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Abstract. Reachability analysis is a critical tool for the formal verifica-
tion of dynamical systems and the synthesis of controllers for them. Due
to their computational complexity, many reachability analysis methods
are restricted to systems with relatively small dimensions. One significant
reason for such limitation is that those approaches, and their implementa-
tions, are not designed to leverage parallelism. They use algorithms that
are designed to run serially within one compute unit and they can not uti-
lize widely-available high-performance computing (HPC) platforms such
as many-core CPUs, GPUs and Cloud-computing services.

This paper presents PIRK, a tool to efficiently compute reachable sets
for general nonlinear systems of extremely high dimensions. PIRK can
utilize HPC platforms for computing reachable sets for general high-
dimensional non-linear systems. PIRK has been tested on several systems,
with state dimensions up to 4 billion. The scalability of PIRK’s parallel
implementations is found to be highly favorable.

Keywords: Reachability analysis -+ ODE integration + Runge-Kutta
method - Mixed monotonicity - Monte Carlo simulation - Parallel
algorithms

Introduction

Applications of safety-critical cyber-physical systems (CPS) are growing due
to emerging IoT technologies and the increasing availability of efficient com-
puting devices. These include smart buildings, traffic networks, autonomous
vehicles, truck platooning, and drone swarms, which require reliable bug-free
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software that perform in real-time and fulfill design requirements. Traditional
simulation/testing-based strategies may only find a small percentage of the soft-
ware defects and the repairs become much costly as the system complexity grows.
Hence, in-development verification strategies are favorable since they reveal the
faults in earlier stages, and guarantee that the designs satisfy the specifications
as they evolve through the development cycle. Formal methods offer an attrac-
tive alternative to testing- and simulation-based approaches, as they can verify
whether the specifications for a CPS are satisfied for all possible behaviors from
a set of the initial states of the system. Reachable sets characterize the states
a system can reach in a given time range, starting from a certain initial set
and subjected to certain inputs. They play an important role in several formal
methods-based approaches to the verification and controller synthesis. An exam-
ple of this is abstraction-based synthesis [1-4], in which reachable sets are used
to construct a finite-state “abstraction” which is then used for formal synthesis.

Computing an exact reachable set is generally not possible. Most practical
methods resort to computing over-approximations or under-approximations of
the reachable set, depending on the desired guarantee. Computing these approx-
imations to a high degree of accuracy is still a computationally intensive task,
particularly for high-dimensional systems. Many software tools have been cre-
ated to address the various challenges of approximating reachable sets. Each of
these tools uses different methods and leverages different system assumptions to
achieve different goals related to computing reachable sets. For example, CORA
[5] and SpaceEx [6] tools are designed to compute reachable sets of high accu-
racy for very general classes of nonlinear systems, including hybrid ones. Some
reachability analysis methods rely on specific features of dynamical systems,
such as linearity of the dynamics or sparsity in the interconnection structure
[7-9]. This allows computing the reachable sets in shorter time or for relatively
high-dimensional systems. However, it limits the approach to smaller classes of
applications, less practical specifications, or requires the use of less accurate (e.g.,
linearized) models.

Other methods attack the computational complexity problem by comput-
ing reachable set approximations from a limited class of set representations. An
example of limiting the set of allowed overapproximations are interval reachabil-
ity methods, in which reachable sets are approximated by Cartesian products of
intervals. Interval reachability methods allow for computing the reachable sets of
very general non-linear and high-dimensional systems in a short amount of time.
They also pose mild constraints on the systems under consideration, usually only
requiring some kind of boundedness constraint instead of a specific form for the
system dynamics. Many reachability tools that are designed to scale well with
state dimension focus on interval reachability methods: these include Flow* [10],
CAPD [11], C2E2 [12], VNODE-LP [13], DynIbex [14], and TIRA [15].

Another avenue by which reachable set computation time can be reduced,
which we believe has not been sufficiently explored, is the use of parallel com-
puting. Although most reachability methods are presented as serial algorithms,
many of them have some inherent parallelism that can be exploited. One example
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of a tool that exploits parallelism is XSpeed [16], which implements a parallelized
version of a support function-based reachability method. However, this parallel
method is limited to linear systems, and in some cases only linear systems with
invertible dynamics. Further, the parallelization is not suitable for massively
parallel hardware: only some of the work (sampling of the support functions)
is offloaded to the parallel device, so only a relatively small number of parallel
processing elements may be employed.

In this paper, we investigate the parallelism for three interval reachability
analysis methods and introduce PIRK, the Parallel Interval Reachability Ker-
nel. PIRK uses simulation-based reachability methods [17-19], which compute
rigorous approximations to reachable sets by integrating one or more systems
of ODEs. PIRK is developed in C++ and OpenCL as an open-source! kernel for
pFaces [20], a recently introduced acceleration ecosystem. This allows PIRK to
be run on a wide range of computing platforms, including CPUs clusters, GPUs,
and hardware accelerators from any vendor, as well as cloud-based services like
AWS.

The user looking to use a reachability analysis tool for formal verification
may choose from an abundance of options, as our brief review has shown. What
PIRK offers in this choice is a tool that allows for massively parallel reachability
analysis of high-dimensional systems with an application programming interface
(API) to easily interface with other tools. To the best of our knowledge, PIRK is
the first and the only tool that can compute reachable sets of general non-linear
systems with dimensions beyond the billion. As we show later in Sect.5, PIRK
computes the reachable set for a traffic network example with 4 billion dimension
in only 44.7 min using a 96-core CPU in Amazon AWS Cloud.

2 Interval Reachability Analysis

Consider a nonlinear system with dynam- . —— -
ics # = f(t,x,p) with state z € R", a set s -~ —=

of initial states Xp, a time interval [tg, {1], —
and a set of time-varying inputs P defined =
over [to,t1]. Let ®(t;tg, zo,p) denote the 0

state of the system, at time ¢, of the tra- L &
jectory beginning at time t( at initial state =
o under input p. We assume the systems 2 5

(

are continuous-time.
The finite-time forward reachable set
is defined as

Fig.1. An example of an Interval

Reachability problem for a nonlinear
R = {D(t1;tg,x,p)|z € Xo,p € P}. Yy P
fo.ta {@(ts;t0, . p)] 0.P } system. Red rectangle: initial set. Blue

For the problem of interval reachabil- rectangles: reachable sets for several
ity analysis, there are a few more con- final times ;. (Color figure online)
straints on the problem structure. An interval set is a set of the form [a,a] =

! PIRK is publicly available at https://github.com/mkhaled87/pFaces-PIRK.
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{a : a < a <@}, where < denotes the usual partial order on real vectors, that
is the partial order with respect to the positive orthant cone. The vectors a and
a are the lower and upper bounds respectively of the interval set. An interval
set can alternatively be described by its center a* = %(5 + a) and half-width
[a] = }(a—a). In interval reachability analysis, the initial set must be an interval,
and inputs values restricted to an interval set, i.e. p(t) € [p,p], and the reach-
able set approximation must also be an interval (Fig.1). Furthermore, certain
methods for computing interval reachable sets require further restrictions on the
system dynamics, such as the state and input Jacobian matrices being bounded

or sign-stable.

2.1 Methods to Compute Interval Reachable Sets

PIRK computes interval reachable sets using three different methods, allowing
for different levels of tightness and speed, and which allow for different amounts
of additional problem data to be used.

The Contraction/Growth Bound method [4,21,22] computes the reachable
set using component-wise contraction properties of the system. This method may
be applied to input-affine systems of the form & = f(¢,2) + p. The growth and
contraction properties of each component of the system are first characterized
by a contraction matriz C. The contraction matrix is a component-wise gener-
alization of the matrix measure of the Jacobian J, = 9f/0z [19,23], satisfying
Cii > Jy,ii(t, x) for diagonal Jacobian elements Jy ;;(t, z), and Cy; > |J5 5(t, )|
for off-diagonal Jacobian elements J; ;; (¢, z). The method constructs a reachable
set over-approximation by separately establishing its center and half-width. The
center is found by simulating the trajectory of the center of the initial set, that
is as D(t1;to, z*, p*). The half width is found by integrating the growth dynamics
i = g(r,p) = Cr + [p], where [p] = (P — p), over [to,t] with initial condition
r(to) = [e] = 47 - 2).

The Mized-Monotonicity method [24] computes the reachable set by separat-
ing the increasing and decreasing portions of the system dynamics in an auxiliary
system called the embedding system whose state dimension is twice that of the
original system [25]. The embedding system is constructed using a decomposi-
tion function d(t,z,p,Z,p), which encodes the increasing and decreasing parts
of the system dynamics and satisfies d(t, z,p,z,p) = f(t,z,p). The evaluation
of a single trajectory of the embedding system can be used to find a reachable
set over-approximation for the original system.

The Monte Carlo method computes a probabilistic approximation to the
reachable set by evaluating the trajectories of a finite number m of pairs sam-
ple points (x((f), p(i)) in the initial set and input set, and selecting the smallest
interval that contains the final points of the trajectories. Unlike the other two
methods, the Monte Carlo method is restricted to constant-valued inputs, i.e.
inputs of the form p(¢t) = p, where p € [p,p|. Each sampled initial state xél) is
integrated over [tg,t1] with its input p' to yield a final state x(li). The interval
reachable set is then approximated by the elementwise minimum and maximum
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of the xgl). This approximation satisfies a probabilistic guarantee of correctness,
provided that enough sample states are chosen [26]. Let [R, R] be the approxi-
mated reachable set, €, € (0,1), and m > (27”) log (%T”) . Then, with probability
1—4, the approximation [R, R] satisfies P(Ry, 1, \[R, R]) < ¢, where P(A) denotes
the probability that a sampled initial state will yield a final state in the set A,
and \ denotes set difference. The probability that a sampled initial state will be
sent to a state outside the estimate (the “accuracy” of the estimate) is quanti-
fied by e. Improved accuracy (lower €) increases the sample size as O(1/¢). The
probability that running the algorithm will fail to give an estimate satisfying the
inequality (The “confidence”) is quantified by §. Improved confidence (lower §)
increases the sample size by O(log(1/4)).

3 Parallelization

The bulk of the computational work in each method is spent in ODE integration.
Hence, the most effective approach by which to parallelize the three methods is to
design a parallel ODE integration method. There are several available methods
for parallelizing the task of ODE integration. Several popular methods for paral-
lel ODE integration are parallel extensions of Runge-Kutta integration methods,
which are the most popular serial methods for ODE integration.

PIRK takes advantage of the task-level parallelism in the Runge-Kutta equa-
tions by evaluating each state dimension in parallel. This parallelization scheme
is called parallelization across space [27]. PIRK specifically uses a space-parallel
version of the fourth-order Runge-Kutta method, or space-parallel RK4 for
brevity. In space-parallel RK4, each parallel thread is assigned a different state
variable to evaluate the intermediate update equations. After each intermediate
step, the threads must synchronize to construct the updated state in global mem-
ory. Space-parallel RK4 can use as many parallel computation elements as there
are state variables: since PIRK’s goal is to compute reachable sets for extremely
high-dimensional systems, this is sufficient in most cases.

The space-parallel scheme is not hardware-specific, and may be used with any
parallel computing platform. PIRK is similarly hardware-agnostic: the pFaces
ecosystem, for which PIRK is a kernel, provides a common interface to run on
a variety of heterogeneous parallel computing platforms. The only difference
between platforms that affects PIRK is the number of available parallel processing
elements (PEs).

4 Complexity of the Parallelized Methods

The parallelized implementations of the three reachability methods described
in Sect.2.1 use space-parallel RK4 to perform almost all computations other
than setting up initial conditions. We can therefore find the time and memory
complexity of each method by analyzing the complexity of space-parallel RK4
and counting the number of times each method uses it.
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For a system with n dimensions, space-parallel RK4 scales linearly as the
number of PEs (denoted by P) increases. In a computer with a single PE (i.e.,
P = 1), the algorithm reduces to the original serial algorithm. Then, suppose
that a parallel computer has P < n PEs of the same type. We assume a com-
putational model under which instruction overhead and latency from thread
synchronization are negligible, memory space has equal access time from all
processing elements, and the number of parallel jobs can be evenly distributed
among the P processing elements.? Under this parallel random-access machine
model [28], the time complexity of space-parallel RK4 is reduced by a factor of
P: each PE is responsible for computing n/P components of the state vector.
Therefore, for fixed initial and final times tg and t;, the time complexity of the
algorithm is O(3).

The parallel version of the contraction/growth bound method uses space-
parallel RK4 twice. First, it is used to compute the solution of the system’s
ODE f for the center of the initial set Xp. Then, it is used to compute the
growth/contraction of the initial set Xy by solving the ODE g of the growth
dynamics. Since this method uses a fixed number of calls of space-parallel RK4,
its time complexity is also O(%) for a given ¢y and ;.

The parallelized implementation of the mixed-monotonicity method uses
space-parallel RK4 only once, in order to integrate the 2n-dimensional embed-
ding system. This means that the mixed-monotonicity method also has a time
complexity of O(3) for fixed o and ¢,. However, the mixed-monotonicity method
requires twice as much memory as the growth bound method, since it runs space-
parallel RK4 on a system of dimension 2n.

The parallelized implementation of the Monte Carlo method uses space-
parallel RK4 m times, once for each of the m sampled initial states. The imple-
mentation uses two levels of parallelization. The first level is a set of parallel
threads over the samples used for simulations. Then, within each thread, another
parallel set of threads are launched by space-parallel RK4. This is realized as
one parallel job of m x n threads. Consequently, the Monte Carlo method has
a complexity of O(™2). Since only the elementwise minima and maxima of the
sampled states need to be stored, this method only requires as much memory as
the growth bound method.

Remark 1. A pseudocode of each parallel algorithm and a detailed discussion of
their time and space complexities are provided in an extended version of this
paper [29]. The extended version also contains additional details for the case
studies that will be presented in the next section.

5 Case Studies

In each of the case studies to follow, we report the time it takes PIRK to compute
reachable sets for systems of varying dimension using all three of its methods on

2 While these non-idealities will be present in real systems and slow down computation,
they should not affect the asymptotic complexity.
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Fig. 2. Logarithmic plots of the results for speed tests of the traffic model (first row)
and the quadrotor swarm (second row). Speed test results for the serial interval reach-
ability toolbox TIRA are also shown for the traffic model.

a variety of parallel computing platforms. We perform some of the same tests
using the serial tool TIRA, to measure the speedup gained by PIRK’s ability to
use massively parallel hardware.

We set a time limit of 1h for all of the targeted case studies, and report
the maximum dimensions that could be reached under this limit. The Monte
Carlo method is given probabilistic parameters e = § = 0.05 in each case study
where it is used. We use four AWS machines for the computations with PIRK:
m4.10xlarge which has a CPU with 40 cores, c5.24xlarge which has a CPU
with 96 cores, g3.4xlarge which has a GPU with 2048 cores, and p3.2xlarge
which has a GPU with 5120 cores. For the computations with TIRA, we used a
machine with a 3.6 GHz Intel i7 CPU.

5.1 n-link Road Traffic Model

We consider the road traffic analysis problem reported in [30], a proposed bench-
mark for formal controller synthesis. We are interested in the density of cars along
a single one-way lane. The lane is divided into n segments, and the density of cars
in each segment is a state variable. The continuous-time dynamics are derived
from a spatially discretized version of the Cell Transmission Model [31]. This is
a nonlinear system with sparse coupling between state variables.

The results of the speed test are shown in the first row of Figure 2. The
machines m4.10xlarge and c5.24xlarge reach up to 2 billion and 4 billion
dimensions, respectively, using the growth/contraction method, in 47.3 min and
44.7 min, respectively. Due to memory limitations of the GPUs, the machines
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g3.4xlarge and p3.2xlarge both reach up to 400 million in 106s and 11s,
respectively.

The relative improvement of PIRK’S computation time over TIRA’s is sig-
nificantly larger for the growth bound method than for the other two. This
difference stems from how each tool computes the half-width of the reachable
set from the radius dynamics. TIRA solves the radius dynamics by computing
the full matrix exponential using MATLAB’s expm, whereas PIRK directly inte-
grates the dynamics using parallel Runge-Kutta. This caveat applies to Sect. 5.2
as well.

5.2 Quadrotor Swarm

The second test system is a swarm of K identical quadrotors with nonlinear
dynamics. The system dynamics of each quadrotor model are derived in a sim-
ilar way to the model used in the ARCH-COMP 18 competition [32], with the
added simplification of a small angle approximation in the angular dynamics
and the neglect of Coriolis force terms. A derivation of both models is avail-
able in [33]. Similar to the n-link traffic model, this system is convenient for
scaling: system consisting of one quadrotor can be expressed with 12 states, so
the state dimension of the swarm system is n = 12K. While this reachability
problem could be decomposed into K separate reachability problems which can
be solved separately, we solve the entire 12 K-dimensional problem as a whole to
demonstrate PIRK’s ability to make use of sparse interconnection.

The results of the speed test are shown in Fig. 2 (second row). The machines
m4.10xlarge and c5.24xlarge reach up to 1.8 billion dimensions and 3.6 bil-
lion dimensions, respectively, (using the growth/contraction method) in 48 min
and 32 min, respectively. The machines g3.4xlarge and p3.2xlarge both reach
up to 120 million dimensions in 10.6 min and 46 s, respectively.

5.3 Quadrotor Swarm with Artificial Potential Field

The third test system is a modification of the quadrotor swarm system which
adds interactions between the quadrotors. In addition to the quadrotor dynamics
described in Sect. 5.2, this model augments each quadrotor with an artificial
potential field to guide it to the origin while avoiding collisions. This controller
applies nonlinear force terms to the quadrotor dynamics that seek to minimize
an artificial potential U that depends on the position of all of the quadrotors.
Due to the interaction of the state variables in the force terms arising from the
potential field, this system has a dense Jacobian. In particular, at least 25% of
the Jacobian elements will be nonzero for any number of quadrotors.

Table1 shows the times of running PIRK using this system on the four
machines m4 . 10xlarge, c5.24xlarge, g3.4xlarge and p3.2xlarge in Amazon
AWS. Due to the high density of this example, we focus on the memory-light
growth bound and the Monte-Carlo methods. PIRK computed the reach sets
of systems up to 120,000 state variables (i.e., 10,000 quadrotors). Up to 1,200
states, all machines solve the problems in less than one second. Some of the
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Table 1. Results for running PIRK to compute the reach set of the quadrotors swarm
with artificial potential field. “N/M” means that the machine did not have enough
memory to compute the reachable set.

Method | No. of states | Memory (MB) | Time (seconds)
mé4.10xlarge | c5.24xlarge | g3.4xlarge | p3.2xlarge

GB 1200 2.8 <1.0 < 1.0 < 1.0 < 1.0
GB 12000 275.3 <1.0 < 1.0 < 1.0 < 1.0
GB 120000 27,473.1 69.6 68.3 N/M N/M

MC 1200 45.7 1.0 < 1.0 2.0 < 1.0
MC 12000 457.5 56.8 23.7 233.1 40.6

MC 120000 4577.6 > 2h 3091.8 N/M 5081.0

machines lack the required memory to solve the problems requiring large mem-
ory (e.g., 27.7 GB of memory is required to compute the reach set of the system
with 120,000 state variables using the growth bound method).

5.4 Heat Diffusion

The fourth test system is a model for the diffusion of heat in a 3-dimensional
cube. The model is based on a benchmark used in [7] to test a method for
numerical verification of affine systems. A model of the form & = f(¢, «, p) which
approximates the heat transfer through the cube according to the heat equation
can be obtained by discretizing the cube into an £ x £ x ¢ grid, yielding a system
with £3 states. The temperature at each grid point is taken as a state variable.
Each spatial derivative is replaced with a finite-difference approximation. Since
the heat equation is a linear PDE, the discretized system is linear.

We take a fixed state dimension of n = 10° by fixing £ = 1000. Integration
takes place over [tg,t1] = [0, 20] with time step size h = 0.02. Using the Growth
bound method, PIRK solves the problem on m4.10xlarge in 472min, and in
350.2min on c5.24xlarge. This is faster than the time reported in [7] (30h)
using the same machine.

5.5 Overtaking Maneuver with a Single-Track Vehicle

The remaining case studies focus on models of practical importance with low
state dimension. Although PIRK is designed to perform well on high-dimensional
systems, it is also effective at quickly computing reachable sets for low dimen-
sional systems, for applications that require many reachable sets. The first such
case study is single-track vehicle model with seven states, presented in [34].

We fix an input that performs a maneuver to overtake an obstacle in the
middle lane of a 3-lane highway. To verify that the maneuver was safely com-
pleted, we compute reachable sets over a range of points and ensuring that the
reachable set does not intersect any obstacles. We consider a step-size of 0.005s
in a time window between 0 and 6.5s. We compute one reachable set at each
time step, resulting in a “reachable tube” comprising 1300 reachable sets. PIRK



PIRK: Parallel Interval Reachability Kernel 565

Fig. 3. Reachable tube for the single-track vehicle.

computed the reachable tube in 0.25s using the growth bound method on an i7
CPU (Fig.3).

5.6 Performance on ARCH Benchmarks

In order to compare PIRK’s performance to existing tools, we tested PIRK’s
growth bound implementation on three systems from the ARCH-COMP’18 cat-
egory report for systems with nonlinear dynamics [32]. This report contains
benchmark data from several popular reachability analysis tools (C2E2, CORA,
Flow*, Isabelle, SpaceEx, and SymReach) on nonlinear reachability problems
with state dimensions between 2 and 12.

Table 2. Results from running PIRK (growth bound method) to compute the reach
sets for the examples reported in the ARCH-2018 competition.

Benchmark model PIRK | CORA | CORA/SX | C2E2 | Flow™ | Isabelle | SymReach
Van der Pol (2 states) | 0.13|2.3 | 0.6 38.5| 1.5 1.5 17.14
Laub-Loomis (7 states) | 0.04 | 0.82 | 0.85 0.12 | 4.5 10 1.93
Quadrotor (12 states) 0.01|5.2 |1.5 - 5.9 30 2.96

Table 2 compares the computation times for PIRK on the three systems to
those reported by other tools in [32]. All times are in seconds. PIRK ran on an i9
CPU, while the others ran on i7 and i5: see [32] for more hardware details. PIRK
solves each of the benchmark problems faster than the other tools. Both of the
i7 and 19 processors used have 6 to 8 cores: the advantage of PIRK is its ability
to utilize all available cores.

6 Conclusion

Using a simple parallelization of interval reachability analysis techniques, PIRK
is able to compute reachable sets for nonlinear systems faster and at higher
dimensions than many existing tools. This performance increase comes from
PIRK’s ability to use massively parallel hardware such as GPUs and CPU clusters,
as well as the use of parallelizable simulation-based methods. Future work will
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focus on improving the memory-usage of the mixed monotonicity and Monte-
Carlo based methods, including an investigation of adaptive sampling strategies,
and on using PIRK as a helper tool to synthesize controllers for high-dimensional
systems.
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