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Abstract. The development of data processing and analytics tools is heavily
driven by applications, which results in a great variety of software solutions,
which often address specific needs. It is difficult to imagine a single solution that
is universally suitable for all (or even most) application scenarios and contexts.
This chapter describes the data analytics framework that has been designed and
developed in the ENVRIplus project to be (a) suitable for serving the needs of
researchers in several domains including environmental sciences, (b) open and
extensible both with respect to the algorithms and methods it enables and the
computing platforms it relies on to execute those algorithms and methods, and
(c) open-science-friendly, i.e. it is capable of incorporating every algorithm and
method integrated into the data processing framework as well as any computation
resulting from the exploitation of integrated algorithms into a “research object”
catering for citation, reproducibility, repeatability and provenance.
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1 Introduction

Data processing and analytics are playing akey role in modern science [8]. The paradigms
of data-intensive science [20] and open science [5] as well as the opportunities offered
by cloud computing and the as-a-Service delivery model [1, 21] continuously drive
the development of ever new and diverse solutions to data analytics needs. In fact,
a plethora of solutions has been designed and developed ranging from programming
models to analytics frameworks and systems, notebooks, workflow management systems
and science gateways [6, 9, 22, 25]. Such heterogeneity provides a rich possibility for the
scientific community to select suitable solutions, case by case; however, it also results in
high costs to support the sharing of analytics methods and algorithms across domains.
In order to provide scientists with an analytics platform aiming at offering both (a) the
freedom to develop analytics methods by using a rich array of programming approaches
(e.g. R scripts, Python programs and Unix compiled code) and (b) a simple use and re-use
of analytics methods developed by others according to open science practices, advanced
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infrastructures like D4Science have been equipped with a set of services realising a
solution for data analytics promoting the above principles [3, 4]. This chapter presents
the data analytics solutions developed as part of D4Science infrastructure in the context
of ENVRIplus [37], and discusses the benefits resulting from its uptake and exploitation
in several use cases.

The rest of the chapter is organised as follows. Section 2 overviews existing solutions
for data analytics. Section 3 discusses the data analytics solution developed in the project.
Section 4 examines the proposed solution and discusses some use cases. Finally, Sect. 5
concludes the chapter by highlighting future works.

2 State of the Art

Khalifa et al. [22] surveyed existing solutions for data analytics and observed that (i)
“existing solutions cover bits-and-pieces of the analytics process” and (ii) when devising
an analytics solution there are six pillars representing issues to deal with. The six pillars
identified by Khalifa et al. include (i) Storage, i.e., how data to be analysed are going to
be handled; (ii) Processing, i.e., how the pure processing task is going to happen; (iii)
Orchestration, i.e., how computing resources are going to be managed to reduce process-
ing time and cost; (iv) Assistance, i.e., how scientists and practitioners are provided with
facilities helping them to perform their task; (v) User Interface, i.e., how scientists and
practitioners are provided with the data analytics system to run their analytics, monitor
the execution and get back the results; (vi) Deployment Method, i.e., how the analytics
system is offered to the end-users.

A lot of technologies and approaches have been developed to support data process-
ing and analytics tasks including (i) High-performance computing (HPC) solutions, i.e.,
aggregated computing resources to realise a “high-performance computer” (including
processors, memory, disk and operating system); (ii) Distributed Computing Infrastruc-
tures, i.e., distributed systems characterised by heterogeneous networked computers that
offer data processing facilities. This includes High-throughput computing (HTC) and
cloud computing; (iii) Scientific workflow management systems (WMS), i.e., systems
enacting the definition and execution of scientific workflows consisting of: a list of
tasks and operations, the dependencies between the interconnected tasks, control-flow
structures and the data resources to be processed; (iv) Data analytics frameworks and
platforms, i.e., platforms and workbenches enabling scientists to execute analytic tasks.
Such platforms tend to provide their users with implementations of algorithms and (sta-
tistical) methods for the analytics tasks. These classes of solutions and approaches are
not isolated, rather they are expected to rely on each other to provide end-users with
easy to use, efficient and effective data processing facilities, e.g. scientific WMS rely on
distributed computing infrastructures to actually execute their constituent tasks.

Liew et al. [25] have recently analysed selected scientific WMSs that are widely used
by the scientific community, namely: Airavata [30], Kepler [27], KNIME [7] Meandre
[26], Pegasus [18], Taverna [31], and Swift [34]. Such systems have been analysed
with respect to a framework aiming at capturing the major facets characterising WMSs:
(a) processing elements, i.e., the building blocks of workflows envisaged to be either
web services or executable programs; (b) coordination method, i.e., the mechanism
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controlling the execution of the workflow elements envisaged to be either orchestration or
choreography; (c) workflow representation, i.e., the specification of a workflow that can
meet the two goals of human representation and/or computer communication; (d) data
processing model, i.e., the mechanism through which the processing elements process the
data that can be bulk data or stream data; (e) optimisation stage, i.e., when optimization
of the workflow (if any) is expected to take place that can either be build-time or runtime.

A series of platforms and frameworks have been developed to simplify the execution
of (scientific) distributed computations. This need is not new; it is actually rooted in high-
throughput computing which is a well-consolidated approach to provide large amounts
of computational resources over long periods of time. The advent of Big Data and
Google MapReduce in the first half of 2000 brings new interests and solutions. Besides
taking care of the smart execution of user-defined and steered processes, platforms and
environments start offering ready to use implementations of algorithms and processes
that benefit from a distributed computing infrastructure.

There exist many data analytics frameworks and platforms, including:

o Apache Mahout! is a platform offering a set of machine-learning algorithms (including
collaborative filtering, classification, clustering) designed to be scalable and robust.
Some of these algorithms rely on Apache Hadoop, others are relying on Apache Spark.

e Apache Hadoop? is a basic platform for distributed processing of large datasets across
clusters of computers by using a MapReduce strategy [24]. In reality, this is probably
the most famous open-source implementation of MapReduce, a simplified data pro-
cessing approach to execute data computing on a computer cluster. Worth to highlight
that one of the major issues with MapReduce — resulting from the “flexibility” key
feature, i.e., “users” are called to implement the code of map and reduce functions
— is the amount of programming effort. In fact, other frameworks and platforms are
building on it to provide users with data analytics facilities (e.g. Apache Mahout).

e Apache Spark [33] is an open-source, general-purpose cluster- computing engine
which is very fast and reliable. It provides high-level APIs in Java, Scala, Python and
R, and an optimised engine that supports general execution graphs. It also supports
a rich set of higher-level tools including Spark SQL for SQL and structured data
processing, MLIib for machine learning, GraphX for graph processing, and Spark
Streaming.

e iPython/Jupyter [29] is a notebook-oriented interactive computing platform which
enacts to create and share “notebooks”, i.e., documents combining code, rich text,
equations and graphs. Notebooks support a large array of programming languages
(including R) and communicate with computational kernels by using a JSON-based
computing protocol. Similar solutions include knitr [32] which works with the R
programming language and Dexy?, a notebook-like program that focuses on helping
users to generate papers and presentations that incorporate prose, code, figures and
other media.

1 http://mahout.apache.org/.
2 https://hadoop.apache.org/.
3 http://www.dexy.it.
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3 DataMiner: A Distributed Data Analysis Platform

DataMiner (DM) [3, 11, 14] aims to provide a cloud-based data analysis platform. It is
designed to support the following key principles:

e Extensibility: the platform is “open” with respect to (i) the analytics techniques it
offers and supports and (ii) the computing infrastructures and solutions it relies on to
enact the processing tasks. It is based on a plug-in architecture to support adding new
algorithms/methods, new computing platforms;

e Distributed processing: the platform is conceived to execute processing tasks by rely-
ing on “local engines”/“workers” that can be deployed in multiple instances and
execute parallel tasks in a seamless way to the user. The platform is able to rely on
computing resources offered by both well-known e-Infrastructures (e.g. EGI) as well
as resources made available by the Research Infrastructure to deploy instances of the
“local engines”/“workers”. This is key to make it possible to “move” the computation
close to the data;

e Multiple interfaces: the platform offers its hosted algorithms as-a-service and via a
Web graphical user interface. This allows using the algorithms from software capable
to execute processing tasks from well-known applications (e.g. R and KNIME);

e Cater for scientific workflows: the platform is exploitable by existing WorkFlow Man-
agement System (WFMS) [36] (e.g. a node of a workflow can be the execution of
a task/method offered by the platform) and supports the execution of a workflow
specification (e.g. by relying on one or more instances of WFMSs);

e FEasy to use: the platform was designed in order to accommodate usability requirements
for different types of users ranging from undergraduate students to expert scientists;

e Open science-friendly: the platform aims at supporting the open science paradigm in
terms of repeatability and reproducibility of the experiments and the re-usability of
the produced results. This goal is achieved via computational provenance tracking
and the production of “research objects” that make it possible for users to repeat the
experiment done by other users while respecting access policies to data and processes.

3.1 Development Context

The development of DataMiner is in the context of the D4Science infrastructure [3, 4]
which is designed and developed to provide researchers and practitioners with working
environments where resources of interests (datasets, computing, and services) for each
designated community are easily made available by coherent and aggregated views and
where open science practices are transparently promoted. This infrastructure is built and
operated by relying on gCube technology [4], a software system specifically conceived to
enable the construction and development of Virtual Research Environments (VREs) [10],
i.e. web-based working environments dynamically build thus to be tailored to support
the needs of their designated communities, each working on a research question. Every
VRE offers domain-specific facilities, i.e. datasets and services suitable for the specific
research question, as well as a rich array of basic services supporting collaboration and
cooperation among its users, namely: (i) a shared workspace to store and organise any
version of a research artefact; (ii) a social networking area to have discussions on any
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topic (including working version and released artefacts) and be informed on happenings;
(ii1) a data analytics platform to execute processing tasks either natively provided by
VRE users or borrowed from other VREs to be applied to VRE users’ cases and datasets,
and (iv) a catalogue-based publishing platform to make the existence of a certain artefact
public and disseminated. These facilities are at the fingerprint of VRE users.

The data analytics part mainly comprises two major components further discussed
below, i.e. DataMiner realising the analytics engine supporting both providers and con-
sumers of analytics methods to make use of a distributed computing infrastructure; and
Statistical Algorithms Importer (SAI) realising the facilitator helping analytics methods
owner to onboard their methods into the DataMiner engine. These components are nicely
integrated with the services discussed above, thus the overall analytics platform result
from the intertwining of them with the rest.

3.2 Architecture

DataMiner is based on the 52° North WPS implementation* but extends this imple-
mentation in order to meet Open Science oriented requirements. DM is a Java-based
Web service running on an Apache Tomcat instance, enhanced with libraries to make it
work in the D4Science e-Infrastructure. The DM architecture is made up of two sets of
machines (clusters) that operate in a Virtual Research Environment: the Master and the
Worker clusters, as shown in Fig. 1. The Master and the Worker clusters are dynami-
cally provisioned by D4Science through an orchestration engine based on the OpenStack
platform for Cloud computing. A load balancer distributes the computational requests
uniformly to these machines. When a WPS computational request comes to the Master
cluster balancer, this distributes the request to one of the services in the Master DM clus-
ter. The DMs host processes provided by several developers. Each machine is endowed
with a DM service that communicates with the D4Science Information System to notify
its presence and capabilities. The load balancer is the main access point to interact with
DM services. The machines of the Worker cluster have the same computational power as
the other machines but can run only one (parallelised) process at a time and principally
serve Map-Reduce computations.

Two types of algorithms are hosted by DataMiner: “Local” and “Cloud” algorithms.
Local algorithms are directly executed on the Master machines and possibly use parallel
processing on several cores and a large amount of memory. Instead, Cloud algorithms
use distributed computing with a Map-Reduce approach and rely on the Worker cluster
(Cloud nodes). With respect to the standard 52° North implementation, DM adds a
number of features. First, it returns a different list of processes according to the VRE
in which the service is invoked. When an algorithm is installed on a DM, it is also
indexed in the D4Science Information System as an infrastructural resource. Thus, an
e-Infrastructure manager can make it available to a number of VREs according to the
algorithm’s publication policies. When invoked in a VRE, DM returns only the subset
of processes that have been assigned to that VRE.

4'52° North Web Processing Service software website https://52north.org/software/software-pro
jects/wps/.
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Fig. 1. The architecture of the D4Science DataMiner system.

The DMs are stateful services, i.e. when a computation starts, they communicate the
status of the execution to asynchronous clients. The WPS standard embeds a direct URL
to the DM machine that is carrying out the computation to check for the status. For each
executed computation, DM releases an “equivalent HTTP-GET” request to repeat the
experiment via a Web browser.

The DataMiner services use the security services of D4Science and require a user
token to be specified via HTTPS-access authentication for each operation. The token
identifies both a user and a Virtual Research Environment and is used to size the resources
available to the user.

The DataMiner computations can use inputs loaded onto the D4Science Workspace,
which may come also from Workspace folders shared among several users. This enables
collaborative experimentation already at the input selection phase. Inputs can also come
from external repositories because a file can be provided either as an HTTP link or
embedded in a WPS execution request. The computational outputs are written onto the
DA4Science Workspace at the end of the computation. A Workspace folder is created
that contains the input, the output, the parameters of the computation, and a provenance
document in the Prov-O format summarizing this information. This folder can be shared
with other people and can be used to execute the process again.
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3.3 System Implementation

Overall, the following system components have been developed in DataMiner:

e The GUI: a web-based user interface enacting users to select an existing process,
execute it, monitor the execution and access to the results (cf. Sect. 3.4);

e The DataMiner Master computational cluster: this web service is in charge to accept
requests for executing processes and executing them, either locally or by relying on the
DataMiner Worker(s) depending from the specific process. The service is conceived
to work in a cluster of replica services and is offered by a standard web-based protocol,
i.e. OGC WPS;

e The DataMiner Worker: this web service is in charge to execute the processes it is
assigned to. The service is conceived to work in a cluster of replica services and is
offered by a standard web-based protocol, i.e. OGC WPS;

e The DataMiner Processes: this a repository of processes the platform is capable to
execute. This repository if equipped with a set of off-the-shelf processes and it can be
further populated with new processes either (a) developed from scratch in compliance
with a specific API or (b) resulting from annotating existing processes (cf. Sect. 3.5).

DataMiner [11, 14] has been included in the D4Science environment as a cloud
computing platform, which currently makes ~400 processes available as-a-service.

Every analytics process is automatically exposed by the Web Processing Service
(WPS) standard protocol and API of the Open Geospatial Consortium®. Thanks to this,
every single process can be exploited by a number of clients embedded in third-party
software that can interact with the DataMiner hosted processes through WPS.

DataMiner allows the hosted processes to be parallelised for execution both on mul-
tiple virtual cores and on multiple machines organised as a cluster. A typical DataMiner
cluster to support big data processing is made up of 15 machines with Ubuntu 16.04.4
LTS x86 64 operating system, 16 virtual cores, 32 GB of RAM and 100 GB of disk
space. A further cluster with a similar configuration is available to manage Map-Reduce
computations. The DataMiner machines are hosted principally by the National Research
Council of Italy(’, the Italian Network of the University and Research (GARR)7, and the
European Grid Infrastructure (EGI)®. A load balancer distributes computational requests
uniformly to the machines of the computational cluster. Each machine hosts a process-
ing request queue that allows a maximum of 4 concurrent executions running on one
machine. With this combination of parallel and distributed processing, DataMiner allows
processing big data while enabling provenance tracking and results sharing.

At the end of computation, the meta-information about the input and output data, and
the parameters used (i.e. the computational provenance) are automatically saved on the
D4Science Workspace and are described using the Prov-O XML ontological standard
[23].

5 Open Geospatial Consortium https://www.opengeospatial.org/standards/wps.
6 National Research Council of Italy website www.cnr.it.

7 GARR Consortium website WWW.garr.it.

8 EGI Foundation website www.egi.eu.
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A Web interface is available for each process, which is automatically generated
based on the WPS interpretation. Through this interface, users can select the data to
process from the Workspace and conduct experiments based on shared folders that allow
automatic sharing of results and provenance with other users.

DataMiner also offers tools to integrate algorithms written in a multitude of
programming languages [17].

3.4 Data Provenance During Data Processing

The research objects produced by the DataMiner computations are a set of files organised
in folders and containing every input, output, an executable reference to the executed
method as well as rich metadata including a PROV-O provenance record. The research
objects are saved together with their metadata on the D4Science Workspace. Objects in
the Workspace can be shared with co-workers and can be published by a catalogue with
a license governing their usage.

DataMiner can operate within one or more Virtual Research Environments, i.e.
it interoperates with additional VRE-specific services that manage multi-tenancy,
communities, social networking communications, and collaboration among the VRE
members.

From the end-user perspective, DataMiner offers a working environment oriented to
collaborative experimentation where users:

e can easily execute and monitor data analytics tasks by relying on a rich and open set
of available methods, either via WPS service endpoints or via Web GUI;

e can easily share & publish their analytics methods (e.g. implemented in R, Java
and Python) within a Virtual Research Environment and make them usable by other
processes supporting WPS;

e are provided with a “research object” describing every computational job executed
by the workbench, which enables repeatability, reproducibility, re-use, citation, and
provenance tracking for the experiments.

Overall DataMiner gives access to two types of resources:

e A distributed, open, and heterogeneous computing infrastructure for the execution of
data analysis and mining tasks;

e A large pool of methods integrated with the platform, each made available as-a-service
under the WPS standard according to VRE-specific access policies, i.e. public, private,
shared with selected users, unavailable.

3.5 The Web-Based User Interface

DataMiner offers a web-based GUI to its users, as shown in Fig. 2. On the left panel
(Fig. 2 a), the GUI presents the list of capabilities available in the specific “application
context”, which are semantically categorised (the category is indicated by the process
provider). For each capability, the interface calls the WPS DescribeProcess operation to
get the descriptions of the inputs and outputs. When a user selects a process in the right
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panel, the GUI on-the-fly generates a form with different fields corresponding to the
inputs. Input data can be selected from the Workspace (the button associated with the
input opens the Workspace selection interface). The “Start Computation” button sends
the request to the DM Master cluster, which is managed as explained in the previous
section. The usage and the complexity of the cloud computations are completely hidden
from the user, but the type of computation is reported as metadata in the provenance file.

A view of the results produced by the computations is given in the “Check the Com-
putations” area (Fig. 2 b), where a summary sheet of the provenance of the experiment
can be obtained (“Show” button, Fig. 2 c). From the same panel, the computation can be
also resubmitted. In this case, the Web interface reads the XML file containing the PROV-
O information associated with computation and rebuilds a computation request with the
same parameters. The computation folders may also include computations executed and
shared by other users. Finally, the “Access to the Data Space” button allows obtaining a
list of the overall input and output datasets involved in the executed computations (Fig. 2
d), with provenance information attached that refers to the computation.

DataMiner

w4 5] 8 tmtepane-

Fig. 2. The web interface of DataMiner in a D4Science VRE.
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3.6 The Algorithms Importer

DataMiner allows importing prototype and production scripts written in a variety of
languages (R, Java, Python, .Net, Fortran, Linux bash scripts, etc.). The tool was ini-
tially conceived to support scientists making prototype scripts, who needed to share
results and provide their models and methods for use by other scientists. To this aim,
DataMiner allows scientists to publish as-a-service scripts usually running on private
desktop machines.

The Statistical Algorithms Importer (SAI) is the DataMiner interface that allows
scientists to easily and quickly integrate their software with DataMiner, which in turn
publishes this software-as-a-service under the WPS standard while managing multi-
tenancy and concurrency. Additionally, it allows scientists to update their software
without following long software re- deploying procedures each time.

Project Resource Software Help

P, Create | Py Open| By Save €% Add| @ GitHub |2 Create| | @ Publish zip Repackage | 2 Help

B Save Main: AbsencesSpeciesList-p Input

Global Variables Interpreter  Info
Name. Description | Type Default o

i File speciestxt  Input

Double 1 Input
oce_perce. percentag Double 01 Input
2ZipOutput Zipfile con...  File output.zip Output

t0<-Sys. tine()

2 = species. txt
speciesliste-read. table(list, header=T,sep=",") Project Explorer [¥]

+ Set Main| s Open @ Delete |¢) Reload

Name Created

Target 24 Feb 12:26 PM 2016
AbsencesSpeciesList-prod-annotated.r 02 Feb 05:29 PM 2016

stat_algo.project 02 Feb 05:34 PM 2016

gsub("(* +)I( +§)", *",TineStart)
ub(*(* +)I( +)°, *°, Tinetnd)

Fig. 3. The interface of the DataMiner Algorithms Importer tool.

The SAI interface (shown in Fig. 3 for R Script importing) is managed through a
control panel in the top bar. The “Project” button allows creating, opening and saving
a working session. A user uploads a set of files and data on the workspace area (lower-
right panel). Upload can be done by dragging and dropping local desktop files. As a next
step, the user indicates the “main script”, i.e. the script/program that will be executed
on DataMiner and that will use the other scripts and files. After selecting the main
script, the left-side editor panel visualises it (when this is not compiled software) and
allows modifying it. Afterwards, the user indicates the input and output of the script
by highlighting variable definitions in the script and pressing the +Input (or +Output)
button: behind the scenes the application parses the script strings and guesses the name,
description, default value and type of the variable. This information is visualised in the
top-right side Input/Output panel, where the user can modify the guessed information.
Alternatively, for R scripts SAI can automatically compile the same information based
on WPS4R annotations in the script. Other tabs in this interface area allow setting global
variables and adding metadata to the process. In particular, the Interpreter tab allows
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indicating the programming language interpreter version and the packages required by
the script and the Info tab allows indicating the name of the algorithm and its description.
In the Info tab, the user can also specify the VRE in which the algorithm should be
available.

Once the metadata and the variables information have been compiled, the user can
create a DataMiner as-a-service version of the software by pressing the “Create” button
in the Software panel. The term “software”, in this case indicates a Java program that
implements an as-a-service version of the user-provided scripts. The Java software con-
tains instructions to automatically download the scripts and the other required resources
on the server that will execute it, configure the environment, execute the main script
and return the result to the user. The computations are orchestrated by the DataMiner
computing platform that ensures the program has one instance for each request and user.
The servers will manage concurrent requests from several users and execute code in a
closed sandbox folder, to avoid damage caused by malicious code. Based on the SAI
Input/Output definitions written in the generated Java program, DataMiner automati-
cally creates a Web GUI (cf. Sect. 3.4). By pressing the “Publish” button, the application
notifies DataMiner that a new process should be deployed. DataMiner will not own the
source code, which is downloaded on-the-fly by the computing machines and deleted
after the execution. This approach meets the policy requirements of those users who do
not want to share their code. The “Repackage” button re-creates the software so that
the computational platform will be using the new version of the script. The repackaging
function allows a user to modify the script and to immediately have the new code running
on the computing system. This approach separates the software updating and deploy-
ment phases, making the script producer completely independent on e-Infrastructure
deployment and maintenance issues. However, deployment is necessary again whenever
Input/Output or algorithm’s metadata are changed [38, 39].

To summarise, the SAI Web application enables a user integrated software to run
as-a-service features. SAI reduces integration time with respect to direct Java code
writing. Additionally, it adds (i) multi-tenancy and concurrent access, (ii) scope and
access management through Virtual Research Environments, (iii) output storage on a
distributed, high-availability file system, (iv) graphical user interface, (v) WPS inter-
face, (vi) data sharing and publication of results, (vii) provenance management, (Vviii)
accounting facilities, and (ix) Open Science compliance.

4 Discussion

The heterogeneity characterising existing data analytics systems makes it evident that
when discussing data processing “solutions” there are different angles, perspectives and
goals to be considered. When analysing technologies from the scientist-perspective, the
following trends should be considered:

e Technology should be “ease of (re-)use”, i.e., it should not distract effort from the pure
processing task. Scientists should be exposed to technologies that are flexible enough
to enable them to quickly specify their processing algorithm/pipeline. It should not
require them to invest effort in learning new programming languages or in deploy-
ing, configuring or running complex systems for their analytics tasks. Methods and
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algorithms are expected to be reused as much as possible, thus data processing should
enable them to be “published” and shared.

e “as-a-Service” rather than “do-it-yourself”, i.e., scientists should be provided with
an easy to use working environment where they can simply inject and execute their
processing pipelines without spending effort in operating the enabling technology.
This makes it possible to rely on economies of scale and keep the costs low.

e Solutions should be “hybrid”, i.e., it is neither suitable nor possible to implement one
single solution that can take care of any scientific data processing need. Certain tasks
must be executed on specific infrastructures while other tasks are conceived to crunch
data that cannot be moved on other machines from where they are stored.

These trends actually suggest that scientists are looking for things like “workbench-
es” or “virtual research environments” or “virtual laboratories” [10] providing them with
easy to use tools for accessing and combining datasets processing workflows that behind
the scene and almost transparently exploit a wealth of resources residing on multiple
infrastructures and data providers (according to their policies). Such environments should
not be pre-cooked or rigid, rather they should be flexible to enable scientists to enact
their specific workflows. They should provide their users with appropriate and detailed
information enacting to monitor the execution of such a workflow and be informed of
any detail occurring during the execution. Finally, they should promote “open science”
practices, e.g. they should record the entire execution chain leading to a given result,
they should enact others to repeat/repurpose an existing process.

When analysing the overall solution to be developed and operated by Rls, the
following aspects (going beyond the technology) are worth being considered:

e Provide support for research developers who produce and refine the code and work-
flows that underpin many established practices, scientific methods and services. With-
out their efforts in understanding issues, in explaining software behaviour, and improv-
ing quality, scientists would struggle to continue to handle existing methods and
explore new opportunities. They need tools that inform them about the operational
use of their products and technologies that protect their invested effort as platforms
evolve. They are in danger of being undervalued, overwhelmed by the complexity and
the pace of change, and of being attracted to the “big data” industry.

e Provide support for operations teams who need to keep the complex systems within and
between RIs running efficiently as platforms change and communities’ expectations
rise while funders become more miserly. The tools and support they need are similar
to those discussed in the previous bullet. They are not the same as the e-Infrastructure
providers, they deploy and organise above those resources, but depend on them.

e Provide support for scientific innovators. They need to play with ideas, work on sam-
ples in their own favourite R&D environment, and then test their ideas at a moderate
and growing scale. The provided facilities should allow them to move easily between
developing ideas and proto-deployment, and eventually, when their ideas work out,
to production deployment.

e The majority of researchers do not want to innovate, they just want to get on with their
daily job. As much care as possible must be invested in protecting their working prac-
tices from change. However, if tools become available, e.g. driven from provenance
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data, which help their work by removing chores, such as naming, saving, moving and
archiving data, without them feeling they have lost responsibility for quality, then they
will join in, and that eventually leads to fewer errors and better-curated data [28].

e There are some computational processes that require expert oversight while they are
running, that can save substantial waste or steer to better results.

All in all, data processing is strongly characterised by the “one size does not fit all”
philosophy. There is no, and there will arguably never be, a single solution that is powerful
and flexible enough to satisfy the needs arising in diverse contexts and scenarios.

The tremendous velocity characterising technology evolution calls for implement-
ing sustainable data processing solutions that are not going to require radical revision
by specialists whenever the supporting technologies evolve. Whenever a new platform
capable of achieving better performance compared to existing ones becomes available,
users are enticed to move to the new platform. However, such a move does not come
without pain and costs.

Data analytics tasks tend to be complex pipelines that can require combining multiple
processing platforms and solutions. Exposing users to the interoperability challenges
resulting from the need to integrate and combine such heterogeneous systems strongly
reduces their productivity.

There is a need to develop data processing technologies that address the problem by
abstracting from (and virtualising) the platform(s) that take care of executing the pro-
cessing pipeline. Such technologies should go in tandem with optimisation technologies
and should provide the data processing designer with fine-grained processing directives
and facilitate detailed specification of processing algorithms [35].

The solution for data analytics we presented so far was designed and implemented
by taking all of this into account thus resulting suitable for several application scenarios.
Concrete use cases have been discussed in previous works, e.g. [2, 12, 13, 15, 16, 19,
35]. Coro et al. [11] discuss how the overall solution presented here has been exploited to
implement a complex use case in computational biology reducing the time from months
to a few hours.

ENVRIplus use cases developed by relying on this solution are discussed in
Chapter 17.

5 Conclusion and Future Work

Data Processing is a wide concept embracing tasks ranging from (systematic) data col-
lection, collation and validation to data analytics aiming at distilling and extracting new
“knowledge” out of existing data by applying diverse methods and algorithms. When
devising a solution suitable for the heterogeneity characterising science nowadays it is
immediate to realise that it is almost impossible to envisage a solution that is powerful
and flexible enough to satisfy the needs arising in diverse contexts and scenarios.

In this chapter, we presented a solution for data analytics that is open by design,
i.e. conceived to (a) host and enact data analytics processes implemented by relying
on several languages, and (b) transparently offer computing capacity from several and
heterogeneous providers. Moreover, the envisaged solution has been intertwined with
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other services thus to facilitate the implementation of open science practices. Such a
solution proved to be effective in several application contexts.

Future work includes the need to enhance the facilities aiming at exploiting integrated

processes into notebooks and WFMS. In fact, although WPS facilitates this activity
some development is needed to invoke every process. Moreover, mechanisms aiming at
transforming the platform into a proactive component that by considering the user task
can suggest suitable processes to play with.
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