Skip to main content

Taccalonolide Microtubule Stabilizers

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 112

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 112))

Abstract

Microtubule stabilizers are a mainstay in the treatment of many solid cancers and continue to find utility in combination therapy with molecularly targeted anticancer agents and immunotherapeutics. However, innate and acquired resistance to microtubule stabilizers can limit their clinical efficacy. The taccalonolides are a unique class of microtubule stabilizers isolated from plants of Tacca that circumvent clinically relevant mechanisms of drug resistance. Although initial reports suggested that the microtubule-stabilizing activity of the taccalonolides was independent of direct tubulin binding, additional studies have identified that potent C-22, C-23 epoxidized taccalonolides covalently bind the Aspartate 226 residue of β-tubulin and that this interaction is critical for their microtubule-stabilizing activity. The taccalonolides have distinct properties as compared to other microtubule stabilizers with regard to their biochemical effects on tubulin structure and dynamics that promote distinct cellular phenotypes. Some taccalonolides have demonstrated in vivo antitumor efficacy in drug-resistant tumor models with exquisite potency and long-lasting antitumor efficacy as a result of their irreversible target engagement. The recent identification of a site on the taccalonolide scaffold that is amenable to modification has provided evidence of the specificity of the taccalonolide–tubulin interaction. This also affords an opportunity to further optimize the targeted delivery of the taccalonolides to further improve their anticancer efficacy and potential for clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheuer PJ, Swanholm CE, Madamba LA, Hudgins WR (1962) Constituents of Tacca leontopetaloides. Lloydia 26:133

    Google Scholar 

  2. Chen Z-L, Wang B-D, Chen M-Q (1987) Steroidal bitter principles from Tacca plantaginea; structures of taccalonolide A and B. Tetrahedron Lett 28:1673

    Article  CAS  Google Scholar 

  3. Chen Z, Wang B, Shen J (1988) Taccalonolide C and D, two pentacyclic steroids of Tacca plantaginea. Phytochemistry 27:2999

    Article  CAS  Google Scholar 

  4. Shen J, Chen Z, Gao Y (1996) The pentacyclic steroidal constituents of Tacca plantaginea: taccalonolide E and F. Chin J Chem 9:92

    Article  Google Scholar 

  5. Chen ZL, Shen JH, Gao YS, Wicht M (1997) Five taccalonolides from Tacca plantaginea. Planta Med 63:40

    Article  CAS  PubMed  Google Scholar 

  6. Shen J, Chen Z, Gao Y (1996) Taccalonolides from Tacca plantaginea. Phytochemistry 42:891

    Article  CAS  Google Scholar 

  7. Yang J-Y, Zhao R-H, Chen C-X, Ni W, Teng F, Hao X-J, Liu H-Y (2008) Taccalonolides W-Y, three new pentacyclic steroids from Tacca plantaginea. Helv Chim Acta 91:1077

    Google Scholar 

  8. Huang Y, Liu JK, Muhlbauer A, Henkel T (2002) Three novel taccalonolides from the tropical plant Tacca subflabellata. Helv Chim Acta 85:2553

    Article  CAS  Google Scholar 

  9. Muehlbauer A, Seip S, Nowak A, Tran VS (2003) Five novel taccalonolides from the roots of the Vietnamese plant Tacca paxiana. Helv Chim Acta 86:2065

    Article  CAS  Google Scholar 

  10. Peng J, Risinger AL, Fest GA, Jackson EM, Helms G, Polin LA, Mooberry SL (2011) Identification and biological activities of new taccalonolide microtubule stabilizers. J Med Chem 54:6117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dik VT, Vihiior B, Bosha JA, Yin TM, Ebiloma GU, de Koning HP, Igoli JO, Gray AI (2016) Antitrypanosomal activity of a novel taccalonolide from the tubers of Tacca leontopetaloides. Phytochem Anal 27:217

    Article  CAS  Google Scholar 

  12. Abdel-Aziz A, Brain K, Bashir AK (1990) Screening of Sudanese plants for mollusicicidal activity and identification of leaves of Tacca leontopetaloides (L.) O. Kuntze (Taccaceae) as a potential new exploitable resource. Phytother Res 4:62

    Google Scholar 

  13. Muehlbauer A, Gehling M, Velten R, Andersch W, Erdelen C, Harder A, Marczok P, Nauen R, Turberg A, Tran VS, Adam G, Liu J (2001) Isolation and preparation of taccalonolides for controlling animal pests. Kunming Institute of Botany, Chinese Academy of Sciences, Bayer AG, Germany, p 113

    Google Scholar 

  14. Tinley TL, Randall-Hlubek DA, Leal RM, Jackson EM, Cessac JW, Quada JC Jr, Hemscheidt TK, Mooberry SL (2003) Taccalonolides E and A: plant-derived steroids with microtubule-stabilizing activity. Cancer Res 63:3211

    CAS  PubMed  Google Scholar 

  15. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 melanoma cells — a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13

    Article  PubMed  Google Scholar 

  16. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272:17118

    Article  CAS  PubMed  Google Scholar 

  17. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97:2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buey RM, Barasoain I, Jackson E, Meyer A, Giannakakou P, Paterson I, Mooberry S, Andreu JM, Diaz JF (2005) Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem Biol 12:1269

    Article  CAS  PubMed  Google Scholar 

  19. Risinger AL, Mooberry SL (2011) Cellular studies reveal mechanistic differences between taccalonolide A and paclitaxel. Cell Cycle 10:2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Risinger AL, Jackson EM, Polin LA, Helms GL, LeBoeuf DA, Joe PA, Hopper-Borge E, Luduena RF, Kruh GD, Mooberry SL (2008) The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res 68:8881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sackett DL, Fojo T (2011) Taccalonolides: a microtubule stabilizer poses a new puzzle with old pieces. Cell Cycle 10:3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Komlodi-Pasztor E, Sackett DL, Fojo AT (2012) Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 18:51

    Article  CAS  PubMed  Google Scholar 

  23. Towle MJ, Salvato KA, Wels BF, Aalfs KK, Zheng W, Seletsky BM, Zhu X, Lewis BM, Kishi Y, Yu MJ, Littlefield BA (2011) Eribulin induces irreversible mitotic blockade: implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions. Cancer Res 71:496

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Risinger AL, Peng J, Chen Z, Hu L, Mooberry SL (2011) Potent taccalonolides, AF and AJ, inform significant structure-activity relationships and tubulin as the binding site of these microtubule stabilizers. J Am Chem Soc 133:19064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balaguer FA, Muhlethaler T, Estevez-Gallego J, Calvo E, Gimenez-Abian JF, Risinger AL, Sorensen EJ, Vanderwal CD, Altmann KH, Mooberry SL, Steinmetz MO, Oliva MA, Prota AE, Diaz JF (2019) Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands. Int J Mol Sci 20:1392

    Article  CAS  PubMed Central  Google Scholar 

  26. Risinger AL, Li J, Bennett MJ, Rohena CC, Peng J, Schriemer DC, Mooberry SL (2013) Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity. Cancer Res 73:6780

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Yu Y, Li GB, Li SA, Wu C, Gigant B, Qin W, Chen H, Wu Y, Chen Q, Yang J (2017) Mechanism of microtubule stabilization by taccalonolide AJ. Nature Commun 8:15787

    Article  CAS  Google Scholar 

  28. Du L, Yee SS, Ramachandran K, Risinger AL (2020) Elucidating target specificity of the taccalonolide covalent microtubule stabilizers employing a combinatorial chemical approach. Nature Commun 11:654

    Article  CAS  Google Scholar 

  29. Ola ARB, Risinger AL, Du L, Zammiello CL, Peng J, Cichewicz RH, Mooberry SL (2018) Taccalonolide microtubule stabilizers generated using semisynthesis define the effects of mono acyloxy moieties at C-7 or C-15 and disubstitutions at C-7 and C-25. J Nat Prod 81:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchez-Murcia PA, Mills A, Cortes-Cabrera A, Gago F (2019) Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J Comput Aided Mol Des 33:627

    Article  CAS  PubMed  Google Scholar 

  31. Risinger AL, Riffle SM, Lopus M, Jordan MA, Wilson L, Mooberry SL (2014) The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation. Mol Cancer 13:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rohena CC, Peng J, Johnson TA, Crews P, Mooberry SL (2013) Chemically diverse microtubule stabilizing agents initiate distinct mitotic defects and dysregulated expression of key mitotic kinases. Biochem Pharmacol 85:1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng J, Risinger AL, Li J, Mooberry SL (2014) Synthetic reactions with rare taccalonolides reveal the value of C-22,23 epoxidation for microtubule stabilizing potency. J Med Chem 57:6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Risinger AL, Li J, Du L, Benavides R, Robles AJ, Cichewicz RH, Kuhn JG, Mooberry SL (2017) Pharmacokinetic analysis and in vivo antitumor efficacy of taccalonolides AF and AJ. J Nat Prod 80:409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du L, Risinger AL, Yee SS, Ola ARB, Zammiello CL, Cichewicz RH, Mooberry SL (2019) Identification of C-6 as a new site for linker conjugation to the taccalonolide microtubule stabilizers. J Nat Prod 82:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Risinger AL, Peng J, Rohena CC, Aguilar HR, Frantz DE, Mooberry SL (2013) The bat flower: a source of microtubule-destabilizing and -stabilizing compounds with synergistic antiproliferative actions. J Nat Prod 76:1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng J, Risinger AL, Da C, Fest GA, Kellogg GE, Mooberry SL (2013) Structure-activity relationships of retro-dihydrochalcones isolated from Tacca sp. J Nat Prod 76:2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng J, Jackson EM, Babinski DJ, Risinger AL, Helms G, Frantz DE, Mooberry SL (2010) Evelynin, a cytotoxic benzoquinone-type retro-dihydrochalcone from Tacca chantrieri. J Nat Prod 73:1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu HY, Ni W, Xie BB, Zhou LY, Hao XJ, Wang X, Chen CX (2006) Five new withanolides from Tacca plantaginea. Chem Pharm Bull 54:992

    Article  CAS  Google Scholar 

  40. Yokosuka A, Mimaki Y, Sashida Y (2003) Chantriolides A and B, two new withanolide glucosides from the rhizomes of Tacca chantrieri. J Nat Prod 66:876

    Article  CAS  PubMed  Google Scholar 

  41. Yokosuka A, Mimaki Y, Sashida Y (2004) Taccasterosides A–C, novel C28-sterol oligoglucosides from the rhizomes of Tacca chantrieri. Chem Pharm Bull 52:1396

    Article  CAS  Google Scholar 

  42. Li L, Ni W, Li XR, Hua Y, Fang PL, Kong LM, Pan LL, Chen Li Y, CX, Liu HY, (2011) Taccasubosides A-D, four new steroidal glycosides from Tacca subflabellata. Steroids 76:037

    Google Scholar 

  43. Shwe HH, Aye M, Sein MM, Htay KT, Kreitmeier P, Gertsch J, Reiser O, Heilmann J (2010) Cytotoxic steroidal saponins from the rhizomes of Tacca integrifolia. Chem Biodivers 7:610

    Article  CAS  PubMed  Google Scholar 

  44. Misico RI, Nicotra VE, Oberti JC, Barboza G, Gil RR, Burton G (2011) Withanolides and related steroids. Prog Chem Org Nat Prod 94:127

    CAS  PubMed  Google Scholar 

  45. Yokosuka A, Mimaki Y (2007) New glycosides from the rhizomes of Tacca chantrieri. Chem Pharm Bull 55:273

    Article  CAS  Google Scholar 

  46. Yokosuka A, Mimaki Y, Sakuma C, Sashida Y (2005) New glycosides of the campesterol derivative from the rhizomes of Tacca chantrieri. Steroids 70:257

    Article  CAS  PubMed  Google Scholar 

  47. Yokosuka A, Mimaki Y, Sashida Y (2002) Spirostanol saponins from the rhizomes of Tacca chantrierii and their cytotoxic activity. Phytochemistry 6:731

    Google Scholar 

  48. Yokosuka A, Mimaki Y, Sashida Y (2002) Steroidal and pregnane glycosides from the rhizomes of Tacca chantrieri. J Nat Prod 65:1293

    Article  CAS  PubMed  Google Scholar 

  49. Yokosuka A, Mimaki Y, Sakagami H, Sashida Y (2002) New diarylheptanoids and diarylheptanoid glucosides from the rhizomes of Tacca chantrieri and their cytotoxic activity. J Nat Prod 65:283

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samantha S. Yee or April L. Risinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yee, S.S., Du, L., Risinger, A.L. (2020). Taccalonolide Microtubule Stabilizers. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 112. Progress in the Chemistry of Organic Natural Products, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-52966-6_3

Download citation

Publish with us

Policies and ethics