always expressible in Presburger
arithmetic for vector addition systems, even if ¢ denotes a single configuration [43].

Checking Qualitative Liveness Properties of Replicated Systems 381

Algorithm 1: procedure for the construction of stage graphs.

Input: replicated system P = (Q,T), stable term. property II = (¢pre; Ppost)
Result: a stage graph of P for IT

WS «— {PotReach([¢pre]) }
while WS # () do
remove S from WS
if = Terminal(S, Ppost) then
U «— AsDead(S)
if U # () then
| WS — WS U {IndOverapprox(S,U)}

else
\ WS — WS U Split(S)

© 00 N. A W

the unsatisfiability of the existential Presburger formula ¢ A —mpfmst, where ¢ is
the formula characterizing S. If S is not terminal, then the procedure attempts to
construct successor stages in lines 5-9, with the help of three further functions:
AsDead, IndOverapproz, and Split. In the rest of this section, we present the
intuition behind lines 5-9, and the specification of the three functions. Sections 5,
6 and 7 present the implementations we use for these functions.

Lines 5-9 are inspired by the behavior of most replicated systems designed by
humans, and are based on the notion of dead transitions, which can never occur
again (to be formally defined below). Replicated systems are usually designed to
run in phases. Initially, all transitions are alive, and the end of a phase is marked
by the “death” of one or more transitions, i.e., by reaching a configuration at
which these transitions are dead. The system keeps “killing transitions” until no
transition that is still alive can lead to a configuration violating the postcondi-
tion. The procedure mimics this pattern. It constructs stage graphs in which if
&’ is a successor of S, then the set of transitions dead at S’ is a proper superset
of the transitions dead at S. For this, AsDead(S) computes a set of transitions
that are alive at some configuration of S, but which will become dead in every
fair run starting at S (line 5). Formally, AsDead(S) returns a set U C Dead(S)
such that § = ¢dead(U), defined as follows.

Definition 6. A transition of a replicated system P is dead at a configuration
C if it is disabled at every configuration reachable from C (including C' itself).
A transition is dead at a stage S if it is dead at every configuration of S. Given
a stage S and a set U of transitions, we use the following notations:

— Dead(S): the set of transitions dead at S;
— [dis(U)]: the set of configurations at which all transitions of U are disabled;
— [dead(U)]: the set of configurations at which all transitions of U are dead.

Observe that we can compute Dead(S) by checking unsatisfiability of a
sequence of existential Presburger formulas: as S is inductive, we have Dead(S) =

382 M. Blondin et al.

{t | § E dis(t)}, and S = dis(¢t) holds iff the existential Presburger formula
AC: ¢(C) A C > *t is unsatisfiable, where ¢ is the formula characterizing S.

The following proposition, whose proof appears in the full version [19], shows
that determining whether a given transition will eventually become dead, while
decidable, is PSPACE-hard. Therefore, Sect. 7 describes two implementations of
this function, and a way to combine them, which exhibit a good trade-off between
precision and computation time.

Proposition 4. Given a replicated system P, a stage S represented by an exis-
tential Presburger formula ¢ and a set of transitions U, determining whether
S = Odead(U) holds is decidable and PSPACE-hard.

If the set U returned by AsDead(S) is nonempty, then we know that every
fair run starting at a configuration of S will eventually reach a configuration
of § N [dead(U)]. So, this set, or any inductive overapproximation of it, can
be a legal successor of S in the stage graph. Function IndOverapprox(S,U)
returns such an inductive overapproximation (line 7). To be precise, we show in
Sect. 5 that [dead(U)] is a Presburger set that can be computed exactly, albeit in
doubly-exponential time in the worst case. The section also shows how to com-
pute overapproximations more efficiently. If the set U returned by AsDead(S) is
empty, then we cannot yet construct any successor of S. Indeed, recall that we
want to construct stage graphs in which if 8’ is a successor of S, then Dead(S’)
is a proper superset of Dead(S). In this case, we proceed differently and try to
split S:

Definition 7. A split of some stage S is a set {S1,...,Sk} of (not necessarily
disjoint) stages such that the following holds:

— Dead(S;) D Dead(S) for every 1 <i <k, and
- S= U§:1 Si.

If there exists a split {Si,...,Sk} of S, then we can let Si,...,Sk be the
successors of S in the stage graph. Observe that a stage may indeed have a split.
We have Dead(C; UCy) = Dead(C1) N Dead(Cs), and hence Dead(C1 UCz) may be
a proper subset of both Dead(Cy) and Dead(Cs):

Ezample 4. Consider the system with states {qi1, g2} and transitions ¢;: ¢; — ¢;
for i € {1,2}. Let S = {C | C(q1) = 0V C(g2) = 0}, i.e., S is the (inductive)
stage of configurations disabling either t; or t3. The set {S1,S2}, where S; =
{C € 8| C(¢;) =0}, is a split of S satisfying Dead(S;) = {t;} D 0 = Dead(S). <

The canonical split of S, if it exists, is the set {S N [dead(t)] | ¢ ¢ Dead(S)}.
As mentioned above, Sect.5 shows that [dead(U)] can be computed exactly
for every U, but the computation can be expensive. Hence, the canonical split
can be computed exactly at potentially high cost. Our implementation uses an
underapproximation of [dead(t)], described in Sect. 6.

Checking Qualitative Liveness Properties of Replicated Systems 383

5 Computing and Approximating [dead(U)]

We show that, given a set U of transitions,

— we can effectively compute an existential Presburger formula describing the
set [dead(U)], with high computational cost in the worst case, and

— we can effectively compute constraints that overapproximate or underapprox-
imate [dead(U)], at a reduced computational cost.

Downward and Upward Closed Sets. We enrich N with the limit element w
in the usual way. In particular, n < w holds for every n € N. An w-configuration
is a mapping C*: @ — N U {w}. The upward closure and downward closure
of a set C* of w-configurations are the sets of configurations TC“ and |C¥,
respectively defined as:

1C¥ = {C eN?|C>C¥ for some C¥ € C*},
lev {C eN? | C < C¥ for some C¥ € C*}.

A set C of configurations is upward closed if C = TC, and downward closed if
C = | C. These facts are well-known from the theory of well-quasi orderings:

Lemma 1. For every set C of configurations, the following holds:

1. C is upward closed iff C is downward closed (and vice versa);

2. if C is upward closed, then there is a unique minimal finite set of configurations
inf(C), called its basis, such that C = 1 inf(C);

8. if C is downward closed, then there is a unique minimal finite set of w-
configurations sup(C), called its decomposition, such that C = | sup(C).

Computing [dead(U)] Exactly. It follows immediately from Definition 6 that
both [dis(U)] and [dead(U)] are downward closed. Indeed, if all transitions of
U are disabled at C, and C’" < C, then they are also disabled at C’, and clearly
the same holds for transitions dead at C. Furthermore:

Proposition 5. For every set U of transitions, the (downward) decomposition
of both sup([dis(U)]) and sup([dead(U)]) is effectively computable.

Proof. For every t € U and q € °t, let C¢, be the w-configuration such that
C¥,(q) = *t(q) — 1 and CY,(p) = w for every p € Q@ \ {¢}. In other words, C}’,
is the w-configuration made only of w’s except for state ¢ which falls short from

*t(q) by one. This w-configurations captures all configurations disabled in ¢ due
to an insufficient amount of agents in state q. We have:

sup([dis(U)]) = {C¢, : 1 € U,q € *1).

The latter can be made minimal by removing superfluous w-configurations.

For the case of sup([dead(U)]), we invoke [45, Prop. 2] which gives a proof for
the more general setting of (possibly unbounded) Petri nets. Their procedure is
based on the well-known backwards reachability algorithm (see, e.g., [2,39]). O

384 M. Blondin et al.

Since sup([dead(U)]) is finite, its computation allows to describe [dead(U)]
by the following linear constraint*:

V N [Cla) < C¥(q)].

Cwesup([dead(U)]) ¢€Q

However, the cardinality of sup([dead(U)]) can be exponential [45, Remark for
Prop. 2] in the system size. For this reason, we are interested in constructing
both under- and over-approximations.

Overapproximations of [dead(U)]. For every i € N, define [dead(U)]* as:

[dead(D)]° = [dis(U)] and [dead(U)]** = pre,([dead(U)]?) N [dis(U)].

Loosely speaking, [dead(U)]? is the set of configurations C such that every con-
figuration reachable in at most i steps from C disables U. We immediately have:

o0

[dead(U)] = () [dead(U)]".

=0

Using Proposition 5 and the following proposition, we obtain that [dead(U)]* is
an effectively computable overapproximation of [dead(U)].

Proposition 6. For every Presburger set C and every set of transitions U, the
sets preg (C) and postyr(C) are effectively Presburger.

Recall that function IndOwverapproz(S,U) of Algorithm 1 must return an
inductive overapproximation of [dead(U)]. Since [dead(U)]* might not be induc-
tive in general, our implementation uses either the inductive overapproxima-
tions IndOverapproa’(S,U) = PotReach(S N [dead(U)]?), or the exact value
IndOverapproz™ (S,U) = SN [dead(U)]. The table of results in the experimen-
tal section describes for each benchmark which overapproximation was used.

Underapproximations of [dead(U)]: Death Certificates. A death certifi-
cate for U in P is a finite set C¥ of w-configurations such that:

1. [¢¥ Edis(D), i.e., every configuration of | C¥ disables U, and
2. | C¥ is inductive, i.e., posty (| C¥) C | C¥.

If U is dead at a set C of configurations, then there is always a certificate that
proves it, namely sup([dead(U)]). In particular, if C* is a death certificate for
U then | C¥ C [dead(U)], that is, | C* is an underapproximation of [dead(U)]

Using Proposition 6, it is straightforward to express in Presburger arithmetic
that a finite set C* of w-configurations is a death certificate for U:

Proposition 7. For every k > 1 there is an existential Presburger formula
DeathCerty(U,C%) that holds iff C¥ is a death certificate of size k for U.

4 Observe that if C*(q) = w, then the term “C(g) < w” is equivalent to “true”.

Checking Qualitative Liveness Properties of Replicated Systems 385

6 Splitting a Stage

Given a stage S, we try to find aset Cy’, . .., C}; of death certificates for transitions
t1,...,tp € T\ Dead(S) such that S C | CY U---U | Cy. This allows us to split
S into Si,...,S;, where S; = Sn|C¥.

For any fixed size & > 1 and any fixed ¢, we can find death certificates
Cy,...,C¢ of size at most k by solving a Presburger formula. However, the
formula does not belong to the existential fragment, because the inclusion check
S C | CYU---U] Cy requires universal quantification. For this reason, we proceed
iteratively. For every ¢ > 0, after having found Cy,...,Cy we search for a pair
(Ciy1,Cf,) such that

(i) Cyp, is a death certificate for some t; 1 € T\ Dead(S);
(11) Ci+1 esSn lC;‘;l (lC‘f UU‘LC;‘J)

An efficient implementation requires to guide the search for (Ci;1,Cf,), because
otherwise the search procedure might not even terminate, or might split S into
too many parts, blowing up the size of the stage graph. Our search procedure
employs the following heuristic, which works well in practice. We only consider
the case k = 1, and search for a pair (Cj;1,Cy,) satisfying (i) and (ii) above,
and additionally:

(iii) all components of Cy,; are either w or between 0 and max;cr qgeq *t(q) — 1;

(iv) for every w-configuration C*, if (Cjy1, C*) satisfies (i)—(iii), then C% | < C¥;
(v) for every pair (C,C*), if (C,C%) satisfies (i)—(iv), then C¥ < Cf ;.
Condition (iii) guarantees termination. Intuitively, condition (iv) leads to cer-
tificates valid for sets U C T\ Dead(S) as large as possible. So it allows us to
avoid splits that, loosely speaking, do not make as much progress as they could.
Condition (v) allows us to avoid splits with many elements because each element
of the split has a small intersection with S.
An example illustrating these conditions is given in the full version [19].

7 Computing Eventually Dead Transitions

Recall that the function AsDead(S) takes an inductive Presburger set S as input,
and returns a (possibly empty) set U C Dead(S) of transitions such that S |=
Odead(U). This guarantees S ~ [dead(U)] and, since S is inductive, also S ~»
SN [dead(U)].

By Proposition 4, deciding if there exists a non-empty set U of transitions such
that S = ¢dead(U) holds is PSPACE-hard, which makes a polynomial reduction to
satisfiability of existential Presburger formulas unlikely. So we design incomplete
implementations of AsDead(S) with lower complexity. Combining these imple-
mentations, the lack of completeness essentially vanishes in practice.

The implementations are inspired by Proposition 2, which shows that & ~
[dead(U)] holds iff there exists a certificate f such that:

VC € S\ [dead(U)] : 3C 5 C': f(C) > f(C). (Cert)

386 M. Blondin et al.

To find such certificates efficiently, we only search for linear functions f(C) =
> qe0 @(q) - C(q) with coefficients a(g) € N for each ¢ € Q.

7.1 First Implementation: Linear Ranking Functions
Our first procedure computes the existence of a linear ranking function.

Definition 8. A function r: § — N is a ranking function for S and U if for
every C € § and every step C L ¢ the following holds:

1. ift e U, then r(C) > r(C"); and
2. ift ¢ U, then r(C) > r(C").

Proposition 8. If r: S — N is a ranking function for S and U, then there
exists k € N such that (r, k) is a bounded certificate for S ~» [dead(U)].

Proof. Let M be the minimal finite basis of the upward closed set [dead(U)].
For every configuration D € M, let op be a shortest sequence that enables some
transition of tp € U from D, i.e., such that D 22 D’ 10, D" for some D', D".
Let k = max{|optp|: D € M}.

Let C € S\ [dead(U)]. Since C € [dead(U)], we have C > D for some
D € M. By monotonicity, we have C 22 C' 25 C" for some configurations C"
and C”. By Definition 8, we have r(C) > r(C") > r(C"), and so condition (Cert)
holds. As |optp| < k, we have that (r, k) is a bounded certificate. O

It follows immediately from Definition 8 that if vy and ry are ranking func-
tions for sets U; and Uy respectively, then r defined as 7(C) = r1(C) 4 r2(C)
is a ranking function for U; U Us. Therefore, there exists a unique maximal set
of transitions U such that S ~ [dead(U)] can be proved by means of a ranking
function. Further, U can be computed by collecting all transitions ¢ € Dead(S)
such that there exists a ranking function r; for {¢t}. The existence of a linear
ranking function r; can be decided in polynomial time via linear programming,
as follows. Recall that for every step C' % C’, we have €' = C + A(u). So, by
linearity, we have r4(C) > r(C") <= 1 (C' —=C) <0 < 1 (A(u)) < 0.
Thus, the constraints of Definition 8 can be specified as:

a-Alt)<0 A /\ a-Au) <0,
u€ Dead(S)

where a: Q — Q¢ gives the coefficients of 7, that is, r(C) = a - C, and
a- = > geqalq) x(q) for x € N@. Observe that a solution may yield a
function whose codomain differs from N. However, this is not an issue since we

can scale it with the least common denominator of each a(q).

Checking Qualitative Liveness Properties of Replicated Systems 387

7.2 Second Implementation: Layers

Transitions layers were introduced in [22] as a technique to find transitions that
will eventually become dead. Intuitively, a set U of transitions is a layer if (1) no
run can contain only transitions of U, and (2) U becomes dead once disabled; the
first condition guarantees that U eventually becomes disabled, and the second
that it eventually becomes dead. We formalize layers in terms of layer functions.

Definition 9. A function £: S — N is a layer function for S and U if:

C1. £(C) > U(C") for every C € S and every step C — C’ witht € U; and
C2. [dis(U)] = [dead(U)].

Proposition 9. If {: S — N is a layer function for S and U, then (£,1) is a
bounded certificate for S ~ [dead(U)].

Proof. Let C € S\ [dead(U)]. By condition C2, we have C ¢ [dis(U)]. So there
exists a step C' % ' where u € U. By condition C1, we have £(C) > £(C"), so
condition (Cert) holds and (¢, 1) is a bounded certificate.

Let S be a stage. For every set of transitions U C Dead(S) we can construct a
Presburger formula lin-layer(U, a) that holds iff there there exists a linear layer
function for U, i.e., a layer function of the form ¢(C) = a - C for a vector of
coefficients a: @ — Q>¢. Condition C1, for a linear function £(C), is expressed
by the existential Presburger formula

lin-layer-fun(U, a) = /\ a-A(u) <0.
uelU

Condition C2 is expressible in Presburger arithmetic because of Proposition 5.
However, instead of computing [dead(U)] explicitly, there is a more efficient
way to express this constraint. Intuitively, [dis(U)] = [dead(U)] is the case if
enabling a transition u € U requires to have previously enabled some transition
u’ € U. This observation leads to:

Proposition 10. A set U of transitions satisfies [dis(U)] = [dead(U)] iff it
satisfies the existential Presburger formula

dis-eq-dead(U') < /\ /\ \/ ‘t+ (Cuot®) >

teT uelU v elU
where £ &y € N@ is defined by (x 0 y)(q) < max(x(q) — y(q),0) for z,y € N9,

This allows us to give the constraint lin-layer(U, a), which is of polynomial size:

lin-layer(U, a) = lin-layer-fun(U, a) A dis-eq-dead(U).

388 M. Blondin et al.

7.3 Comparing Ranking and Layer Functions

The ranking and layer functions of Sects. 7.1 and 7.2 are incomparable in power,
that is, there are sets of transitions for which a ranking function but no layer
function exists, and vice versa. This is shown by the following two systems:

P =({A,B,C}H{t1: AB— CC, t3: A— B, t3: B— A}),
Py=({A,B}, {t4: AB— AA t5: A— B}).

Consider the system P, and let S = N9, i.e., S contains all configurations.
Transitions t3 and ¢3 never become dead at {A§ and can thus never be included
in any U. Transition ¢; eventually becomes dead, as shown by the linear ranking
function r(C) = C(A) + C(B) for U = {t;}. But for this U, the condition C2
for layer functions is not satisfied, as [dis(U)] > (A, A§ LN (A, BS ¢ [dis(U)],
so [dis(U)] # [dead(U)]. Therefore no layer function exists for this U.

Consider now the system P, again with S = N?, and let U = {t5}. Once
t5 is disabled, there is no agent in A, so both t4 and ¢5 are dead. So [dis(U)] =
[dead(U)]. The linear layer function ¢(C) = C(A) satisfies lin-layer-fun(U, a),
showing that U eventually becomes dead. As C b, C for € = (A, BS, there is
no ranking function r for this U, which would need to satisty »(C) < r(C).

For our implementation of AsDead(S), we therefore combine both
approaches. We first compute (in polynomial time) the unique maximal set U
for which there is a linear ranking function. If this U is non-empty, we return it,
and otherwise compute a set U of maximal size for which there is a linear layer
function.

8 Experimental Results

We implemented the procedure of Sect. 4 on top of the SMT solver Z3 [57], and
use the Owl [48] and HOA [12] libraries for translating LTL formulas. The result-
ing tool automatically constructs stage graphs that verify stable termination
properties for replicated systems. We evaluated it on two sets of benchmarks,
described below. The first set contains population protocols, and the second
leader election and mutual exclusion algorithms. All tests where performed on
a machine with an Intel Xeon CPU E5-2630 v4 @ 2.20 GHz and 8GB of RAM.
The results are depicted in Fig.2 and can be reproduced by the certified arti-
fact [18]. For parametric families of replicated systems, we always report the
largest instance that we were able to verify with a timeout of one hour. For
IndOverapproz, from the approaches in Sect.5, we use IndOverapproz” in the
examples marked with * and IndQuerapproz™ otherwise. Almost all constructed
stage graphs are a chain with at most 3 stages. The only exceptions are the stage
graphs for the approximate majority protocols that contained a binary split and
5 stages. The size of the Presburger formulas increases with increasing size of the
replicated system. In the worst case, this growth can be exponential. However,
the growth is linear in all examples marked with *.

Checking Qualitative Liveness Properties of Replicated Systems 389

Population protocols (correctness) Population protocols (stable cons.)
Parameters [IQl| |T|| Time| Parameters |1QIIT|| Time
Broadcast [31,22] * Approx. majority [27] (Cell cycle sw.) *

[2] 1] <1s | 3[4 <1s
Majority (Example 1)[22] * Approx. majority [51] (Coin game) *
| 4] 4] <1s|[k=3 | 2] 4] <1s
Majority [23, Ex. 3] * Approx. majority [56] (Moran proc.) *
| 5] 6] <1s [2] 2] <1s
Majority [5] (*fast & exact”) Leader election/Mutex algorithms
m=13, d=1 16| 136 45| |Processes |1QIIT|| Time
m=21, d=1 (TO: 23,1) | 24| 300| 466s| e e
m=21, d=20 (TO: 23,22)| 62(1953| 3301s| eader election [14] (Isracli-Jalfon)
20 40| 80 s
Flock-of-birds [28,22] *: x > ¢ 60 120/240! 14935
c= 4218 42& Z;g 428 70 (TO: 80) 140(280| 32955
c= s —
¢ =60 61118301 341s IQ.:fader election [42] (Herrjfzan)42 5
¢ =80 (TO: ¢ = 90) 81/3240| 1217s 5
51 102|102] 300s
Flock-of-birds [20, Sect. 3]: > ¢ 81 (TO: 91) 1621162 28005
c =60 8| 18 15s
¢ =90 gl 21| 971 [Mutex [40] (Array)
c=120 (TO: c=127) | 9| 21| 2551s| |2 15 951 2s
- 5 33(239 5s
Flock-of-birds [31,22, threshold-n] *: x > ¢| |1 (TO: 11) 63l479] 9385
c=10 11 19] < 1s
c—15 16l 29 1s Mutex [59] (Burns) -
¢ =20 (TO: ¢ = 25) 21| 39| 18s| [B s
- 4 19|1199] 119s
Threshold [8][22, vmax=c + 1] *t1a-z >c | |5 (TO: 6) 23(279 22325
c=2 28| 288 7s - =
c—4 44| 716 %6s 12\/[utex [3] (Dijkstra) — -
c=6 60/1336| 107s y
¢ =8 (TO: ¢ = 10) 76/2148| 1089s| [3(TO: 4) 27|488] 3468s
Threshold [20] (“succinct”): a-x > ¢ Mutex [50] (Lehmann Rabin)
o e] 1o
c=31 17| 55] 1ls y
o197 o1l 73l 158e| |9.(TO: 10) 75(611] 2470s
¢ =511 (TO: ¢ =1023) | 25| 91| 2659s| [Mutex [61] (Peterson)
Remainder [22] *: a ¢ =, ¢ 2 | 13] 86] 2s
m=5 7T 20] < 1s| |Mutex [64] (Szymanski)
m =15 17| 135 34s| |2 17\211 10s
m =20 (TO: m =25) | 22| 230| 1646s| |3 (TO: 4) 24(895| 667s

Fig. 2. Columns |Q|, |T|, and Time give the number of states and non-silent tran-
sitions, and the time for verification. Population protocols are verified for an infinite
set of configurations. For parametric families, the smallest instance that could not be
verified within one hour is shown in brackets, e.g. (TO: ¢ = 90). Leader election and
mutex algorithms are verified for one configuration. The number of processes leading
to a timeout is given in brackets, e.g. (TO: 10).

390 M. Blondin et al.

Population Protocols. Population protocols [8,9] are replicated systems
that compute Presburger predicates following the computation-as-consensus
paradigm [10]. Depending on whether the initial configuration of agents sat-
isfies the predicate or not, the agents of a correct protocol eventually agree on
the output “yes” or “no”, almost surely. Example 1 can be interpreted as a
population protocol for the majority predicate Ay > Ay, and the two stable
termination properties that verify its correctness are described in Example 2. To
show that a population protocol correctly computes a given predicate, we thus
construct two Presburger stage graphs for the two corresponding stable termi-
nation properties. In all these examples, correctness is proved for an infinite set
of initial configurations.

Our set of benchmarks contains a broadcast protocol [31], three majority
protocols (Example 1, [23, Ex. 3], [5]), and multiple instances of parameterized
families of protocols, where each protocol computes a different instance of a
parameterized family of predicates®. These include various flock-of-birds protocol
families ([28], [20, Sect. 3], [31, threshold-n]) for the family of predicates z > ¢
for some constant ¢ > 0; two families for threshold predicates of the form a-x >
¢ [8,20]; and one family for remainder protocols of the form a - x =, ¢ [22].
Further, we check approximate majority protocols ([27,56], [51, coin game]). As
these protocols only compute the predicate with large probability but not almost
surely, we only verify that they always converge to a stable consensus.

Comparison with [22]. The approach of [22] can only be applied to so-called
strongly-silent protocols. However, this class does not contain many fast and
succinct protocols recently developed for different tasks [4,17,20].

We are able to verify all six protocols reported in [22]. Further, we are
also able to verify the fast Majority [5] protocol as well as the succinct pro-
tocols Flock-of-birds [20, Sect. 3] and Threshold [20]. All three protocols are not
strongly-silent. Although our approach is more general and complete, the time to
verify many strongly-silent protocol does not differ significantly between the two
approaches. Exceptions are the Flock-of-birds [28] protocols where we are faster
([22] reaches the timeout at ¢ = 55) as well as the Remainder and the Flock-of-
birds-threshold-n protocols where we are substantially slower ([22] reaches the
timeout at m = 80 and ¢ = 350, respectively). Loosely speaking, the approach of
[22] can be faster because they compute inductive overapproximations using an
iterative procedure instead of PotReach. In some instances already a very weak
overapproximation, much less precise than PotReach, suffices to verify the result.
Our procedure can be adapted to accommodate this (it essentially amounts to
first running the procedure of [22], and if it is inconclusive then run ours).

Other Distributed Algorithms. We have also used our approach to verify arbitrary
LTL liveness properties of non-parameterized systems with arbitrary communi-
cation structure. For this we apply standard automata-theoretic techniques and

5 Notice that for each protocol we check correctness for all inputs; we cannot yet
automatically verify that infinitely many protocols are correct, each of them for all
possible inputs.

Checking Qualitative Liveness Properties of Replicated Systems 391

construct a product of the system and a limit-deterministic Biichi automaton
for the negation of the property. Checking that no fair runs of the product are
accepted by the automaton reduces to checking a stable termination property.

Since we only check correctness of one single finite-state system, we can also
apply a probabilistic model checker based on state-space exploration. However,
our technique delivers a stage graph, which plays two roles. First, it gives an
explanation of why the property holds in terms of invariants and ranking func-
tions, and second, it is a certificate of correctness that can be efficiently checked
by independent means.

We verify liveness properties for several leader election and mutex algorithms
from the literature [3,40,42,44,50,59,61,64] under the assumption of a proba-
bilistic scheduler. For the leader election algorithms, we check that a leader is
eventually chosen; for the mutex algorithms, we check that the first process
enters its critical section infinitely often.

Comparison with PRISM [49]. We compared execution times for verification by
our technique and by PRISM on the same models. While PRISM only needs a
few seconds to verify instances of the mutex algorithms [3,40,50,59,61,64] where
we reach the time limit, it reaches the memory limit for the two leader election
algorithms [42,44] already for 70 and 71 processes, which we can still verify.

9 Conclusion and Further Work

We have presented stage graphs, a sound and complete technique for the ver-
ification of stable termination properties of replicated systems, an important
class of parameterized systems. Using deep results of the theory of Petri nets,
we have shown that Presburger stage graphs, a class of stage graphs whose cor-
rectness can be reduced to the satisfiability problem of Presburger arithmetic,
are also sound and complete. This provides a decision procedure for the verifica-
tion of termination properties, which is of theoretical nature since it involves a
blind enumeration of candidates for Presburger stage graphs. For this reason, we
have presented a technique for the algorithmic construction of Presburger stage
graphs, designed to exploit the strengths of SMT-solvers for existential Pres-
burger formulas, i.e., integer linear constraints. Loosely speaking, the technique
searches for linear functions certifying the progress between stages, even though
only the much larger class of Presburger functions guarantees completeness.

We have conducted extensive experiments on a large set of benchmarks. In
particular, our approach is able to prove correctness of nearly all the standard
protocols described in the literature, including several protocols that could not
be proved by the technique of [22], which only worked for so-called strongly-
silent protocols. We have also successfully applied the technique to some self-
stabilization algorithms, leader election and mutual exclusion algorithms.

Our technique is based on the mechanized search for invariants and ranking
functions. It avoids the use of state-space exploration as much as possible. For
this reason, it also makes sense as a technique for the verification of liveness
properties of non-parameterized systems with a finite but very large state space.

392

M. Blondin et al.

References

10.

11.

12.

13.
14.

. Abdulla, P.A.: Regular model checking. Int. J. Softw. Tools Technol. Transf. 14(2),

109-118 (2012). https://doi.org/10.1007/s10009-011-0216-8

. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems

for infinite-state systems. In: Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, LICS 1996, New Brunswick, New Jersey, USA, 27-30
July 1996, pp. 313-321. IEEE Computer Society (1996). https://doi.org/10.1109/
LICS.1996.561359

Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721-736. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_56

. Alistarh, D., Gelashvili, R.: Recent algorithmic advances in population protocols.

SIGACT News 49(3), 63-73 (2018). https://doi.org/10.1145/3289137.3289150
Alistarh, D., Gelashvili, R., Vojnovic, M.: Fast and exact majority in population
protocols. In: Georgiou, C., Spirakis, P.G. (eds.) Proceedings of the 34th ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastidn, Spain, 21-23 July 2015, pp. 47-56. ACM (2015). https://doi.org/10.
1145/2767386.2767429

Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed
networks. In: Halldérsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015, Part II. LNCS, vol. 9135, pp. 375-387. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6_30

Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (1987). https://doi.org/10.1016,/0890-5401(87)90052-6

. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation

in networks of passively mobile finite-state sensors. In: Chaudhuri, S., Kutten,
S. (eds.) Proceedings of the 23rd Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, 25—28 July
2004, pp. 290-299. ACM (2004). https://doi.org/10.1145/1011767.1011810
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235-253
(2006). https://doi.org/10.1007/s00446-005-0138-3

Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279-304 (2007). https://doi.org/10.
1007/s00446-007-0040-2

Athanasiou, K., Liu, P., Wahl, T.: Unbounded-thread program verification using
thread-state equations. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 516-531. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1_35

Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Pasareanu,
C.S. (eds.) CAV 2015, Part I. LNCS, vol. 9206, pp. 479-486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4_-31

Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction
for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 64-78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4_9

https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1145/3289137.3289150
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/978-3-662-47666-6_30
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-642-02658-4_9
https://doi.org/10.1007/978-3-642-02658-4_9

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Checking Qualitative Liveness Properties of Replicated Systems 393

Berman, L.: The complexitiy of logical theories. Theoret. Comput. Sci. 11, 71-77
(1980). https://doi.org/10.1016/0304-3975(80)90037-7

Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.:
Decidability of Parameterized Verification. Synthesis Lectures on Distributed Com-
puting Theory. Morgan & Claypool Publishers (2015). https://doi.org/10.2200/
S00658ED1V01Y201508DCT013

Blondin, M., Esparza, J., Genest, B., Helfrich, M., Jaax, S.: Succinct population
protocols for presburger arithmetic. In: Proceedings of 37th International Sympo-
sium on Theoretical Aspects of Computer Science, STACS 2020, 10-13 March 2020,
Montpellier, France. LIPIcs, vol. 154, pp. 40:1-40:15. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.40
Blondin, M., Esparza, J., Helfrich, M., Kucera, A., Meyer, P.J.: Artifact evaluation
VM and instructions to generate experimental results for the CAV20 paper: check-
ing Qualitative Liveness Properties of Replicated Systems with Stochastic Schedul-
ing. figshare:12295982 (2020). https://doi.org/10.6084/m9.figshare.12295982.v2
Blondin, M., Esparza, J., Helfrich, M., Kucera, A., Meyer, P.J.: Checking
qualitative liveness properties of replicated systems with stochastic scheduling.
arXiv:2005.03555 [cs.LO] (2020). https://arxiv.org/abs/2005.03555

Blondin, M., Esparza, J., Jaax, S.: Large flocks of small birds: on the minimal
size of population protocols. In: Proceedings of 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, 28 February - 3 March 2018, Caen,
France. LIPIcs, vol. 96, pp. 16:1-16:14. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik (2018). https://doi.org/10.4230/LIPIcs.STACS.2018.16

Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of population
protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS,
vol. 10981, pp. 604-611. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96145-3_34

Blondin, M., Esparza, J., Jaax, S., Meyer, P.J.: Towards efficient verification of
population protocols. In: Schiller, E.M., Schwarzmann, A.A. (eds.) Proceedings
of 36th ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, 25-27 July 2017, pp. 423-430. ACM (2017). https://doi.
org/10.1145/3087801.3087816

Blondin, M., Esparza, J., Kucera, A.: Automatic analysis of expected termination
time for population protocols. In: Schewe, S., Zhang, L. (eds.) Proceedings of 29th
International Conference on Concurrency Theory, CONCUR 2018, 4-7 September
2018, Beijing, China. LIPIcs, vol. 118, pp. 33:1-33:16. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2018). https://doi.org/10.4230/LIPIcs. CONCUR.2018.33
Blondin, M., Finkel, A., Haase, C., Haddad, S.: The logical view on continuous
petri nets. ACM Trans. Comput. Log. (TOCL) 18(3), 24:1-24:28 (2017). https://
doi.org/10.1145/3105908

Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403—418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_31

Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many
identical finite state processes. Inf. Comput. 81(1), 13-31 (1989). https://doi.org/
10.1016/0890-5401(89)90026-6

Cardelli, L., Csikdsz-Nagy, A.: The cell cycle switch computes approximate major-
ity. Sci. Rep. 2(1), 656 (2012). https://doi.org/10.1038 /srep00656

pagebreak

https://doi.org/10.1016/0304-3975(80)90037-7
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.6084/m9.figshare.12295982.v2
http://arxiv.org/abs/2005.03555
https://arxiv.org/abs/2005.03555
https://doi.org/10.4230/LIPIcs.STACS.2018.16
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.4230/LIPIcs.CONCUR.2018.33
https://doi.org/10.1145/3105908
https://doi.org/10.1145/3105908
https://doi.org/10.1007/10722167_31
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1016/0890-5401(89)90026-6
https://doi.org/10.1038/srep00656

394

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

M. Blondin et al.

Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of popu-
lation protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 221-235. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16023-3_19

Chen, Y., Hong, C., Lin, A.W., Riilmmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Stewart, D., Weissenbacher, G. (eds.) Proceed-
ings of 17th International Conference on Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, 2-6 October 2017, pp. 76-83. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102244

Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276-291. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-
818

Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for
the verification of population protocols. In: Proceedings of 31st International Con-
ference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota,
USA, 20-24 June 2011, pp. 215-224. IEEE Computer Society (2011). https://doi.
org/10.1109/ICDCS.2011.36

Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7,91-99 (1972)

Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachabil-
ity problem for petri nets is not elementary. In: Charikar, M., Cohen, E. (eds.)
Proceedings of 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, 23-26 June 2019, pp. 24-33. ACM (2019). https://
doi.org/10.1145/3313276.3316369

Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527-550 (2003). https://doi.org/10.1142/50129054103001881

Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Model checking population pro-
tocols. In: Lal, A., Akshay, S., Saurabh, S.,; Sen, S. (eds.) Proceedings of 36th
TARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2016, Chennai, India, 13-15 December 2016. LIPIcs,
vol. 65, pp. 27:1-27:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2016).
https://doi.org/10.4230/LIPIcs. FSTTCS.2016.27

Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. Acta Inf. 54(2), 191-215 (2017). https://doi.org/10.1007/s00236-016-0272-
3

Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603-619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9_40

Esparza, J., Meyer, P.J.: An SMT-based approach to fair termination analysis.
In: Kaivola, R., Wahl, T. (eds.) Proceedings of 15th International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
27-30 September 2015, pp. 49-56. IEEE (2015)

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!.
Theoret. Comput. Sci. 256(1-2), 63-92 (2001). https://doi.org/10.1016/S0304-
3975(00)00102-X

https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1007/978-3-540-28644-8_18
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.27
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Checking Qualitative Liveness Properties of Replicated Systems 395

Fribourg, L., Olsén, H.: Reachability sets of parameterized rings as regular lan-
guages. In: Moller, F. (ed.) Proceedings of 2nd International Workshop on Veri-
fication of Infinite State Systems, Infinity 1997, Bologna, Italy, 11-12 July 1997.
Electronic Notes in Theoretical Computer Science, vol. 9, p. 40. Elsevier (1997).
https://doi.org/10.1016/S1571-0661(05)80427-X

German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675-735 (1992). https://doi.org/10.1145/146637.146681

Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63-67 (1990).
https://doi.org/10.1016/0020-0190(90)90107-9

Hopcroft, J.E., Pansiot, J.: On the reachability problem for 5-dimensional vector
addition systems. Theoret. Comput. Sci. 8, 135-159 (1979). https://doi.org/10.
1016/0304-3975(79)90041-0

Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Dwork, C. (ed.) Proceedings of 9th Annual ACM
Symposium on Principles of Distributed Computing, PODC 1990, Quebec City,
Quebec, Canada, 22-24 August 1990, pp. 119-131. ACM (1990). https://doi.org/
10.1145/93385.93409

Jancar, P., Purser, D.: Structural liveness of petri nets is expspace-hard and decid-
able. Acta Inf. 56(6), 537-552 (2019). https://doi.org/10.1007/s00236-019-00338-
6

Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645-659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6_55

Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 14:1-14:29 (2014). https://
doi.org/10.1145/2629608

Kietinsky, J., Meggendorfer, T., Sickert, S.: Owl: a library for w-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543-550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_34
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1-47

Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In: White, J., Lipton, R.J.,
Goldberg, P.C. (eds.) Proceedings of 8th Annual ACM Symposium on Principles
of Programming Languages, POPL 1981, Williamsburg, Virginia, USA, January
1981, pp. 133-138. ACM Press (1981). https://doi.org/10.1145/567532.567547
Lengdl, O., Lin, A.W., Majumdar, R., Riimmer, P.: Fair termination for parame-
terized probabilistic concurrent systems. In: Legay, A., Margaria, T. (eds.) TACAS
2017, Part I. LNCS, vol. 10205, pp. 499-517. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54577-5_29

Leroux, J.: Vector addition systems reachability problem (a simpler solution). In:
Voronkov, A. (ed.) Proceedings of the Alan Turing Centenary Conference, Turing
100, Manchester, UK, 22-25 June 2012. EPiC Series in Computing, vol. 10, pp.
214-228. EasyChair (2012). https://doi.org/10.29007 /bnx2

Leroux, J.: Presburger vector addition systems. In: Proceedings of 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, 25-28 June 2013. pp. 23-32. IEEE Computer Society (2013). https://
doi.org/10.1109/LICS.2013.7

https://doi.org/10.1016/S1571-0661(05)80427-X
https://doi.org/10.1145/146637.146681
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1145/93385.93409
https://doi.org/10.1145/93385.93409
https://doi.org/10.1007/s00236-019-00338-6
https://doi.org/10.1007/s00236-019-00338-6
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/567532.567547
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.29007/bnx2
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2013.7

396

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

M. Blondin et al.

Leroux, J.: Vector addition system reversible reachability problem. Log. Methods
Comput. Sci. 9(1) (2013). https://doi.org/10.2168 /LMCS-9(1:5)2013

Lin, A.W., Riimmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS,
vol. 9780, pp. 112-133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6_7

Moran, P.A.P.: Random processes in genetics. Math. Proc. Cambridge Philos. Soc.
54(1), 60-71 (1958). https://doi.org/10.1017/S0305004100033193

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3-24

Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94-102 (2015). https://doi.org/10.
1145/2678280

Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala University (2000)
Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing popu-
lation protocols. In: Proceedings of 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering, TASE 2008, 17-19 June 2008, Nan-
jing, China, pp. 185-192. IEEE Computer Society (2008). https://doi.org/10.1109/
TASE.2008.8

Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3), 115-116 (1981). https://doi.org/10.1016,/0020-0190(81)90106-X
Presburger, M.: Uber die Vollstandigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I*" Congreés des mathématiciens des pays slaves, pp. 192-201 (1929)
Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709—
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_59
Szymanski, B.K.: A simple solution to Lamport’s concurrent programming problem
with linear wait. In: Lenfant, J. (ed.) Proceedings of 2nd International Conference
on Supercomputing, ICS 1988, Saint Malo, France, 4-8 July 1988, pp. 621-626.
ACM (1988). https://doi.org/10.1145/55364.55425

Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of 26th Annual Symposium on Foundations of Computer
Science, FOCS 1985, Portland, Oregon, USA, 21-23 October 1985, pp. 327-338.
IEEE Computer Society (1985). https://doi.org/10.1109/SFCS.1985.12

https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2678280
https://doi.org/10.1145/2678280
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1016/0020-0190(81)90106-X
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1145/55364.55425
https://doi.org/10.1109/SFCS.1985.12

Checking Qualitative Liveness Properties of Replicated Systems 397

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling
	1 Introduction
	2 Preliminaries
	2.1 Replicated Systems
	2.2 Qualitative Model Checking

	3 Stage Graphs
	4 Algorithmic Construction of Stage Graphs
	5 Computing and Approximating "494A971 dead(U)"594B979
	6 Splitting a Stage
	7 Computing Eventually Dead Transitions
	7.1 First Implementation: Linear Ranking Functions
	7.2 Second Implementation: Layers
	7.3 Comparing Ranking and Layer Functions

	8 Experimental Results
	9 Conclusion and Further Work
	References

