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Abstract. In this chapter we introduce the aspect of reasoning in
Knowledge Graphs. As in Chap. 2, we will give a broad overview focusing
on the multitude of reasoning techniques: spanning logic-based reason-
ing, embedding-based reasoning, neural network-based reasoning, etc. In
particular, we will discuss three dimensions of reasoning in Knowledge
Graphs. Complementing these dimensions, we will structure our explo-
ration based on a pragmatic view of reasoning tasks and families of rea-
soning tasks: reasoning for knowledge integration, knowledge discovery
and application services.

1 Introduction

The notion of intelligence is closely intertwined with the ability to reason. In
turn, this ability to reason plays a central role in AI algorithms. This is the
case not only for the AI of today but for any form of knowledge representation,
understanding and discovery, as stated by Leibniz in 1677: “It is obvious that
if we could find characters or signs suited for expressing all our thoughts as
clearly and as exactly as arithmetic expresses numbers or geometry expresses
lines, we could do in all matters insofar as they are subject to reasoning all that
we can do in arithmetic and geometry. For all investigations which depend on
reasoning would be carried out by transposing these characters and by a species
of calculus” [279].

Research in reasoning was carried out by mathematicians and logicians, and
naturally adopted and also carried out by computer scientists later on. Concrete
references of having knowledgeable machines date back to at least the 1940s – V.
Bush talked about a machine able to think like a human in his influential essay in
1945 “As We May Think” [65]. Later in 1950, with Alan Turing’s seminal work
[432], the idea behind Artificial Intelligence and impressing thinking power to
machines began with mathematically employed reasoning. The developments of
symbolic reasoning continued towards providing mathematical semantics of logic
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Fig. 1. A simplified life-cycle of Knowledge Graphs

programming languages [303,441] and new forms of efficient reasoning founda-
tions [73,234]. Reasoning about facts of belief networks, as in today’s Knowledge
Graphs, is addressed in [349].

However, at the scale at which they were envisioned, all of these approaches
were simply not possible in practice without large-scale data management,
processing, inference and retrieval. The last decade witnessed a technology
boost for AI-driven technologies with the emergence of Big Data. This has cre-
ated an incredible number of industrial-scale applications of Machine Learning
approaches over data represented and managed in Knowledge Graphs. The tech-
nology behind KGs created a practical platform for the envisioned AI machines.

Perspectives. In Chap. 2, we introduced the layered perspective of Knowledge
Graphs, and noted that the aspect of reasoning will be considered particularly in
this chapter. It is clear that the requirements on reasoning are different between
the three layers introduced in Chap. 2:

– At the bottom-most layer (representation), reasoning is an important
design consideration to achieve a good balance between expressive power and
computational complexity.

– At the middle layer (management), similar to a relational database man-
agement system, providing a general-purpose reasoning (or in a RDBMS:
querying) service is of utmost importance.

– At the top layer (application), the specific reasoning service required or
exposed by the application becomes the focus.

Given both the history of use of reasoning methods in computer science, as well
as their concrete use in the construction and use of Knowledge Graphs, it would
be tempting to divide them according to their use in the life-cycle of KGs. This
is illustrated in Fig. 1 where we see knowledge fragments being integrated into a
Knowledge Graph, this KG being enriched using discovery, and finally services
provided based on the Knowledge Graph:

http://dx.doi.org/10.1007/978-3-030-53199-7_2
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– Reasoning for Knowledge Integration: where the focus is to use reason-
ing in order to deal with knowledge acquisition and integration from hetero-
geneous, interconnected and distributed data.

– Reasoning for Knowledge Discovery: where the focus is to use reasoning
in order to identify new – and possible hidden – knowledge based on existing
knowledge.

– Reasoning for Application Services: where the focus is to employ rea-
soning techniques to directly provide services at the application level of the
Knowledge Graph.

The position that we will take in this chapter is that while these three phases
of the life-cycle are clearly important, and many of the available reasoning tech-
niques fall into one category or the other, many others as we shall see permeate
these life-cycle phases. We thus refer to them rather as dimensions.

This chapter shall not be a survey of reasoning techniques, but for each of
the three dimensions it shall give one or two prominent examples to give the
reader an impression on the breadth and variation between reasoning techniques
on Knowledge Graphs.

Organization. In Sect. 2, we will consider the dimension of integration; in
Sect. 3, we consider the dimension of discovery; and in Sect. 4, we consider the
dimension of application services. We will conclude with a summary.

2 Reasoning for Knowledge Integration

In recent years, a huge number of Knowledge Graphs has been built both in
academia and industry. Knowledge Graph creation follows a set of steps for data
acquisition and integration from heterogeneous resources. It requires a compre-
hensive domain conceptualization and a proper data representation model. In
many cases, data transformation from the already existing formats formed the
Knowledge Graph for many individual or enterprise agents. With post-processing
stages, such Knowledge Graphs have been made usable by other approaches for
further investigations.

Yet, considering the potential amount of information that could be mapped
into such Knowledge Graphs from the real world, they are greatly incomplete.
A number of manual and automated data curation, harvesting and integration
techniques are being developed for data completion tasks already from decades
ago. However, considering the characteristics of Knowledge Graphs, they became
ideal for applying machine learning approaches to Knowledge Graph comple-
tion. Thus, KG completion tasks gain a new dimension meaning the coverage
increase of knowledge. Therefore, new communities of research have been merged
or revived such as knowledge embedding. Application of such models have been
investigated with the objective of providing services for link predictions, resource
classification and recommendation services.

Aforementioned representations are attempts to create a real world model
where a lack of full coverage and information correctness problems will always
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be present. Thus, proposing embedding models for Knowledge Graphs gained
a lot of attention by giant companies and received great hype in research in
recent years. Such models are probabilistic-based approaches to predict missing
relations in a graph. Although there have already been proposals of using ML
and such probabilistic link prediction models on top of data modeled in triples
from the early 2000s, the application of such models has been practiced with the
emergence of KGs. Three conflicting dimensions of challenges in the construc-
tion of such a Knowledge Graph have been mentioned [146] namely freshness,
coverage and correctness.

2.1 Schema/Ontology Matching

Ontology matching in the meaning of finding semantic relationships between
entities of one or several Knowledge Graphs plays an important role in KG
integration and construction. Due to the heterogeneity of KGs, the process of
KG integration and mapping ontologies end with high complexities. Therefore
scalability is one of the main focal points in this regard. The approaches for
providing light weighted ontology matching tools includes ontology partitioning
[130], use of data and ontology structure [230,383]. There are two main categories
of approaches: logic-based and graph-based [3]. In the early years of the Semantic
Web community [166,167], some logic-based reasoning approaches, which are
used to partition the relationships of an ontology, have been discussed.

Another set of approaches are ontology-based data access (OBDA) [356]
approaches, which are well-known where ontologies are used to encode the
domain knowledge, which enables new fact deduction. In [58], a datalog-based
approach is proposed for KG completion tasks. A datalog is an ontology-based
approach that is applied in question answering [289].

The proposed approach is a partitioning model that incorporates the ontol-
ogy graph and the distribution of extractions. In a related work, reasoning by
using ontology-based approaches is used to query probabilistic knowledge bases
[59,74]. The application of such ontology-based reasoning in relation to other
inference tasks such as maximum a posteriori (MAP) computations and most
probable explanations (MPE) corresponds to identifying tuples that contribute
the most to the satisfaction of an observed query. The concept of common sense
is introduced as a type of knowledge in [59] with regard to closed world or open
world assumptions. With a closed world assumption, question-answering systems
that are built on top of knowledge bases fail to answer anything that requires
intuitive or deductive reasoning.

A logic-based scalable ontology matching system is introduced in [228] named
LogMap. The ontology obtained by integrating LogMap’s output mappings with
the input ontologies is consistent. Although it belongs to the period before KGs
were introduced, its capability in terms of dealing with semantically rich ontolo-
gies makes it considerable for application in KGs as well. Logical reasoning is also
used in other works over the union of the source ontologies, e.g. in the medical
domain [229].
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In general, Knowledge Graph identification (KGI) is used as a reasoning
technique in Knowledge Graph construction. For example, [362] deals with chal-
lenges in automation of KG creation from noisy extractions. In order to handle
the scaling problems, partitioning extractions is an approach that allows paral-
lel reasoning in carving valid KG from a collection of noisy information. KGIs
uses logical constraints and entity resolution and the results can be used in
classification and link prediction tasks. In a series of works [359,361,362], prob-
abilistic soft logic (PSL) is used for running reasoning jointly with extraction of
knowledge from a noisy collection of information. The proposed solution is based
on an ontology-aware technique that uses universally quantified logical rules. It
performs efficient reasoning on KGs with rich representation of ontologies and
statements in Web Ontology Language (OWL). In the reasoning process, fre-
quent patterns, constraints or paths are used to infer new knowledge.

The rules are defined to relate the uncertain information discovered in the
extraction process. The extracted triples are labeled to be a candidate relation or
a candidate label and a value is assigned which shows the probable truth of the
triple. The model combines the weights from several sources and retrieves a list
of classifications or predicted links. Ontological information such as domain and
range constraints are used to further enrich the reasoning. The joint reasoning
means that logical rules as well as entity resolution are used in parallel such
that a) logical rules relate the ontological knowledge about the predicates of the
constructed Knowledge Graph and b) entity resolution are injected in prediction.

F-OWL is another ontology matching the engine proposed in [491], and was
originally designed for knowledge bases. It is a rule-based reasoning engine which
also considers entity resolution for extracting hidden knowledge. Pellet, an open
source OWL-DL reasoner [403], employs an incremental reasoning mechanism.
Thus semantic expressively of such formalism for representing and querying prob-
abilistic knowledge has gained significant importance in recent years. Another
application of KG integration is given in [117], which explains a chain of pro-
cesses in which domain knowledge about Chinese Intangible cultural heritage
(ICH) was extracted from textual sources using Natural Language Processing
(NLP) technology. The extracted knowledge is shaped as a knowledge base using
on domain ontology and instances.

2.2 Entity Resolution

One of the techniques required for combining multiple Knowledge Graphs is
using entity resolution. In some cases, this task turns to a pair-wise matching
task between the target KGs for integration. This can bring a set of challenges
caused by different ontologies used by KGs and additional complexity. In [360],
a unified model for entity resolution is provided for KG integration tasks.

Some of these reasoning techniques are used for Knowledge Graph refine-
ment after data integration processes. Several researchers of the KG domain
(e.g., Paulheim, Dong) have been using the KG “Refinement” notion to define
a range of technology application with the purpose of KG enrichment includ-
ing completion and error detection. In some other views, refinement has seen
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improvements in KGs by considering that ontology learning mainly deals with
learning a concept-level description of a domain.

2.3 Data Exchange and Integration

While the focus of this chapter shall be on embedding-based reasoning, we do
want to at least give a glimpse at the huge body of logic-based reasoning methods
and techniques developed in the database and artificial intelligence area over
basically the last decades, including large research organizations such as IBM
research and others spearheading these kinds of developments.

Logical rules that play the role of knowledge in a Knowledge Graph, and are
thus reasoned upon have been historically often called schema mappings. There
exist countless papers in this area [18,52,127,251,434], a survey on reasoning
about schema mappings can be found at [382]. Key formalisms in these area are
tuple-generating dependencies (tgds), i.e., logical formulas of the form

ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)

where ϕ and ψ are conjunctions of relational atoms and all free variables are
universally quantified (which we will assume for all formulas presented in what
follows by some abuse of notation), and equality-generating dependencies (egds),
i.e., logical formulas of the form

ϕ(x̄) → xi = xj

These together can express a large amount of knowledge typically expressed in
database constraints, and thus usable for data exchange and data integration,
or simply as knowledge in Knowledge Graphs.

Research foci include the higher expressive power needed for particular rea-
soning tasks, including

– second-order (SO) tgds [128,133,134,161,163] for expressing ontological rea-
soning and composition, i.e., logical formulas that, in simplified form have
the structure

∃f̄((ϕ1 → ψ1) ∧ . . . ∧ (ϕn → ψn))

where f̄ are function symbols.
– nested tgds [142,252] for expressing reasoning on tree-like data, i.e., normal

tgds of the form

χ = ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)

but with the extension that each conjunct of ψ may in addition to a relational
atom also be a formula of the form χ again, i.e., allow nesting.

A particularly important restriction is the study of reasoning with conjunctive
queries (CQs), i.e., in the form of logical rules
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∃x̄ ϕ(x̄, ȳ) → Ans(ȳ)

where Ans is an arbitrary predicate name representing the answer of a query.
These CQs are at the core of almost all practical data processing systems, includ-
ing of course databases and Knowledge Graph management systems that allow
reasoning or querying of almost any level. Under the name of “projective views”,
reasoning on them has been studied intensively, for pointers see e.g. [173], but
there are countless papers studying this formalism central to KGs.

While we will avoid making this section a full-blown survey on reasoning in
data exchange and integration, we do want to give a (biased) selection of, in our
opinion, particularly interesting reasoning problems in this area:

– limits [253]: like limits in the mathematical, it is particularly relevant for
approximating data exchange and integration scenarios to also reason about
limits in this context. Similarly to limits, other operators such as union and
intersection are important [20,351].

– equivalence [355]: equivalence is a fundamental reasoning problem for all other
services building upon it, such as optimization, approximation, etc.

– inconsistency [19,22,353]: reasoning in an inconsistent state of data or knowl-
edge is the standard case for Knowledge Graphs, and needs delicate handling.

– representability [21]: how can knowledge be represented in different parts of
a Knowledge Graph?

Many other topics could have been mentioned here – and many more references
given – as this is a particularly rich area of reasoning on this important sub-area
of Knowledge Graphs. Bridging the gap towards our main focus in this chapter,
embedding-based reasoning, we conclude by mentioning that substantial parts
of the logic-based reasoning formalisms presented in this section can be injected
into embedding-based reasoning methods to make them perform far better than
they could have if no such knowledge were present in the Knowledge Graph.

3 Reasoning for Knowledge Discovery

In this section, we structure reasoning approaches for task-based AI challenges.
There is a long list of possible approaches that could go in this category; however,
we will focus on embedding-based reasoning for link prediction. Examples of other
approaches could be Statistical Relational Learning (SLRs) which are well covered
in several review articles [330,487], Markov Logic Networks (MLN) [250,373], and
Probabilistic Graphical Models [8,254,317].

3.1 Link Prediction

The power of specific knowledge representation in Knowledge Graphs facilitates
information systems in dealing with challenges of Big Data and supports solving
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challenges of data heterogeneity. However, KGs suffer from incompleteness, inac-
curacy and low data quality in terms of correctness [17,326]. This highly affects
the performance of AL-based approaches, which are used on top of KGs in order
to provide effective services. Therefore, graph completing methods gained a lot
of interest to be applied on KGs. One of the most popular methods is Knowledge
Graph Embedding models, which obtain the vector representation for entities
and/or relations to be used in downstream tasks such as Knowledge Graph Com-
pletion tasks. KGEs are a type of deductive reasoning in the vector space through
discovery of new links.

For a Knowledge Graph with a set of triples in the form of (h, r, t) represent-
ing (head, relation, tail), KG embeddings aim at mapping entities and relations
into a low-dimensional vector space. Then, the KGE model defines a score and
loss functions to further optimize the vectors through a specific embedding rep-
resentation. The embedding of entities and relations is generally learned over
existing positive samples inside the KGs. A set of negative samples are also usu-
ally injected into the model in order to optimize the learning phase and help the
KGE model gain strength. In these ways, the score function is trained over both
the positive and negative samples and assigns a high score for positive samples
and a low score to negative samples. Each embedding model also has a loss func-
tion that optimizes the scoring. Here we will look into the existing embedding
models from the lens of their reasoning power in knowledge discovery. Knowledge
Graph embedding models can be roughly divided into three main categories:

– Translational and Rotational Based Models. A large number of KGE
models are designed using mathematical transnational (plus) or rotational
(Hadamard product). The score and loss function of these models optimize
the vectors in a way that their plausibility is measured by the distance or
degree of the entities with regard to the relation.

– Semantic Matching Models. Some of the embedding models are designed
based on element-wise multiplication. In this case, the similarity of the vectors
is evaluated to define the plausibility of the entities an relations.

– Neural Network-Based Models. A third category of the KGE models
are the ones designed on top of neural networks. These models have two
learning phases: one for calculating and creating the vectors and the second
for evaluating the plausibility in a layer-based learning approach, which comes
from NN.

Translational and Rotational Models. In this type of model, the plausibility
of a triple is computed based on distance function (e.g. based on the Euclidean
distance) [458]. In the following, we describe KGE models that are relevant in
the context of this work; however, many others have been proposed.

TransE [57] is one of the early KGE models that is the base for several other
families of models where the score function takes a relation r as the translation
from the head entity h to the tail entity t :

h + r ≈ t (1)
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To measure the plausibility of a triple, the following scoring function is defined:

fr(h, t) = −‖h + r − t‖ (2)

The TransE model is extremely simple and computationally efficient. Therefore,
it is one of the most common embedding models used on large-scale KGs with
the purpose of reasoning for knowledge discovery. However, TransE is limited
in modeling 1-N, N-1 and N-M relations. For this reason, several extensions
have been proposed [458]. Due to this fact, encoding relations with reflexive and
symmetric patterns becomes impossible, which is an important aspect in the
inference of new knowledge. Therefore, several new models have tried to solve
this problem, which will be discussed in the remainder of this section.

TransH [462] is en extension of TransE, which addresses the limitations of
TransE in modeling N-M relations. It uses relation-specific entity representa-
tion to enable encoding of such relational patterns. This model uses an addi-
tional hyperplane to represent relations. Then, the translation from the head to
the tail entity is performed in that relation-specific hyperplane. This method is
called projecting head and tail entities into the relation-specific hyperplane. The
formulation of this method is as follows:

h⊥ = h − w�
r hwr (3)

t⊥ = t − w�
r twr (4)

where wr is the normal vector of the hyperplane. The plausibility of the triple
(h, r, t) is computed:

fr(h, t) = −‖h⊥ + dr − t⊥‖22 (5)

where dr is the relation-specific translation vector.
TransR is another KGE model that followed the basics from TranE as an

extension of TransH with a difference that it encodes entities and relations in
different vector spaces. This is a relation-specific solution in contrast to the
hyperplanes of TransH where the translation happens in the specific space of
each relation. Relations are in matrix representation of Mr which takes entities
projected into the relational specific space:

hr = hMr (6)

tr = tMr (7)

Based on this representation, the score function is designed as following:

fr(h, t) = −‖hr + r − tr‖22 (8)

This model is capable of handling complex relations as it uses different spaces;
however its computation is highly costly due to the high number of required
parameters.



96 L. Bellomarini et al.

TransD [225] is an attempt to improve TransR by reducing the number of
required parameters by removing the need for matrix vector multiplications. The
core of this model is to use two vectors for representation of entities and relations.
Assuming that h, r, t encode the semantics, and hp, rp, tp constructs projection,
the projection of entities in relation-specific spaces is defined as follows:

Mrh = rph
T
p + Im×n (9)

Mrt = rpt
T
p + Im×n, (10)

In this definition, I is a matrix where the values of the diagonal elements are 1
and 0 elsewhere. The head and tail entities are computed as:

h⊥ = Mrhh (11)

t⊥ = Mrtt (12)

The score of the triple (h,r,t) is then computed based on these projections:

fr(h, t) = −‖h⊥ + r − t⊥‖22 (13)

RotatE. [417] is one of the early models which uses rotation than trans-
lation. The model is mainly designed with the objective of reasoning rela-
tional patterns, which was not mainly addressed by other translational mod-
els. RotatE is designed to reason new knowledge based on the Euler formula
eiθ = cos(θ)+i sin(θ). Based on its score function, for every correct triple (h, r, t)
there should be the relation of hjrj = tj which holds ∀j ∈ {0, . . . , d}. hj , rj , tj
are the j-th elements of the embedding vectors of h, r, t ∈ C

d. Since it deals with
complex space, ri is set to 1 i.e. |rj | =

√
Re(rj)2 + Im(rj)2 = 1. The model per-

forms a rotation of the j-th element hj of the head vector h by the j-th element
rj = eiθrj of a relation vector r to get the j-th element tj of the tail vector t,
where θrj

is the phase of the relation r. Therefore, the score function of RotatE
is designed as a rotation using ◦ which is a Hadmard product of two vectors:

fr
h,t = ‖h ◦ r − t‖, (14)

In this way, the RotatE model becomes capable of encoding symmetric, inverse,
and composition relation patterns. Due to this capability, its performance is
high and due to the high quality of the newly discovered links in the reasoning
process, it outperforms all the previous models.

Semantic Matching Models. As discussed before, the second category of
embedding models in reasoning over KGs determines the plausibility of a triple
by comparing the similarity of the latent features of the entities and relations. A
number of KGE models fall into this category; we will discuss a few of the best
performing ones.
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RESCAL [327] is an embedding-based reasoning model that represents each
entity as a vector and each relation as a matrix, Mr to capture the latent seman-
tics. The score of the triples is measured by the following formulation:

fr(h, t) = hT Mrt (15)

where Mr is a matrix associated with relations, which encodes pairwise interac-
tions between the features of the head and tail entities.

DistMult is a model that focuses on capturing the relational semantics
and the composition of relations as characterized by matrix multiplication [476].
This model considers learning representations of entities and relations within
the underlying KG. DistMult [476] simplifies RESCAL by allowing only diagonal
matrices as diag(r). The score function of this model is designed in a way that
triples are ranked through pair-wise interactions of the latent features:

fr(h, t) = hT diag(r)t (16)

where r ∈ Rd and Mr = diag(r). The restriction to diagonal matrices makes
DistMult more computationally efficient than RESCAL but less expressive.

ComplEx ComplEx [430] is an extension of DistMult into the complex space.
Considering the scoring function of DistMult, it can be observed that it has a
limitation in representing anti-symmetric relations since hT diag(r)t is equivalent
to tT diag(r)h. Equation 16 can be written in terms of the Hadamard product of
h, r, t: <h, r, t> =

∑d
i=1 hi ∗ ri ∗ ti, where h, r, t ∈ Rd. The scoring function of

ComplEx uses the Hadamard product in the complex space, i.e. h, r, t ∈ Cd:

fr(h, t) = �(
d∑

i=1

hi ∗ ri ∗ ti) (17)

where �(x) represents the real part of a complex number and x its conjugate.
It is straightforward to show that fr(h, t) �= fr(t, h), i.e. ComplEx is capable of
modeling anti-symmetric relations.

Neural Network-Based Models. As the last category of the embedding mod-
els that we will discuss here, we consider the ones which are built on top of Neural
Networks. Such models inherit a second layer from NNs for the learning phase.
This category is also known as Neural Link Predictors, which is in the down-
stream task level, the ultimate objective of such models. Such models contain a
multi-layered learning approach with two main components: namely, encoding
of the vectors and scoring of the vectors.

ConvE [107] is a multi-layer embedding model designed on top of the neural
networks.

f(h, t) = g(Vec(g([h̄; r̄] ∗ ω))W ) t (18)

Neural Tensor Network (NTN). [408] is one of the earlier methods which
includes textual information in the embedding. It learns the word vectors from
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a corpus and initializes each entity by the average of vectors of words associated
with the entity.

�wT
r tanh(�hT Wr�t + W (1)

r
�h + W (2)

r
�t +�br) (19)

LogicENN. [323] is an NN-based model which performs reasoning on top of a
KG through jointly learning embeddings of entities (h, t) and relations (βr) of
the KG and the weights/biases (w/b) of the NN. Given a triple of (h, r, t), the
network passes the entity vectors (h, t) through a universally shared hidden layer
with L nodes to obtain the joint feature mapping of the entities (h, t) i.e. ΦT

h,t =
[φh,t(w1, b1), . . . , φh,t(wL, bL)] = [φ(〈w1, [h, t] + b1〉), . . . , φ(〈wL, [h, t] + bL〉)].
The network considers the weights of the output nodes (i.e. βr) as the embedding
of relation r. The score of the triple (h, r, t) is computed by the inner product of
Φh,t and βr as follows

f(h, r, t) =
L∑

i=1

φ(〈wi, [h, t] + bi〉)βr
i =

L∑

i=1

φh,t(wi, bi)βr
i

= ΦT
h,tβ

r.

(20)

Considering the formulation of the score function, the algebraic formulae (alge-
braic constraints) corresponding to each of the logical rules – namely symmet-
ric, inverse, transitive, negation, implication, equivalence etc – are derived. The
formulae are then used as penalty terms to be added to the loss function for
optimization. This enables the injection of rules into the learning process of the
network. Consequently, the performance of the model is improved.

Overall, the network has the following advantages:

– The model is proven to be capable of expressing any ground truth of a KG
with n facts.

– The network separates the spaces of entities (φh,t) and relation βr. Therefore,
the score-based algebraic constraints corresponding to the symmetric, inverse,
implication and equivalence rules do not need the grounding of entities. This
feature enables the model to better inject rules with a lower computational
cost due to lifted groundings.

– The model has been shown to obtain state-of-the-art performance on several
standard datasets.

Summary. So far we have given a detailed description of some highlighted
methods in embedding-based reasoning methods. More information can be found
in [326,459]. Despite the fact that most of embeddings only consider the relation
and entities of a KG, there are several types of complementary knowledge (e.g.,
text, logical rules, ontology, complementary KG) from which embedding models
can be improved. In [328], ontological knowledge is introduced as complementary
knowledge, which can be used in the factorization process of embedding models.
In some of the more focused work, ontological knowledge such as entity types
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is used as constraints [201,265,460,475] which improves the performance of the
embedding models. In recent years, logic-based reasoning and embedding-based
reasoning have come together and attracted a great deal of academic attention.
Some initial work is done using logical rules as a post-processing task after
embedding [460,465]. [375] optimizes the embeddings using first order logical
rules to obtain entity pairs and relations. [202] provides a general framework to
transfer information in logical rules to the weights of different types of neural
networks.

4 Reasoning for Application Services

The ultimate goal of the aforementioned approaches is to provide better knowl-
edge aware services such as smart analytics and recommendation and prediction
services as well as to facilitate query answering. In many knowledge management
tasks, learning and reasoning is an important component towards providing such
services. There are also hybrid systems which integrate many such models con-
suming different learning representation and learning methods. Such methods
are usually defined as high-level tasks where the purpose is to gain a certain
practical step in KGs where it is ready for low-level tasks. This section includes
some AI-driven applications with an underlying knowledge-aware learning and
reasoning engine.

4.1 Recommendation Systems

In many of the high-level tasks related to Knowledge Graphs, learning and
reasoning methods are considered to be well-suited to providing recommen-
dation services. Recommendation services are typical applications of reasoning
for knowledge discovery and link prediction approaches. Logic-based reasoning
provides explainable recommendations while embedding-based reasoning mostly
explores the interlinks within a knowledge graph. The learning phase in both of
these approaches is mostly about analysis of the connectivity between entities
and relations in order to discover possible news paths. This can be facilitated
with rich and complementary information. These approaches reveal the seman-
tics of entities and relations and facilitate recommendation services to compre-
hend ultimate user interests.

In the domain application level, such approaches can be applied for any
graph-based scenario. For example, KGs of social networks [457] are one of the
most interesting application domains on which learning frameworks are applied.
Item recommendation in online shopping is a typical application for link predic-
tion. Such problems are usually formulated as ML-based problems in KGs and
employ link prediction approaches. Another typical example is link prediction
between co-authors in scholarly Knowledge Graphs. The plausibility of such rec-
ommendations is prediction-based for the future and might not happen. Adding
a temporal feature for such recommendations by making Knowledge Graphs
time-aware makes such applications more interesting.
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4.2 Question Answering

A number of reasoning-based applications for which intelligent systems are built
goes under the umbrella of question answering systems (QA). In addition to
normal search engines and query-based systems, into this category falls conver-
sational AI systems, speech assistants, and chat-bots. Example of such systems
are Apple’s Siri, Microsoft’s Cortana, and Amazon’s Alexa, for which the source
of knowledge is an underlying KG. Despite the huge success in building such sys-
tems, the possible incorrect answers as well as their limits in retrieving a certain
level of knowledge queries is not avoidable. There are multiple reasons for this,
such as KG incompleteness or other quality issues on the data side, which cause
minimal semantic understanding. However, for the complete part of the data in
practice, any simple question has the potential to require complex queries and
thus complex reasoning over multiple computational steps [277]. Therefore, all
of these systems are facilitated with reasoning and inference techniques in order
to retrieve hidden information.

In recent years, one of the hyped applications of reasoning for question
answering is on Knowledge Graphs with diverse modality of data. This is
because, by nature, Knowledge Graphs contain different types of information
ranging from images, text, numerical data or even videos and many more. The
main challenge is that, on the application side, most of the learning approaches
are mainly considered with one modal. While there has been a lot of progress
from computer vision communities in audio and video processing, such multi-
disciplinary research is still at an early stage. Such KGs are known as Multi-
modal Knowledge Graphs (MKGs) and have fundamental differences with other
visual-relational resources. There are recent works on construction of Multi-
Modal Knowledge Graphs and application of ML-related models on top of such
KGs. Visual QA systems are designated specifically for MKGs [66].

Due to the explainability power of rule-based reasoning techniques, they are
an important part of QA systems as well. In the case of complex questions with a
need for multiple steps, it is easier to provide explainable and certain statements.
Multi-hop reasoning is a solution for such cases, which is elevated by end-to-end
differentiable (deep learning) models [108,464].

5 Challenges and Opportunities

In this chapter, we considered reasoning in Knowledge Graphs in multiple dimen-
sions: namely that of integration, discovery and application. For each of these,
we picked some techniques that showcase some of the diversity of reasoning
techniques encountered in Knowledge Graphs. As a grand challenge, we see the
integration of multiple reasoning techniques, such as logic-based and embedding-
based reasoning techniques, and similarly neural network-based reasoning and
other reasoning techniques. Clearly, also each individual reasoning problem that
we introduced in this chapter would allow for challenges and opportunities to be
listed, but that would go beyond the scope of this chapter.
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