
Verification of Quantitative
Hyperproperties Using Trace

Enumeration Relations

Shubham Sahai1(B) , Pramod Subramanyan1 ,
and Rohit Sinha2

1 Indian Institute of Technology,
Kanpur, India

{ssahai,spramod}@cse.iitk.ac.in
2 Visa Research, Palo Alto, USA

Abstract. Many important cryptographic primitives offer probabilistic
guarantees of security that can be specified as quantitative hyperproper-
ties; these are specifications that stipulate the existence of a certain num-
ber of traces in the system satisfying certain constraints. Verification of
such hyperproperties is extremely challenging because they involve simul-
taneous reasoning about an unbounded number of different traces. In this
paper, we introduce a technique for verifying quantitative hyperproper-
ties based on the notion of trace enumeration relations. These relations
allow us to reduce the problem of trace-counting into one of model-
counting of formulas in first-order logic. We also introduce a set of infer-
ence rules for machine-checked reasoning about the number of satisfying
solutions to first-order formulas (aka model counting). Putting these two
components together enables semi-automated verification of quantita-
tive hyperproperties on infinite-state systems. We use our methodology
to prove confidentiality of access patterns in Path ORAMs of unbounded
size, soundness of a simple interactive zero-knowledge proof protocol as
well as other applications of quantitative hyperproperties studied in past
work.

1 Introduction

Recent years have seen significant progress in automated and semi-automated
techniques for the verification of security requirements of computer systems [4,
10,16,19,30,47,50,55]. Much of this progress has built on the theory of hyper-
properties [21], and these have been used extensively in analysis of whether sys-
tems satisfy secure information flow properties [1,2,6,8,15,28,35,37,39,49,57]
such as observational determinism [41,55] and non-interference [32]. Unfortu-
nately, the security specification of several important security primitives cannot
be captured by secure information flow properties like observational determin-
ism. In particular, observational determinism and non-interference are not appli-
cable when reasoning about algorithms that offer probabilistic – as opposed to
deterministic – guarantees of confidentiality and integrity. Prominent examples
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 201–224, 2020.
https://doi.org/10.1007/978-3-030-53288-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_11&domain=pdf
http://orcid.org/0000-0002-3434-6937
http://orcid.org/0000-0003-2288-3396
http://orcid.org/0000-0001-9107-0239
https://doi.org/10.1007/978-3-030-53288-8_11

202 S. Sahai et al.

of security primitives offering probabilistic guarantees include Path ORAM [48]
and various zero-knowledge proof protocols.

A promising direction for the verification of such protocols are the class of
quantitative hyperproperties [29], one example of which is deniability [12,14].
Deniability states that for every infinitely-long sequence of observations that an
adversary makes, there are (exponentially) many different secrets that could have
resulted in exactly these observations. Therefore, the adversary learns very little
about the secrets in an execution from a particular sequence of observations.

How does one prove a quantitative hyperproperty like deniability? Suppose
our goal is to show that for every trace of adversary observations, there exist 2n

traces with the same observations but different secrets. Here n is a parameter
of the system, e.g., the length of a password in bits. One option, first suggested
by Yasuoka and Terauchi [54] and recently revisited by Finkbeiner, Hahn, and
Torfah [29], is to consider the following k-trace property, where k = 2n + 1.

∀π0. ∃π1, π2, . . . , π2n .

(2n∧
j=1

obs(π0) = obs(πj)
)

∧
(2n∧

j=1

2n∧
k=1

(j �= k) ⇒ secret(πj) �= secret(πk)
)

The property states that for every trace of the system, there must exist
2n other traces with identical observations and pairwise different secrets. In
the above, π0, π1, . . . represent trace variables, obs(πj) refers to the trace of
adversary observations projected from the trace πj , while secret(πj) refers to
the trace of secret values in the trace πj . There are at least three problems
with the verification of the above property. First, the size of this property grows
exponentially with n; verification needs to reason about 2n traces simultaneously
and is not scalable. The second problem is quantifier alternation. Even if we could
somehow reason about 2n traces, we have to show that for every trace π0, there
exist 2n other traces satisfying the above condition. The third problem is that
the above technique does not work for symbolic bounds. While it is possible – at
least in principle – to use the above construction by picking a specific value of
n, say 16, to show that 216 traces exist that satisfy deniability, we would like to
show that the property holds for all n, where n is a state variable or parameter
of the transition system. Capturing the dependence of the trace-count bound on
parameters, such as n, is important because it shows that the attacker has to
work exponentially harder as n increases. Such general proofs are not possible by
reduction to a k-trace property because the construction requires k be bounded.

Recent work by Finkbeiner, Hahn, and Torfah [29] has made significant
progress in addressing the first two problems by showing a reduction from k-trace
property checking into the problem of maximum model counting [31]. However,
their technique still produces a propositional formula whose size grows expo-
nentially in the size of the quantitative hyperproperty. Further, model counting
itself is a computationally hard problem that is known to be #P -complete, and
maximum model counting is even harder. As a result, their technique does not
scale well and times out on the verification of an 8-bit leakage bound for an 8-bit

Verification of QHPs Using Trace Enumeration Relations 203

password. Finally, their method does not support symbolic bounds, and there-
fore cannot be used to verify parametric systems; we verify several examples of
such systems in this paper (e.g., Path ORAM [48] of symbolic size).

In this work, we propose a new technique for quantitative hyperproperty
verification that addresses each of the above problems. Our approach is based
on the following insights. First, instead of trying to count the number of traces
that have the same observations and different inputs, we instead show injectiv-
ity/surjectivity from satisfying assignments of a first-order formula to traces of
a transition system. This allows us to bound the number of traces satisfying
the quantitative hyperproperty by the number of satisfying solutions to this for-
mula. We introduce the notion of a trace enumeration relation to formalize this
relation between the first-order formula and traces of the transition system. An
important advantage of the above reduction is that proving the validity of a trace
enumeration relation is only a hyperproperty – not a quantitative hyperproperty.

Next, we develop a novel technique to bound the number of satisfiable solu-
tions to a first-order logic formula, which is of independent interest. While this is
a hard problem, we exploit the fact that our formulas have a significant amount
of structure. We introduce a set of inference rules inspired by ideas from enu-
merative combinatorics [13,52,56]. These rules allow us to bound the number of
satisfying assignments to a formula by making only satisfiability queries.

In summary, our techniques can prove quantitative hyperproperties with sym-
bolic bounds on parametric infinite-state systems. We demonstrate their utility
by verifying representative quantitative hyperproperties of diverse applications.

Contributions

1. We introduce a specification language for quantitative hyperproperties
(QHPs) over symbolic transition systems and define formal satisfaction
semantics for this language. Our specification language is more expressive
than past work on QHP specification because it allows the bound to be a
first-order formula over the state variables of the transition system.

2. We provide several examples of QHPs relevant to security verification. We
identify a new class of QHPs, referred to as soundness hyperproperties, appli-
cable to protocols that provide statistical guarantees of integrity.

3. We propose a novel semi-automated verification methodology for proving that
a system satisfies a QHP. Our methodology applies to properties that involve a
single instance of quantifier alternation and works by reducing the problem of
QHP verification to that of checking non-quantitative hyperproperties over
two and three traces of the system and counting satisfiable solutions to a
formula in first-order logic.

4. We introduce a set of inference rules for bounding the number of satisfiable
solutions to a first-order logic formula, using only satisfiability queries.

5. We demonstrate the applicability of our specification language and verifica-
tion methodology by providing proofs of security for Path ORAM, soundness
of a simple zero-knowledge protocol, as well as examples taken from prior
work on quantitative security specifications. We show that our verification

204 S. Sahai et al.

methodology scales to larger systems than could be handled in prior work.
To the best of our knowledge, our work is the first machine-checked proof of
confidentiality of the access patterns in Path ORAM.

2 Motivating Example

In this section, we first introduce the model of transition systems used in this
paper. We then discuss quantitative hyperproperty (QHP) specification and ver-
ification for our running example – a simple zero-knowledge puzzle.

2.1 Preliminaries

Let FOL(T) denote first-order logic modulo a theory T . The theory T is assumed
to be multi-sorted, includes the theory of linear integer arithmetic (LIA), and
contains the = relation. Let ΣT be the theory T ’s signature: the set consisting
of the constant, function, and predicate symbols in the theory. We say that a
formula is a ΣT -formula if it consists of the symbols in ΣT along with variables,
logical connectives, and quantifiers. We only consider theories which are such
that the set of satisfying assignments for any ΣT -formula is a countable set.1

For every variable x, we will assume there exists a unique variable x′, which
we refer to as the primed version of x. We will use X, Y , and Z to denote
sets of variables. Given a set of variables X, we will use X ′ to refer to the set
consisting of the primed version of each variable in X, that is X ′ = {x′ | x ∈ X}.
Similarly X1, X2, etc. are sets consisting of new variables defined as follows:
X1 = {x1 | x ∈ X} and X2 = {x2 | x ∈ X}. We will use F (X) to denote the
application of a function or predicate symbol F on the variables in the set X.
A satisfying assignment σ to the formula F (X) is written as σ |= F (X). Given
a formula F (X) and a satisfying assignment σ to this formula, we will denote
the valuation of the variable x ∈ X in the assignment σ as σ(x). We will abuse
notation in two ways and also write σ(X) to refer to a map from the variables
x ∈ X to their assignments in σ. We will also write σ(G(X)) to denote the
valuation of the term G(X) under the assignment σ.

The number of satisfiable assignments for the variables in the set X to a for-
mula F (X,Y) as a function of the variables Y will be denoted by #X.F (X,Y).
#X.F (X,Y) is the function λY . |{σ(X) | σ |= F (X,Y)}| evaluated at Y ; |S|
is the cardinality of the set S. For example, consider the predicate f(i, n) .= (0 ≤
i < 2n). In this case, #i. f(i, n) = max (0, 2n), meaning that for a given value
of n > 0, there are 2n satisfying assignments to i.

Definition 1 (Transition System). A transition system M is defined as the
tuple M = 〈X, Init(X),Tx (X,X ′)〉. X is a finite set of (uninterpreted) constants
that represents the state variables of the transition system. Init and Tx are ΣT -
formulas representing the initial states and the transition relation, respectively.
1 Our experiments mostly use the AUFLIA theory which allows arrays, uninterpreted

functions, and linear integer arithmetic.

Verification of QHPs Using Trace Enumeration Relations 205

Init is defined over the signature ΣT ∪X. Tx is over the signature ΣT ∪X ∪X ′;
X represents the pre-state of the transition and X ′ represents its post-state.

A state of the system is an assignment to the variables in X. We use σ0, σ1, σ2

etc. to represent states. A trace of the system M is an infinite sequence of states
τ = σ0σ1σ2 . . . σi . . . such that Init(σ0) is valid and for all i ≥ 0, Tx (σi, σi+1) is
valid; in order to keep notation uncluttered, we will often drop the ≥ 0 qualifier
when referring to trace indices. We assume that every state of the transition
system has a successor: for all σ there exists some σ ′ such that Tx (σ, σ ′) is
valid, ensuring every run of the system is infinite. We will represent traces by
τ, τ1, τ2, etc. Given a trace τ, we refer to its ith element by τ i. If τ = σ0σ1 . . . ,
then τ0 = σ0 and τ1 = σ1. The notation τ [i,∞] refers to the suffix of trace τ
starting at index i. The set of all traces of the system M is denoted by ΦM .
Given a state σ and a variable x ∈ X, σ(x) is the valuation of x in the state σ .

2.2 Motivating Example: Zero-Knowledge Hats

Zero-knowledge (Z-K) proofs are constructions involving two parties: a prover
and a verifier, where the prover’s goal is to convince the verifier about the
veracity of a given statement without revealing any additional information. We
motivate the need for quantitative hyperproperty verification using a Z-K puzzle.

Puzzle Overview: Consider the following scenario. Peggy has a pair of oth-
erwise identical hats of different colors (say, yellow and green). She wants to
convince Victor, who is yellow-green color blind, that the hats are of different
colors, without revealing the colors of the hats. This problem can be solved using
the following interactive protocol. Peggy gives both hats to Victor, and Victor
randomly chooses a hat behind a curtain and shows it to Peggy. Next, he goes
back behind the curtain and uniformly randomly chooses if he wants to switch
the hat or not. He now appears in front of Peggy and asks: “Did I switch?”

If the hats are really of different colors, Peggy will be able to answer correctly
with probability 1. If Peggy is cheating – the hats are in fact of the same color –
her best strategy is to guess, and with probability 0.5 she will answer incorrectly.
If the interaction is repeated k-times, Peggy will be caught with probability 1 −
2−k. The interaction between Peggy and Victor only reveals the fact that Peggy
can detect a switch and not the color of the hat, making this zero-knowledge.

Verification Objectives: A zero-knowledge proof must satisfy three proper-
ties: completeness (an honest prover should be able to convince an honest verifier
of a true statement), soundness (a cheating prover can convince an honest veri-
fier with negligible probability) and zero-knowledge (no information apart from
the veracity of the statement should be revealed). Completeness is a standard
trace property, while zero-knowledge is the 2-safety property of indistinguisha-
bility. Consequently, the main challenge in automated verification of the zero-
knowledge protocol described above is that of soundness. In this section, we
discuss its specification and verification using quantitative hyperproperties.

206 S. Sahai et al.

X
.= {C,P, S, i,R}

Init(X) .= (∀i. 0 ≤ C[i] ≤ 1) ∧ (∀i. 0 ≤ P[i] ≤ 1) ∧ S ∧ (i = 1) ∧ (R > 0)

Tx (X, X ′) .= (C′ = C) ∧ (P′ = P) ∧ (R′ = R) ∧ S′ = S ∧ (C[i] = P[i])
)) ∧

i′ = min (i + 1,R)

Fig. 1. Transition system model of the example protocol.

Soundness as a Quantitative Hyperproperty: Consider the transition sys-
tem M = 〈X, Init(X),Tx (X,X ′)〉, shown in Fig. 1, representing this protocol.
The variable R is a parameter of the system and refers to the number of rounds
of the protocol. C and P are boolean arrays representing the challenges from
the verifier to the prover, and the responses from the prover to the verifier,
respectively. i is the current round, and S is a boolean flag that corresponds to
whether the zero-knowledge proof has succeeded. C and P are initialized non-
deterministically to model the fact that the verifier chooses their challenges ran-
domly, and a cheating prover’s best strategy is guessing. While a cheating prover
can use any strategy, if the challenges are indistinguishable to her, then the best
strategy is to sample responses from a uniform distribution.

Soundness is captured by the following quantitative hyperproperty (QHP):

∀π0.#π1:F (δπj ,πk
). G (ψπ0,π1) ≥ 2R − 1 (1)

We will provide formal satisfaction semantics for QHPs in Sect. 3. For now, we
informally describe its meaning. The term #π1:F (δπj ,πk

). G (ψπ0,π1) ≥ 2R − 1
introduces a counting quantifier which stipulates the existence of at least 2R − 1
traces satisfying certain conditions: (i) these traces must all be pairwise-different,
where difference is defined by satisfaction of the formula F (δπj ,πk

) and (ii) all
of these traces must be related to trace π0 by the relation G (ψπ0,π1).

The state predicates δ and ψ are defined as follows.

δ(σ1, σ2)
.= σ1(P[i]) �= σ2(P[i])

ψ(σ1, σ2)
.=

(
σ1((i = R) ⇒ S) ⇒ σ2((i = R) ⇒ ¬S)

)
∧(

σ1(C) = σ2(C) ∧ σ1(R) = σ2(R)
)

The requirement imposed by δ is that Peggy’s responses be different at some
step i for every pair of traces captured by the counting quantifier. ψ says that if
trace π0 is a trace where Peggy’s cheating succeeds (i.e., S = true when i = R),
then in all traces captured by π1, the challenges and number of rounds are the
same as π0 but Peggy’s cheating is detected by Victor (i.e., S = false when
i = R). These requirements are illustrated in Fig. 2(b).

The QHP requires that for every trace in which a cheating prover succeeds
in tricking the verifier for a given trace of challenges, there are 2R − 1 other
traces with the same challenges in which the prover’s cheating is detected. Even
though soundness is a probabilistic property over the distribution of the system’s

Verification of QHPs Using Trace Enumeration Relations 207

traces, it can be reduced to counting (and thus specified as a QHP) because each
execution trace is sampled uniformly from a finite set. Therefore, if the QHP is
satisfied, Peggy’s probability of successful cheating is upper-bounded by 2−R.

τ0
0

τ0 τ1
0 τ2

0 τk
0

success

τ0
0

.

τ0
1

τ1 τ1
1 τ2

1 τk
1

fail

τ1
1

.

τ0
2

τ2 τ1
2 τ2

2 τk
2

fail

τ2
2

.

τ0
CτC τ1

C τ2
C τk

C

fail

τk
C.

=C

=C

=C
...

(b) Traces in the soundness QHP.(a) Trace enumeration predicates.

V(Y,R)

Y1

Y2

YC

U(Y1, τ0, τ1)

U(Y2, τ0,
τ2)

U(YC, τ0
, τC)

Fig. 2. Using trace enumeration predicates to verify the soundness QHP.

2.3 Solution Outline

To prove a QHP of the form ∀π0. #π1 : Δπj ,πk
. ϕ � N(Z), we construct a

trace enumeration predicate V(Y, Z) and show an injective/bijective mapping
from assignments to Y in V(Y, Z) and traces of the system. This allows us to
prove ∀π0. #π1 : Δπj ,πk

. ϕ � #Y.V(Y,Z). This part of the proof relies on the
notion of a trace enumeration relation (Sect. 4). In the next step, we show
that #Y.V(Y,Z) � N(Z) using the inference rules presented in Sect. 5. We now
describe these steps in the context of the motivating example.

Verification of Soundness for the Z-K Hats Puzzle: Property 1 is illustrated in
Fig. 2(b). τ0 is a trace where the Z-K proof succeeds, while the proof fails for
the set of traces ΦC = {τ1, τ2, . . . , τC}. The red states show the particular step
of the proof in which an incorrect response is given by the prover, and each of
these steps as well as their associated prover responses are pairwise different.
The QHP is satisfied if |ΦC | ≥ 2R − 1 for every τ0 ∈ ΦM , where R = τ0

0 (R).
The first step in our methodology is to construct a parameterized relation,

called a trace enumeration relation, U(Y, τ0, τ1). This relates τ0 to each trace in
the set ΦC and is parameterized by Y. For every value of the parameter Y, U
relates a trace in which the proof succeeds (τ0) to a trace in which the proof fails
(τ1). For every trace τ0 in which the proof succeeds, the set {τ1 | ∃Y. U(Y, τ0, τ1)}
corresponds to the set of traces with the same challenges and the same number
of rounds, but with failed proofs of knowledge. Note this is a subset of ΦC .

Next, we construct a predicate V(Y,R) which defines valid assignments to V
for a particular value of R. For a particular R, consider the set: {σ(Y) | σ |=

208 S. Sahai et al.

V(Y,R)}. Suppose we are able to show that the relation U is injective in Y and
τ0 for assignments to Y drawn from this set, then we can lower-bound the size of
ΦC by the size of this set. In other words, we have reduced the problem of trace
counting to the problem of counting assignments to V(Y,R).

Precisely stated, using V and U , we show the following.

1. For every trace τ0, and every assignment Yi satisfying V(Yi, τ
0
0 (R)), there

exists a corresponding trace τi that satisfies both U(Yi, τ0, τi) and ψ(τ0, τi).
(Note τ0

0 (R) refers to the valuation of R in the initial state of τ0.)
2. Given two different satisfying assignments to V for a particular value of R,

say Yj and Yk, the corresponding traces τj and τk are guaranteed to have
different prover responses; in other words, the traces satisfy δ(τj , τk).

The above two properties, illustrated in Fig. 2(a), imply there is an injective
mapping from satisfying assignments of V(Y,R) to traces in ΦC . Therefore, the
number of traces in ΦC can be lower bounded by the number of satisfying assign-
ments to Y in V(Y,R), i.e. #Y.V(Y,R). We have reduced the difficult problem of
counting traces into a slightly easier problem of counting satisfying assignments
to a FOL(T) formula.

The final step is to bound #Y.V(Y,R). For example, one well-known idea
from enumerative combinatorics is that if a set A is the union of disjoint sets B
and C, then |A| = |B| + |C|. Translated to model counting, the above can be
written as #X.F (X,Y) = #X.G(X,Y)+#X.H(X,Y) if F (X,Y) ⇔ G(X,Y)∨
H(X,Y) is valid and G(X,Y)∧H(X,Y) is unsat.2 We present a set of inference
rules in Sect. 5 that build on this and related ideas. These inference rules allow
us derive a machine-checked proof of the bound #Y.V(Y,R) ≥ 2R − 1, thus
completing the proof of Property 1 for the Z-K hats puzzle.

3 Overview of Quantitative Hyperproperties

This section introduces a logic for the specification of quantitative hyperproper-
ties over symbolic transition systems. We present satisfaction semantics for this
logic and then discuss its applications in security verification.

ψ ::= ∀π. ψ | #π:Δπj ,πk . ψ � N(Z) | ϕ

ϕ ::= Pπ1,π2,...,πk | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ

� ::= ≤ | = | ≥

Fig. 3. Grammar of Quantitative HyperLTL.

2 We note there is an implied universal quantifier here. To be precise, we must write
∀Y. #X. F (X, Y) = #X. G(X, Y) + #X. H(X, Y).

Verification of QHPs Using Trace Enumeration Relations 209

3.1 Quantitative Hyperproperties

Figure 3 shows the syntax of Quantitative HyperLTL, our extension of Hyper-
LTL [30] that allows specification of quantitative hyperproperties over symbolic
transition systems. There are two noteworthy differences from the presentation
of HyperLTL in [30]. The first is the predicate Pπ1,π2,...,πk

. This refers to a
k-ary state predicate P that is applied to the first element of each trace in
the subscript. These are analogous to atomic propositions in presentations that
use Kripke structures and are defined as k-ary state predicates to capture rela-
tional properties over traces of the transition system. For example, consider the
predicate P(σ0, σ1)

.= (input(σ0) = input(σ1)). Given this definition, a sys-
tem M with exactly two traces ΦM = {τ1, τ2} satisfies the HyperLTL formula
∀π1, π2. Pπ1,π2 iff input(τ0

1) = input(τ0
2). This hyperproperty requires that the

input in the initial state of the system be deterministically initialized.
The second difference is the new counting quantifier : #π:Δπj ,πk

. ψ � N(Z).3

Δπj ,πk
is an unquantified HyperLTL formula over two “fresh” trace variables πj

and πk that encodes when two traces are considered different. ψ is another
(possibly-quantified) HyperLTL formula. The operator � can be ≤, =, or ≥.
N(Z) is an integer-sorted term in FOL(T) over the variables in the set Z, Z ⊂ X
where X is the set of state variables of the transition system under consideration.
Z typically refers to the subset of the state variables that define the parameters
of the transition system; e.g. Z = {R} for the Z-K proof transition system in
Fig. 1, the number of blocks in a model of Path ORAM, the size of an array, etc.
Typically, the variables in the set Z do not change after initialization. Informally
stated, the counting quantifier is satisfied if a maximally large set ΦC ⊆ Φ,
satisfying the two conditions below, has cardinality � count where count is the
valuation of N(Z) in the initial state of every trace in ΦC . Those conditions are:
(i) each of the traces in ΦC are pairwise different as defined by satisfaction of
Δπj ,πk

, and (ii) every trace in this set satisfies the HyperLTL formula ψ.
The remaining operators are standard, so we do not discuss them further and

instead provide formal satisfaction semantics.

Satisfaction Semantics of Quantitative HyperLTL The validity judge-
ment of a property ϕ by a set of traces Φ is defined with respect to a trace
assignment Π : Vars → Φ. Here, Vars is the set of trace variables. We use
π, π1, π2 , . . . to refer to trace variables.4 The partial function Π is a mapping
from trace variables to traces. We use the notation Π[π �→ τ] to refer to a trace
assignment that is identical to Π except for the trace variable π which now maps
to the trace τ. We write Π |=Φ ψ if the set of traces Φ satisfies the property
ψ under the trace assignment Π. We will drop the subscript Φ from |=Φ if it
is clear from the context or irrelevant. The notation Π [i,∞] is an abbreviation

3 A counting quantifier over Kripke structures was introduced by Finkbeiner et al. [29].
Our definition is slightly different and a detailed comparison is deferred to Sect. 7.

4 Note the distinction between trace variables denoted by π1, π2, etc. and traces which
are denoted by τ1, τ2, etc.

210 S. Sahai et al.

for the new trace assignment obtained by taking the suffix starting from index
i of every trace in Π: Π [i,∞](π) = Π(π)[i,∞] for every trace π ∈ dom(Π) where
dom(Π) is the domain of Π. We write Π � |=Φ ψ when Π |=Φ ψ is not satisfied.
Satisfaction rules for HyperLTL formulas are shown in Fig. 4.

Π |=Φ ∀π. ψ iff for all τ ∈ Φ : Π[π �→ τ] |=Φ ψ

Π |=Φ #π:Δπj ,πk . ψ � N(Z) iff |ΦC | = 0 ⇒ 0 � N(Z) is valid, and

|ΦC | > 0 ⇒ ∀τ ∈ ΦC . |ΦC | � τ0(N(Z)), where,

ΦC ⊆ Φ is a maximally large set such that:

∀τj , τk ∈ ΦC .

τj �= τk ⇔ {πj �→ τj , πk �→ τk} |= Δπj ,πk

and, ∀τ ∈ ΦC . Π[π �→ τ] |=Φ ψ

Π |=Φ Pπ1,...,πk iff P(Π(π1)0, . . . , Π(πk)0) is valid

Π |=Φ ¬ψ iff Π �|=Φ ψ

Π |=Φ ψ ∨ ϕ iff Π |=Φ ψ or Π |=Φ ϕ

Π |=Φ Xϕ iff Π [1,∞] |=Φ ϕ

Π |=Φ ϕUψ iff there exists j ≥ 0 : Π [j,∞] |=Φ ψ

and for all 0 ≤ i < j : Π [i,∞] |=Φ ϕ

Fig. 4. Satisfaction semantics for Quantitative HyperLTL formulas over symbolic tran-
sition systems.

Definition 2 (Quantitative HyperLTL Satisfaction). We say that the
transition system M satisfies the property ψ, denoted by M |= ψ if the empty
trace assignment ∅ satisfies formula ψ for the set of traces ΦM , that is ∅ |=ΦM

ψ.

Additional Operators: The above showed the minimal set of operators required
in Quantitative HyperLTL. The rest of this paper will use the other standard
operators such as ∧ (conjunction), ⇒ (implication), F (future/eventually) and
G (globally/always) which can be defined in terms of the operators in Fig. 3.

Well-Defined Formulas: In order for the semantics of Quantified HyperLTL to
be meaningful, we need certain semantic restrictions on the structure of QHPs.

Definition 3 (Well-defined QHPs). An instance of a counting quantifier #π:
Δπj ,πk

. ϕ � N(Z) is said to be well-defined if:

1. ¬Δπj ,πk
is an equivalence relation over the set of all traces Φ, and

2. In every set of the traces ΦC captured by the counting quantifier in the seman-
tics shown in Fig. 4, the term N(Z) has the same valuation for all initial
states: ∀τi, τj ∈ ΦC . τ0

i (N(Z)) = τ0
j (N(Z)).

Verification of QHPs Using Trace Enumeration Relations 211

A Quantified HyperLTL formula is said to be well-defined if every instance
of a counting quantifier in the formula is well-defined.

Example 1 (Well-defined QHPs). The QHPs presented in the rest of this paper
are all well-defined, so here we give an example of a QHP that is not well-defined.
Consider this variant of Property 1: ∀π0.#π1: true. G (ψπ0,π1) ≥ 2R − 1. This
is not a well-defined QHP because Δπj ,πk

in the counting quantifier is simply
true, and its negation is not an equivalence relation over the set of traces.

Note that condition (1) in the definition above affects Δπj ,πk
while condition

(2) places a restriction on ϕ. The former condition prevents double-counting of
traces, while the latter ensures that the trace count is unambiguous.

The properties in our experiments require only syntactic checks to verify
well-definedness. Specifically, Δπj ,πk

is always of the form F (Pπj ,πk
) where P

is of the form P(σ1, σ2)
.= f(σ1) �= f(σ2). The negation of this is obviously an

equivalence relation over the set of all traces. Secondly, our QHPs are of the
form ∀π0. #π1:Δπj ,πk

. ϕ � N(Z) where ϕ enforces equality of the variables in
Z between the traces π0 and π1. These two features guarantee well-definedness.
In the rest of this paper, we only consider well-defined QHPs.

3.2 Applications of QHPs in Security Specification

Deniability: Our first example of a quantitative hyperproperty is deniability.
Suppose obs(σ) is a term that corresponds to the adversary observable part of
the state σ , while secret(σ) corresponds to the secret component of the state
σ . Deniability is satisfied when every trace of adversary observations can be
generated by at least N(Z) different secrets. For this, we define δ(σ1, σ2)

.=
secret(σ1) �= secret(σ2) and ≈O (σ1, σ2)

.= obs(σ1) = obs(σ2).

∀π0.#π1:F (δπj ,πk
). G (≈O

π0,π1
) ≥ N(Z)

τ0
1

τ1 τ1
1 τ2

1 τ3
1 τk

1τ0
1

.

τ0
2

τ2 τ1
2 τ2

2 τ3
2 τk

2τ2
2

.

τ0
3

τ3 τ1
3 τ2

3 τ3
3 τk

3τk
3

.

τ0
CτC τ1

C τ2
C τ3

C τk
Cτ1

C

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O

≈O ≈O ≈O ≈O ≈O
.
.
.

Fig. 5. Illustrating deniability.

212 S. Sahai et al.

Figure 5 illustrates deniability. It shows a set of traces ΦC := {τ1, τ2, . . . , τC};
the circles represent the states in each trace and the secret values are shown
by color of the circle. For these traces, every pair of corresponding states have
the same observations: represented by ≈O, and every distinct pair of traces
differ in the secrets. Deniability is satisfied if |ΦC | ≥ N(Z). Satisfaction implies
that every trace of adversary observations has at least N(Z) counterparts with
identical observations but different values of secret(σ). If we can show in a system
satisfying deniability that each trace of secrets is equiprobable and N(Z) grows
exponentially in some parameters of the system, then we can conclude that
the system satisfies computational indistinguishability. Deniability can capture
probabilistic notions of confidentiality, such as confidentiality of Path ORAM.

Soundness: While deniability encodes a form of confidentiality, soundness is its
dual in the context of integrity. One example of soundness was given in Sect.
2.2 for the Z-K hats puzzle. Soundness is generally applicable to protocols that
offer probabilistic integrity guarantees. For instance, many interactive challenge-
response protocols consist of repeated rounds such that if the prover succeeds in
all rounds, the verifier can be convinced with a high probability that the prover is
not cheating. This can be viewed as a QHP stating that for every trace in which
a dishonest prover tricks a verifier into accepting an invalid proof, there are at
least N(Z) other traces with different prover responses in which the cheating is
detected. As usual, we require that traces be uniformly sampled from a finite set
in order to state soundness as a QHP.

Soundness is stated as ∀π0.#π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ N(Z). The rela-

tion δ is defined as two states having different prover responses. ψ requires the
challenge-response protocol to fail in π1 if it succeeded in π0 and also that the
system parameters (the variables in Z) be identical between π0 and π1.

Summarizing QHP Specification: These examples demonstrate that QHPs
have important applications in security verification. They capture probabilistic
notions of both confidentiality and integrity. In particular, the following form
of QHPs consisting of a single quantifier alternation seems especially relevant
for security verification: ∀π0. #π1: Δπj ,πk

. ϕ � N(Z). Each of the examples of
quantitative hyperproperties discussed in the previous subsection – deniability,
soundness, as well as others like quantitative non-interference [46,54] fit in this
template. Therefore, in the rest of this paper, we focus on developing scalable
verification techniques for QHPs that follow this template.

4 Trace Enumerations

This section introduces the notion of a trace enumeration, which is a technique
that allows us to reduce the problem of counting traces to that of counting
satisfiable assignments to a formula in FOL(T).

Verification of QHPs Using Trace Enumeration Relations 213

4.1 Trace Enumeration Relations

We now formalize injective trace enumerations, which allow us to lower-bound
the number of traces captured by a counting quantifier in a QHP.

Definition 4 (Injective Trace Enumeration). Let us consider a transition
system M = 〈X, Init(X),Tx (X,X ′)〉 and the relation U(Y, τ1, τ2) where Y is a
set of variables disjoint from X, τ1 and τ2 are traces of this transition system.
Let ∀π0. #π1 : Δπj ,πk

. ϕ ≥ N(Z) be a QHP where Z ⊂ X. Suppose V(Y,Z)
is a predicate over the variables in Y and Z. We say that the pair V(Y,Z) and
U(Y, τ1, τ2) form an injective trace enumeration of the system M for the QHP
∀π0. #π1:Δπj ,πk

. ϕ ≥ N(Z) iff the following conditions are satisfied:

1. For every trace τ0 in ΦM and every satisfying assignment (Y, Z) for the pred-
icate V(Y,Z), there exists a trace τ1 ∈ ΦM which is related to the trace τ0 as
per the relation U via this same assignment to Y . Further, the pair τ0 and
τ1 satisfy the property ϕ and the valuation of the variables in Z in the initial
state of τ1 is equal to Z.

∀τ0 ∈ ΦM , Y, Z. V(Y, Z) ⇒ (2)(
∃τ1 ∈ ΦM . U(Y, τ0, τ1) ∧ {π0 �→ τ0, π1 �→ τ1} |= ϕ ∧ τ0

1 (Z) = Z
)

2. Different assignments to the variables in Y for the formula V(Y,Z) enumerate
different traces in U(Y, τ0, τ1), where “different” means satisfaction of Δπj ,πk

.

∀τ0, τ1, τ2 ∈ ΦM , Y1, Y2, Z. (3)
V(Y1, Z) ∧ V(Y2, Z) ∧ Y1 �= Y2 ⇒
U(Y1, τ0, τ1) ∧ U(Y2, τ0, τ2) ∧ τ0

1 (Z) = Z ∧ τ0
2 (Z) = Z ⇒

{πj �→ τ1, πk �→ τ2} |= Δπj ,πk

If V and U form an injective trace enumeration M for the property ∀π0. #π1:
Δπj ,πk

. ϕ ≥ N(Z), then for every trace τ0, there exist at least as many traces
satisfying the counting quantifier as there are satisfying assignments to Y in
V(Y,Z). This is made precise in the following lemma.

Lemma 1. [Trace Count Lower-Bound] If V(Y,Z) and U(Y, τ1, τ2) form an
injective trace enumeration of the system M for the QHP ∀π0. #π1:Δπj ,πk

. ϕ ≥
N(Z) and if #Y.V(Y,Z) is finite for all assignments to Z, then M |= ∀π0.#π1:
Δπj ,πk

. ϕ ≥ #Y.V(Y,Z).

Example 2 (Injective Trace Enumeration). Let P0[1], . . . ,P0[R] be a trace of
correct responses for some particular sequence of challenges for our running
example. Consider the array Y[1],Y[2], . . . ,Y[R] where each Y[j] ∈ {0, 1}. Y is a
boolean array of size R, and Y[i] = 1 means that the prover gives an incorrect
response to the challenge in round i. We can define the predicate V as follows.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
(4)

214 S. Sahai et al.

The above definition ensures that at least one response is incorrect. Notice
that for every assignment to Y except the assignment of all zeros, the trace of
responses defined by ∀j. P1[j] = P0[j]⊕Y[j] (where ⊕ is exclusive or) corresponds
to a valid trace of the system and satisfies the counting quantifier in Property 1.
Specifically, every such response from the prover is incorrect and will result in the
protocol failing. We can use the above facts to define the relation U as follows:

U(Y, τ1, τ2)
.=

(
∀j. τ0

1 (P[j]) = τ0
2 (P[j]) ⊕ Y[j]

)
∧ (5)

τ0
1 (C) = τ0

2 (C) ∧ τ0
1 (R) = τ0

2 (R) ∧ (τR
1 (S) ⇒ ¬τR

2 (S))

The pair V and U form an injective trace enumeration for the system M (defined
in Fig. 1) for the Property 1. This is because different Y’s will result in different
prover responses for the same challenges. By Lemma 1, we can conclude that
Property 1 is satisfied if #Y.V(Y,R) ≥ 2R − 1

Analogous to injective trace enumerations, it is also possible to define sur-
jective trace enumerations that upper-bound the number of traces captured by
a counting quantifier. Details of surjective trace enumerations are presented in
the extended version of the paper [43].

5 Model Counting

As discussed in the previous section, trace enumeration relations can bound the
number of satisfying traces in a QHP. Given a QHP ∀π0. #π1 : Δπj ,πk

. ϕ �
N(Z), appropriate trace enumeration predicates V(Y,Z) and U can be used to
derive that ∀π0. #π1:Δπj ,πk

. ϕ � #Y.V(Y,Z). The final step in our verification
methodology is to show validity of #Y.V(Y,Z)�N(Z). To that end, this section
discusses our novel technique for model counting.

5.1 Model Counting via SMT Solving

Our approach borrows ideas from enumerative combinatorics [13,52,56] and
introduces the inference rules shown in Fig. 6 to reason about model counts
for formulas in FOL(T). Each of the conclusions in the inference rules is a state-
ment involving model counts of FOL(T) formulas, while each of the premises
is a formula in FOL(T) that does not involve model counts and can, therefore,
be checked using SAT/SMT solvers. Most of the rules are straightforward, and
we do not describe them due to space constraints. The three interesting rules –
Injectivity , Ind≤ and Ind≥ – are discussed below.

Injectivity: This rule is based on the following idea from enumerative combina-
torics. Suppose we have two sets A and B. We can show that |A| ≤ |B| if there
exists an injective function from A to B. Translating this to model counts, the
set A in the rule corresponds to satisfying assignments to f(X), B corresponds
to satisfying assignments to g(Y) and F is the injective witness function.

Verification of QHPs Using Trace Enumeration Relations 215

Ind≥and Ind≤: Suppose the formulas f(X,n) and g(Y, n) are parameterized by
the integer variable n. If an injective witness function G (X,Y, n) is able to “lift”
satisfying assignments of f(Xn, n) and g(Yn, n) into a satisfying assignment of
f(Xn+1, n+1), then we can conclude that the number of satisfying assignments
to f(X,n + 1) are at least as many as the product of the number of satisfying
assignments to f(X,n) and g(Y, n). Ind≤ is the surjective version of this rule.
It applies when a satisfying assignment to f(Xn+1, n + 1) can be “lowered” into
satisfying assignments to f(Xn, n) and g(Yn, n) where the values of Xn and Yn

are given by the witness functions Hx and Hy respectively.

(#i. a ≤ i < b) = max (b − a, 0)
Range

#Y. f(X) ≥ 0
Positive

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is sat

#X. f(X) ≥ c
ConstLB

∧c
i=1 f(Xi) ∧ distinct(X1, . . . , Xc) is unsat

#X. f(X) < c
ConstUB

f(X, Y) ⇒ g(X, Y)
#X. f(X, Y) ≤ #X. g(X, Y)

UB

h(X, Y) ⇔ f(X) ∧ g(Y)
#X ∪ Y . h(X, Y) ≤ #X. f(X) × #Y. g(Y)

AndUB

f(X) ⇒ g(F (X))
f(X1) ∧ f(X2) ∧ X1 �= X2

) ⇒ F (X1) �= F (X2)

#X. f(X) ≤ #Y. g(Y)
Injectivity

h(X, Y) ⇔ f(X) ∧ g(Y) X ∩ Y = ∅
#X ∪ Y . h(X, Y) = #X. f(X) × #Y. g(Y)

Disjoint

f(X, Y) ⇔ g(X, Y) ∨ h(X, Y)

#X. f(X, Y) = #X. g(X, Y) + #X. h(X, Y) − #X. g(X, Y) ∧ h(X, Y)
) Or

f(X, n) ∧ g(Y, n)
) ⇒ f(G (X, Y, n), n + 1)

(X1 �= X2 ∨ Y1 �= Y2) ⇒ G (X1, Y1, n) �= G (X2, Y2, n)
#X. f(X, n + 1) ≥ #X. f(X, n) × #Y. g(Y, n)

Ind≥

f(X, n + 1) ⇒ f(Hx(X, n + 1), n) ∧ g(Hy(X, n + 1), n)
)

X1 �= X2 ⇒ Hx(X1, n) �= Hx(X2, n) ∨ Hy(Y1, n) �= Hy(Y2, n)
)

#X. f(X, n + 1) ≤ #X. f(X, n) × #Y. g(Y, n)
Ind≤

Fig. 6. Model counting proof rules. Unless otherwise specified, premises are satisfied
when the formula is valid. Conclusions have an implicit universal quantifier.

216 S. Sahai et al.

5.2 Model Counting in the Motivating Example

The definition of the predicate V in the motivating example is shown below.

V(Y,R) .=
(
∃i. 1 ≤ i ≤ R ∧ Y[i] �= 0

)
∧

(
∀i. ((i < 1 ∨ i > R) ⇒ Y[i] = 0)

)

Our task is to show #Y.V(Y,R) = 2R − 1. Recall that Y is an array of
binary values (i.e. the integers 0 and 1) and consider the following predicates:
Vf (Y,R) .=

(
∀i. (i < 1 ∨ i > R) ⇒ Y[i] = 0

)
, V1(Y,R) .=

(
∀i. Y[i] = 0

)
and

W(i) .= 0 ≤ i < 2. Using these definitions, the proof is as follows.

1. (ConstUB , Positive) #Y.Vf (Y,R) ∧ V1(Y,R) = 1.
2. (Or) #Y.Vf (Y,R) = #Y.V(Y,R) + #Y.V1(Y,R).
3. (ConstLB , ConstUB) #Y.V1(Y,R) = 1.
4. (ConstLB , ConstUB) #Y.Vf (Y, 1) = 2.
5. (Ind≤): #Y.Vf (Y,R) ≤ #i.W(i) × #Y.Vf (Y,R − 1).
6. (Ind≥): #Y.Vf (Y,R) ≥ #i.W(i) × #Y.Vf (Y,R − 1).
7. (Range): #i.W(i) = 2.
8. (4 – 7) imply that #Y.Vf (Y,R) = 2 × #Y.Vf (Y,R − 1), #Y.Vf (Y, 1) = 2,

this means #Y.Vf (Y,R) = 2R.
9. (2, 3, 8) imply that #Y.V(Y,R) = 2R − 1.

In step 5, the witness function is G (Y,R, i) .= Y[R + 1 �→ i], while in step 6,
they are H〈Y,R〉(Y,R + 1) .= 〈Y[R + 1 �→ 0],R〉 and Hi(Y,R + 1) .= (Y[R + 1]).5

Note steps 8 and 9 are automatically discharged by the SMT solver.

6 Experimental Results and Discussion

In this section, we present an experimental evaluation of the use of trace enu-
merations for the verification of quantitative hyperproperties.

6.1 Methodology

We studied five systems with varying complexity and QHPs. These were modeled
in the Uclid5 modeling and verification framework [44,51], which uses the Z3
SMT solver (v4.8.6) [23] to discharge the proof obligations. The experiments
were run on an Intel i7-4770 CPU @ 3.40 GHz with 8 cores and 32 GB RAM.

The verification conditions are currently manually generated from the mod-
els, but automation of this is straightforward and ongoing. The k-trace properties
were proven using self-composition [9,10] and induction. A number of strength-
ening invariants had to be specified manually for the inductive proofs. Many
of the invariants are relational and quantified and, therefore, difficult to infer
algorithmically. We note that recent work has made progress toward automated
inference of quantified invariants [27,36].

5 The notation arr [i �→ v] denotes an array that is identical to arr except for index i
which contains v.

Verification of QHPs Using Trace Enumeration Relations 217

6.2 Overview of Results

Due to limited space, we only provide a brief description of our benchmarks
for evaluation and refer the interested reader to the extended version of our
paper [43] for a more detailed discussion. We have also made the models and
associated proof scripts available at [25]. A brief overview of the case studies
follows.

Table 1. Verification results of models.

Benchmark Hyperproperty Model
LoC

Proof
LoC

Num.
Annot

Verif.
Time

Electronic purse [7] Deniability 46 93 9 3.92 s

Password checker [29] Quantitative
non-interference

59 100 10 4.69 s

F-Y array shuffle Quantitative
information flow

86 195 96 7.38 s

ZK hats (Sect. 2.2) Soundness 91 191 36 6.34 s

Path ORAM [48] Deniability 587 209 142 9.74 s

1. Electronic Purse. We model an electronic purse, with a secret initial bal-
ance, proposed by Backes et al. [7]. A fixed amount is debited from the purse
until the balance is insufficient for the next transaction. We prove a denia-
bility property: there is a sufficient number of traces with identical attacker
observations but different initial balances.

2. Password Checker. We model the password checker from Finkbeiner et
al. [29], but we allow passwords of unbounded length n. We prove quantitative
non-interference: information leakage to an attacker is ≤n bits.

3. Array Shuffle. We implement a variant of the Fisher-Yates shuffle. We chose
this because producing random permutations of an array is an important com-
ponent of certain cryptographic protocols (e.g., Ring ORAM [40]). We prove a
quantitative information flow property stating that all possible permutations
are indeed generated by the shuffling algorithm.

4. ZK Hats. We prove soundness of the zero-knowledge protocol in Sect. 2.
5. Path ORAM. Discussed in Sect. 6.3.

The properties we prove on these models and the results of our evaluation are pre-
sented in Table 1 which shows the size of each model, the number of lines of proof
code (this is the code for self-composition, property specification, etc.), the num-
ber of verification annotations (invariants and procedure pre-/post-conditions)
and the verification time for each example. Once the auxiliary strengthening
invariants are specified, the verification completes within a few seconds. This
suggests that the methodology can scale to larger models, and even implemen-
tations. The main challenge in the application of the methodology is the con-
struction of the trace enumeration relations, associated witness functions, and

218 S. Sahai et al.

the specification of strengthening invariants. Each of these requires application-
specific insight. Since most of our enumerations and invariants are quantified,
some of the proofs also required tweaking the SMT solver’s configuration options
(e.g. turning off model-based quantifier instantiation in Z3).

6.3 Deniability of Path ORAM

In this section, we discuss our main case study: the application of trace enumer-
ations for verifying deniability of server access patterns in Path ORAM [48], a
practical variant of Oblivious RAM (ORAM) [33]. ORAMs refer to a class of
algorithms that allow a client with a small amount of storage to store/load a
large amount of data on an untrusted server while concealing the client access
pattern from the server. Path ORAM stores encrypted data on the server in an
augmented binary tree format. Each node stores Z data blocks, referred to as
buckets of size Z. Additionally, the client has a small amount of local storage
called the stash. The client maintains a secret mapping called the position map
to keep track of the path where a data block is stored on the server. Each entry
in the position map maps a client address to a leaf on the server. Path ORAM
maintains the invariant that every block is stored somewhere along the path
from the root to the leaf node that the block is mapped to by the position map.

Deniability of Server Access Patterns in Path ORAM: We formulate
security of access patterns in Path ORAM as a deniability property stating that
for every infinitely-long trace of server accesses, there are (numBlks − 1)! traces
of client accesses with identical server observations but different client requests.

∀π0. #π1 : F (δπj ,πk
). G (ψπ0,π1) ≥ (numBlks − 1)! (6)

The binary predicate δ imposes the requirement that the client’s request are
different in each of the traces captured by the counting quantifier, and the con-
dition in ψ states that all the traces captured by the counting quantifier have
the same observable access pattern as π0.

Verification of Deniability in Path ORAM: To verify the QHP stated in
Eq. 6, for every trace of server accesses we need to generate (numBlks−1)! traces
of client requests that produce the same server access.

Suppose we have Path ORAM (a) that is initialized with some position map.
Now consider the Path ORAM (b) with the same number of blocks, but with
an initial position map that is a derangement of the position map of (a).6 The
key insight is that ORAM (b) can simulate an identical server access pattern
as ORAM (a) by appropriately choosing a different client request that maps to
the same leaf that is being accessed by (a) and then updating the position map
identically as (a). This is shown in Fig. 7, which shows two Path ORAMs that
produce identical server access patterns but service different client requests.
6 A derangement of a set is a permutation of the elements of the set such that no

element appears in its original position.

Verification of QHPs Using Trace Enumeration Relations 219

3

1

4 2
0 1 2 3

p= [0, 2, 1, 1] r= 4

4

1

3 2
0 1 2 3

p= [0, 2, 1, 3] r= 2

2

1

3

4

0 1 2 3

p= [0, 3, 1, 3] r= 1

4

3

2 1
0 1 2 3

p= [2, 1, 0, 1] r= 2

2

3

4 1
0 1 2 3

p= [2, 3, 0, 1] r= 1

2

3

4

1

0 1 2 3

p= [3, 3, 0, 1] r= 3

(a) ...

(b) ...

Fig. 7. Path ORAMs satisfying the counting quantifier of Eq. 6, where, p represents
the position map indexed from 1 and r is the client’s request.

The above insight leads to a trace enumeration where two traces are related
via U if their position maps are derangements of each other, the client accesses
are permuted as per the derangement while all other parameters of the ORAM
are identical. We use this to prove Property 6. Further details are given in [43].

7 Related Work

Hyperproperties: Research into secure information flow started with the
seminal work of Denning and Denning [24], Goguen and Meseguer [32] and
Rushby [42]. The self-composition construction for the verification of secure
information flow was introduced by Barthe et al. [10]. Clarkson and Schnei-
der [21] introduced the class of specifications called hyperproperties. Clarkson
and colleagues also introduced HyperLTL and HyperCTL∗ [19], which are tem-
poral logics for specifying hyperproperties, while verification algorithms for these
were introduced by Finkbeiner and colleagues in [30]. Cartesian Hoare Logic [47]
was introduced by Sousa and Dillig and enables the specification and verification
of hyperproperties over programs as opposed to transition systems. A number
of subsequent efforts have studied hyperproperties in the context of program
verification [5,26,45,53].

Quantitative Information Flow: Quantitative hyperproperties build on the
rich literature of quantitative information flow (QIF) [3,17,20,34,46]. The QIF
problem is to quantify (or bound) the number of bits of secret information that
is attacker-observable. Certain notions of QIF can be expressed as QHPs. It
is important to note QHPs can express security specifications (e.g., soundness)

220 S. Sahai et al.

that are not QIF. Yasuoka and Terauchi studied QIF from a theoretical per-
spective and showed that it could be expressed as hypersafety and hyperlive-
ness [54]. Approaches based on QIF measures such as min-entropy [46], Shannon
entropy [18] etc. have also been applied in the context of static analysis [38].

Quantitative Hyperproperties: Quantitative Cartesian Hoare Logic (QCHL)
enables verification of certain quantitative properties of programs [16]. QHPs are
more expressive than QCHL, the latter counts events within a trace (e.g. memory
accesses), while QHPs count the number of traces satisfying certain conditions.

The most closely related work to ours is of Finkbeiner et al. [29] who intro-
duced Quantitative HyperLTL over Kripke structures. They also introduced a
verification algorithm for this logic that is based on maximum model counting.
However, their algorithm does not scale to reasonable-sized systems, and exper-
iments from their paper show that the approach times out when checking an
8-bit leak in a password checker (using 8-bit passwords). We differ from their
work in three important ways. First, our properties are defined over symbolic
transition systems rather than Kripke structures. This allows modeling and ver-
ification of QHPs over infinite-state systems. Second, our bounds are symbolic,
which enables us to express bounds as functions of transition system parameters.
Finally, our definition of Quantitative HyperLTL is also more expressive. It is
not possible to convert our QHPs into (non-quantitative) HyperLTL formulas
with k-traces for any fixed value of k.

Verification of ORAMs: In concurrent work with ours, Barthe et al. [11] and
Darais et al. [22] have introduced specialized mechanisms to prove security of
ORAMs. Barthe et al. [11] introduced a probabilistic separation logic (PSL) that
(among other things) can be used to reason about the security of ORAMs. Unlike
QHPs, PSL does not permit quantitative reasoning about probabilities of events
and also does not (yet) support machine-checked reasoning. Darais et al. [22]
introduce a type system that enforces obliviousness; they use this type system
to implement a tree-based ORAM. Note that QHPs can express specifications
other than obliviousness, and obliviousness need not necessarily be a QHP.

8 Conclusion

Quantitative hyperproperties are a powerful class of specifications that stipu-
late the existence of a certain number of traces satisfying certain constraints.
Many important security guarantees, especially those involving probabilistic
guarantees of security, can be expressed as quantitative hyperproperties. Unfor-
tunately, verification of quantitative hyperproperties is a challenging problem
because these specifications require simultaneous reasoning about a large num-
ber of traces of a system. In this paper, we introduced a specification language,
satisfaction semantics, and a verification methodology for quantitative hyper-
properties. Our verification methodology is based on reducing the problem of
counting traces into that of counting the number of assignments that satisfy a
first-order logic formula. Our methodology enables security verification of many

Verification of QHPs Using Trace Enumeration Relations 221

interesting security protocols that were previously out of reach, including confi-
dentiality of access pattern accesses in Path ORAM.

Acknowledgements. We sincerely thank the anonymous reviewers for their insight-
ful comments, which helped improve this paper. This work was supported in part by
the Semiconductor Research Corporation under Task 2854 and the Science and Engi-
neering Research Board of India, a unit of the Department of Science and Technology,
Government of India.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Verifiable side-channel
security of cryptographic implementations: constant-time MEE-CBC. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 163–184. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 9

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: 25th USENIX Security Symposium, USENIX
Security, pp. 53–70 (2016)

3. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Quantitative information flow in inter-
active systems. J. Comput. Secur. 20(1), 3–50 (2012)

4. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI, pp. 362–375 (2017)

5. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, New York, NY, USA, pp. 362–
375. ACM (2017)

6. Almeida, J.B., Barbosa, M., Pinto, J.S., Vieira, B.: Formal verification of side-
channel countermeasures using self-composition. Sci. Comput. Program. 78(7),
796–812 (2013)

7. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: Proceedings of the 2009 30th IEEE Symposium on Security
and Privacy, SP 2009, Washington, DC, USA, pp. 141–153. IEEE Computer Society
(2009)

8. Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level non-
interference for constant-time cryptography. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1267–1279.
ACM (2014)

9. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

10. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop (CSFW-17), pp. 100–114
(2004)

11. Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. In: Proceedings of
ACM Programming Language, vol. 4, no. POPL, December 2019

12. Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-
preserving data synthesis. In: Proceedings of the VLDB Endowment, vol. 10, no.
5, pp. 481–492 (2017)

https://doi.org/10.1007/978-3-662-52993-5_9
https://doi.org/10.1007/978-3-642-21437-0_17

222 S. Sahai et al.

13. Björner, A., Stanley, R.P.: A Combinatorial Miscellany. L’Enseignement
mathématique (2010)

14. Chakraborti, A., Chen, C., Sion, R.: Datalair: efficient block storage with plau-
sible deniability against multi-snapshot adversaries. In: Proceedings on Privacy
Enhancing Technologies, vol. 2017, no. 3, pp. 179–197 (2017)

15. Cheang, K., Rasmussen, C., Seshia, S., Subramanyan, P.: A formal approach to
secure speculation. In: 2019 IEEE 32nd Computer Security Foundations Sympo-
sium (CSF), pp. 288–28815, June 2019

16. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2017, New York, NY,
USA, pp. 875–890. ACM (2017)

17. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Logic Comput. 15(2), 181–199 (2005)

18. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

19. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

20. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: 18th
IEEE Computer Security Foundations Workshop (CSFW 2005), pp. 31–45. IEEE
(2005)

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

22. Darais, D., Sweet, I., Liu, C., Hicks, M.: A language for probabilistically oblivious
computation. In: Proceedings of ACM Programming Language, vol. 4, no. POPL,
December 2019

23. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (2008)

24. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

25. Experiments: Models and Proof Scripts for the paper Verification of Quantitative
Hyperproperties Using Trace Enumeration Relations (2020). https://github.com/
ssahai/CAV-2020-benchmarks

26. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
15–18 July 2019, Proceedings, Part I, pp. 200–218 (2019)

27. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 14

28. Ferraiuolo, A., Xu, R., Zhang, D., Myers, A.C., Suh, G.E.: Verification of a prac-
tical hardware security architecture through static information flow analysis. In:
Proceedings of the Twenty-Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, 8–12 April 2017, pp. 555–568 (2017)

29. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, 14–17 July
2018, Proceedings, Part I, pp. 144–163 (2018)

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://github.com/ssahai/CAV-2020-benchmarks
https://github.com/ssahai/CAV-2020-benchmarks
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14

Verification of QHPs Using Trace Enumeration Relations 223

30. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

31. Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum model counting. In: Thirty-
First AAAI Conference on Artificial Intelligence (2017)

32. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

33. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

34. James, W., Gray, I.I.I.: Toward a mathematical foundation for information flow
security. J.Comput. Secur. 1(3–4), 255–294 (1992)

35. Guarnieri, M., Morales, B.J.F., Reineke, J., Sánchez, A.: SPECTECTOR: princi-
pled detection of speculative information flows. CoRR, abs/1812.08639 (2018)

36. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 15

37. Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-system
verification. In: Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, pp. 165–181 (2014)

38. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: International Conference on Computer Aided Verification, pp. 564–
580. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 40

39. Muduli, S.K., Subramanyan, P., Ray, S.: Verification of authenticated firmware
loaders. In: Proceedings of Formal Methods in Computer-Aided Design. IEEE
(2019)

40. Ren, L., et al.: Constants count: practical improvements to oblivious RAM. In:
24th USENIX Security Symposium (USENIX Security 15), Washington, D.C., pp.
415–430, August 2015. USENIX Association (2015)

41. Roscoe, A.W.: CSP and determinism in security modelling. In: Proceedings of the
1995 IEEE Symposium on Security and Privacy, Oakland, California, USA, 8–10
May 1995, pp. 114–127 (1995)

42. Rushby, J.M.: Proof of separability: a verification technique for a class of a security
kernels. In: International Symposium on Programming, 5th Colloquium, Torino,
Italy, 6–8 April 1982, Proceedings, pp. 352–367 (1982)

43. Sahai, S., Subramanyan, P., Sinha, R.: Verification of quantitative hyperproperties
using trace enumeration relations. arXiv e-prints arXiv:abs/2005.04606, May 2020

44. Seshia, S.A., Subramanyan, P.: Uclid 5: integrating modeling, verification, synthesis
and learning. In: Proceedings of the 16th ACM-IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE), October 2018

45. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

46. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

47. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, New York, NY, USA, pp. 57–69. ACM
(2016)

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-642-31424-7_40
http://arxiv.org/abs/abs/2005.04606
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1007/978-3-642-00596-1_21

224 S. Sahai et al.

48. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 299–310 (2013)

49. Subramanyan, P., Sinha, R., Lebedev, I.A., Devadas, S., Seshia, S.A.: A formal
foundation for secure remote execution of enclaves. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, 30 October–03 November 2017, pp. 2435–2450 (2017)

50. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Static
Analysis, 12th International Symposium, SAS, Proceedings, pp. 352–367 (2005)

51. UCLID5 Verification and Synthesis System (2019). http://github.com/uclid-org/
uclid/

52. Wilf, H.S.: Generatingfunctionology. AK Peters/CRC Press (2005)
53. Yang, W., Subramanyan, P., Vizel, Y., Gupta, A., Malik, S.: Lazy self-composition

for security verification. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Oxford, UK, 14–17 July 2018, Proceedings (2018)

54. Yasuoka, H., Terauchi, T.: Quantitative information flow as safety and liveness
hyperproperties. Theor. Comput. Sci. 538, 167–182 (2014)

55. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop, pp. 29–43. IEEE (2003)

56. Zeilberger, D.: Enumerative and algebraic combinatorics. In: The Princeton Com-
panion to Mathematics, pp. 550–561. Princeton University Press (2010)

57. Zhang, D., Wang, Y., Edward Suh, G., Myers, A.C.: A hardware design language
for timing-sensitive information-flow security. In: Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2015, Istanbul, Turkey, 14–18 March 2015, pp.
503–516 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://github.com/uclid-org/uclid/
http://github.com/uclid-org/uclid/
http://creativecommons.org/licenses/by/4.0/

	Verification of Quantitative Hyperproperties Using Trace Enumeration Relations
	1 Introduction
	2 Motivating Example
	2.1 Preliminaries
	2.2 Motivating Example: Zero-Knowledge Hats
	2.3 Solution Outline

	3 Overview of Quantitative Hyperproperties
	3.1 Quantitative Hyperproperties
	3.2 Applications of QHPs in Security Specification

	4 Trace Enumerations
	4.1 Trace Enumeration Relations

	5 Model Counting
	5.1 Model Counting via SMT Solving
	5.2 Model Counting in the Motivating Example

	6 Experimental Results and Discussion
	6.1 Methodology
	6.2 Overview of Results
	6.3 Deniability of Path ORAM

	7 Related Work
	8 Conclusion
	References

