®

Check for
updates

Accelerating Real-Time Applications
with Predictable Work-Stealing

Florian Fritz®), Michael Schmid, and Jiirgen Mottok

Laboratory for Safe and Secure Systems - LaS?,
Regensburg University of Applied Sciences, Regensburg, Germany
{florian2.fritz,michael3.schmid, juergen.mottok}@oth-regensburg.de

Abstract. Modern compute architectures often consist of multiple CPU
cores to achieve their performance, as physical properties put a limit on
the execution speed of a single processor. This trend is also visible in the
embedded and real-time domain, where programmers are forced to par-
allelize their software to keep deadlines. Additionally, embedded systems
rely increasingly on modular applications, that can easily be adapted to
different system loads and hardware configurations.

To parallelize applications under these dynamic conditions, often dis-
patching frameworks like Threading Building Blocks (TBB) are used
in the desktop and server segment. More recently, Embedded Multicore
Building Blocks (EMB?) was developed as a task-based programming
solution designed with the constraints of embedded systems in mind.

In this paper, we discuss how task-based programming fits such sys-
tems by analyzing scheduler implementation variants, with a focus on
classic work-stealing and the libraries TBB and EMB?. Based on the
state of the art we introduce a novel resource-trading concept that allows
static memory allocation in a work-stealing runtime holding strict space
and time bounds. We conduct benchmarks between an early prototype
of the concept, TBB and EMB?, showing that resource-trading does
not introduce additional runtime overheads, while unfortunately also not
improving on execution time variances.

Keywords: Real-time - Parallel programming - Work-stealing

1 Introduction

Modern processors rely on multiple cores and accelerating hardware to achieve
their performance, as the execution speed of a single processor is physically lim-
ited by heat output and power draw. Consequently, developers have to explic-
itly parallelize their applications to achieve faster execution. Doing this man-
ually can be tedious and error prone, therefore most industries have adopted
dispatching frameworks to help with this process. The key idea behind these
libraries is that programmers only declare how their work can be split up into
individual tasks, while the framework’s runtime schedules the work dynamically

© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 241-255, 2020.
https://doi.org/10.1007/978-3-030-52794-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_18

242 F. Fritz et al.

onto available system resources. Common examples are Intel’s Threading Build-
ing Blocks (TBB), Microsoft’s Parallel Patterns Library (PPL) and the Open
Multi-Processing (OpenMP) standard. While task-based programming is a de
facto standard in desktop applications and scientific computations, these frame-
works are still uncommon for embedded systems due to their highly dynamic
nature. A first contender entering this domain is Embedded Multicore Building
Blocks (EMB?), by specifically focusing on requirements like task priorities and
static-memory allocation.

In sight of these various implementation variants, we investigate how different
scheduling approaches and their concrete implementations affect their suitability
for high performance embedded systems. Specifically, we take interest in using
task-based programming to gradually parallelize individual real-time applica-
tions (Sect.2). For this, we first recapitulate the commonly used work-stealing
algorithm [3], draw implications for the predictability on embedded devices and
discuss what challenges practical implementations face. As two examples, we
study the internals of TBB, a representative of modern desktop implementa-
tions, and EMB?2, a contender specifically for the embedded space (Sect. 3). We
find that work-stealing fits our use-case from a theoretical standpoint, but no
implementation guarantees static memory usage and strict theoretical bounds.
Following this, we introduce a novel resource-trading algorithm that enables us
to implement a C++ work-stealing library with static memory allocation and
strict theoretical bounds (Sect.4). Finally, we analyze how the three libraries
perform on an octa-core ARM system. We conduct tests on both an isolated
and multiprogrammed system using small problem sizes to evaluate how viable
the frameworks are for embedded real-time applications (Sect. 5).

2 System Model and Requirements Context

We consider the acceleration of applications executing on an operating sys-
tem (OS) scheduling threads onto a symmetric multicore processor using a real-
time schedule, e.g. preemptive fixed priority scheduling. Each application®
periodically performs work by releasing a sequence of threads to be executed by
the OS. To be applicable for real-time and embedded use-cases, the applications
must guarantee predictable time and memory bounds, as unexpected deadline
misses are not acceptable.

Looking at a single application 7;, we consider the process of gradually par-
allelizing it. For this a programmer can use the aforementioned dispatching
frameworks to introduce sections of task-based parallelism to speed up com-
pute intensive algorithms. This process breaks down the algorithms into a series
of individual tasks, resulting in a Directed Acyclic Graph (DAG) where vertices
denote computations and edges represent ordering constraints between them.
Figure 1 shows a small example DAG, further discussed in the following section.

! Usually in real-time literature applications are referred to as tasks and threads are
called jobs, however, this conflicts with the notation in task-based programming.

Accelerating Real-Time Applications with Predictable Work-Stealing 243

The dispatching framework creates a pool of P; worker threads within the
application 7; to execute the tasks. A variety of techniques exist to schedule the
DAG cooperatively among this thread pool. A simple method is to distribute
the work statically. However, this can result in poor load balancing for irregular
workloads, or in multiprogrammed systems if single workers are preempted. On
the other hand, there exist a variety of dynamic dispatching algorithms which
aim to improve load balancing. Variations include, among others, list scheduling
(GNU OpenMP), work-sharing (EMB?) and work-stealing (TBB).

From the point of view of the OS, applications are therefore following a fork-
join structure. Each application starts with a single, main thread, until a parallel
algorithm is executed on a pool of P; worker threads (fork). When the workers
have completed all tasks, the application joins back into a single serial thread.
The fork-join procedure can be repeated multiple times. This leads to a two level
scheduler: the OS preemptively schedules jobs onto physical processor cores, the
application internally executes tasks cooperatively on the worker threads.

3 State of Task-Based Programming

In theory, list schedulers provide optimal bounds for distributing task-based
programs. However, they suffer from memory contention in real implementations
which can lead to bad average case runtimes. Because of this, work-stealing
variants have prevailed instead. The idea is to associate each processor with its
own deque (double ended queue) in which tasks are pushed and popped locally as
long as the worker thread does not run out of tasks. The processor only interacts
with other deques when it has no more work, in which case it tries to steal work
from another processors deque.

Work-stealing therefore acts mostly decentralized, avoiding contention on
shared data structures like a central task queue. This makes it perform well
on modern microarchitectures, both in theory [3] and practice [2,10]. However,
implementation details can significantly affect memory usage and runtime prop-
erties of work-stealing frameworks. To assess the use of such libraries in real-
time systems, we first recapitulate the proven bounds of classic work-stealing
and discuss how it maps to practical libraries implementing it. Next, we analyze
the schedulers used in TBB and EMB?2, to show where practical task-parallel
libraries are heading in general and in the embedded space.

3.1 Classic Work-Stealing

Blumofe proves the first good space and time bounds for fully strict compu-
tations [3]. Figure 1 shows part of a strict DAG with three potentially parallel
computation strands shaded in gray. Dotted edges are called spawn edges and
allow the control flow to diverge, curved edges are data dependencies between
strands of execution, enforcing ordering of tasks. Parallel strands form a parent-
child relationship, where a parent spawns a child. For a computation to be fully
strict, data dependency edges must only go from child to parent.

244 F. Fritz et al.

spawn | dependency

Fig. 1. DAG of computation in classic ~ Fig. 2. Invocation tree (left) and resulting
work-stealing call-stacks (right)

While at first seeming restrictive, strict computations are those that are intu-
itively well-formed, i.e. spawning a child strand corresponds to an asynchronous
subroutine call. Listing 1 shows an example program that could result in a DAG
similar to Fig. 1, spawning two potentially parallel sub procedure calls in lines 5
and 6, then synchronizing to wait for their completion in line 8. The API shown
in the example is known as nested fork-join parallelism [7] and implemented
in libraries like Cilk [5] and TBB [8]. Interpreting parallelism as asynchronous
subroutine calls allows us to view the execution as walking over an invocation
tree (Fig.2), where a serial execution is a preorder walk of the tree and parallel
execution schedules walk the tree asynchronously?.

In the randomized work-stealing algorithm there are four main events when
worker threads interact with the scheduler and diverge from this serial execution
[3]: (1) spawning, i.e. pushing a task to the bottom of their local deque; (2)
enabling a blocked task, i.e. being the last predecessor in the DAG to finish; (3)
executing the last vertex in a string of execution; (4) stealing, i.e. running out
of local work and stealing uniformly at random from the top of other deques.

To analyze the time and space requirements of invocation trees under work-
stealing variants, three properties are of interest: (1) Sy is the space required for
a serial execution, which is the peak memory usage when run on a single thread.
In the invocation tree on the left side of Fig. 2, this corresponds to the deepest
stack on the right side (A, C, D); (2) T; is the total work in the DAG and equals
execution time on a single thread; (3) T is the critical, or longest path in the
DAG. It is equal to the execution time on unlimited workers, as the ordering
constraints of the critical path force it to execute serially.

2 Fork-Join parallel APIs and invocation trees hide details compared to fully-strict
DAGs and have not the same expressive power. However, we use them to simplify
our arguments and all proofs hold on the DAG, too.

Accelerating Real-Time Applications with Predictable Work-Stealing 245

int fib(int n) {

2 if (n <= 1) return n;

3

4 int a, b;

5 spawn([&] () { a = fib(n - 1); });
6 spawn([&] () { b = fib(n - 2); });
7

8 sync();

9 return a + b;

0}

Listing 1: Example of a nested fork-join parallelism API.

Following the above rules and definitions, one can show that the active part
of the parallel invocation tree, i.e. all tasks that are executing, waiting for pre-
decessors or enqueued in a deque, have the busy-leaves property [3]: each leaf of
the active invocation tree has a processor working on it. When run on P; worker
threads, at most P; branches of the tree can be active, as each branch has a leaf
and therefore one of the processors working on it. Each branch uses a maximum
of S; memory, leading to the space bound in Eq. (1).

Sp < S P; (1)

The proof leading to the time bound of randomized work-stealing uses a more
complicated delay sequence argument [3]. Intuitively, the proof shows that it is
very unlikely that there are many steal attempts without stealing a task that
makes progress on the critical path. The expected number of time steps used to
perform steals is T P;. To finish a computation the steals T P; and the work
Ty are added up and divided by the number of workers, leading to the expected
time bound in Eq. (2). Additionally, the execution time can be bounded to a
fixed value with a high probability. Similar bounds hold for multiprogrammed
environments [1].

Tp = O(T1/P; + Tw) (2)

A framework holding the busy-leaves property and the time bounds can there-
fore be practical for a soft real-time application requiring a bounded memory
footprint and a certain quality of service.

3.2 Work-Stealing Implementation Challenges

The main challenge for work-stealing implementations is to adapt the program-
ming language’s serial semantics to a parallel execution, as compiled languages
like C/C++ are designed with a stack based, linear execution in mind. For exam-
ple while work-stealing both D and F in Fig. 2 can execute concurrently, having
one thread observe the stack (A, C, D) and a second one observe (A, C, F) at
the same time. Building such a diverging stack is known as a cactus-stack in
language design. In order to keep time and space bounds, as well as stick close

246 F. Fritz et al.

to serial semantics, a work-stealing scheduler has to maintain a cactus-stack and
make sure that tasks are never blocked by the implementation. If for example
a thread executing Listing 1 encounters the sync (vertex I in Fig. 1) and has to
wait for children to complete (vertex II and III), it must make the rest of the
function (vertex IV) executable by another worker. Additionally, implementa-
tions must amortize their scheduling overheads against the work 77 /P and span
T of the computation, e.g. if the stealing process incurs overheads they must
be considered as a factor in the T,, term.

To understand how implementations can approach this challenge, we present
some common variants found in frameworks below.

Heap Allocated Stack Frames — One solution to build a cactus-stack is to
allocate each function frame on the heap instead of the stack. This allows for non-
blocking execution and strict space bounds, as only the active stack frames of the
invocation tree are kept allocated and stacks are independent of worker threads.
Cilk [5] implements this principle and therefore holds both theoretical time and
space bounds. The drawback to this approach is that it requires compiler support
or exhaustive manual code transformations to adopt a heap-stack-frame calling
convention, making it less interoperable with existing software and incurring
overheads on every function call.

Execute on Worker Stacks — Another approach is to execute tasks directly on
the linear stacks of each worker thread. This method requires no special language
constructs, but problems occur when a synchronization point is reached. If a
thread reaches e.g. the sync() in line 8 of Listing 1 and has to wait for children
to finish, the function frame lies on top of the stack. To stay greedy, the worker
has to start stealing, but executing the stolen task directly on top of the worker’s
stack leads to two problems: (1) the stack can grow unbounded, as the worker
can pile up multiple stolen stacks, (2) the task waiting at the sync() is blocked
until all stolen tasks above have finished, as it is buried in the call stack.

This technique therefore violates both strict time and space bounds. To pre-
vent unbounded space usage sometimes restricted stealing approaches are
used, limiting work-stealing attempts to a subset of tasks. Examples for this are
leapfrogging [4,15] and depth-restricted stealing [8]. However, restricting steals
can potentially lead to near serial execution times [13].

One Stack per Steal — To keep the portability of execution on regular stacks
but not block in tasks, an option is to always execute a stolen task on a new
stack. This technique holds strict time bounds, but uses S7 Ngteqrs memory pro-
portional to the number of active stolen tasks. As with restricted stealing, some
implementations like Cilk Plus limit the parallelism in favor of bounded mem-
ory usage, setting a fixed amount of stacks and stopping stealing if they are
exhausted.

Memory Mapped Cactus-Stack — This solution uses an OS modification
for thread local memory mapping, allowing the runtime system to give each
worker thread the illusion of having a linear stack [9], holding strict bounds.

Accelerating Real-Time Applications with Predictable Work-Stealing 247

The main drawbacks are frequent memory mappings and either OS support or
tricks around processes and virtual memory.

3.3 Case Study: TBB and EMB?

Looking at actual implementations of task-based programming, we first examine
TBB, the industry leading task-parallel library in C++. The framework offers
a low level fork-join task-parallel API, high level parallel patterns, concurrent
data-structures and includes an optional scalable memory allocator. Overall,
TBB’s goals are to achieve high throughput by offering a composable, portable
task-based API that does not require compiler support and can be gradually
incorporated to existing applications.

Internally, TBB [8,14] resembles mostly classic work-stealing for scheduling
tasks, with decentralized LiFo deques and randomized stealing. It uses a combi-
nation of the ‘execute on worker stacks’ and ‘heap allocated stack frames’ strat-
egy for task execution. When using the high level fork-join APIs that are easily
added to existing code (like in Listing 1), it executes the tasks on the worker
threads, loosing strict bounds. Alternatively, one can re-write code with explicit
task and continuation objects, manually building up a heap-allocated cactus-
stack. This looses normal call-stack semantics, but in return mostly keeps classic
bounds. The parallel patterns internally use this style for efficiency. In case a
worker stack becomes too deep, TBB stops stealing, restricting parallelism in
favor of application stability.

In contrast to this general purpose library, the EMB? [12] task scheduler
specifically targets the embedded market. It is based on the Multicore Task Man-
agement API (MTAPI) [6] specification, an industry standard for lightweight
task scheduling on resource constrained embedded systems with heterogeneous
hardware. Specifically, EMB? implements a MTAPI standard compliant task
scheduling environment in C, which can be used directly, but is also utilized by
parallel patterns offered by EMB?’s high level C++ APIL. The framework offers
support for acceleration hardware, supports core affinity as well as task pri-
orities and allocates all runtime resources exclusively during startup. Overall,
EMB? offers a portable solution to dispatch tasks onto different components
of a resource constrained system, acting more like a ‘whole system scheduler’
similar to an OS and is not restricted to strict fork-join parallelism on the CPU.

Looking at EMB?’s scheduling and task management, we only discuss execu-
tion on the CPU. Each thread is associated with multiple FiFo queues for differ-
ent task priorities, with workers pulling tasks in either local-first or priority-first
order. Task execution uses the ‘run on workers stacks’ technique and tasks are
blocked in the stack while stolen tasks are executed above. Newly spawned tasks
are distributed to threads in a round robin fashion. The combination of work-
sharing and FiFo queues leads to a fair task execution, i.e. old tasks are executed
first, ensuring that no single task is buried in queues. This fits the ‘whole system
scheduler’ style of MTAPI, i.e. a system that continuously spawns mostly inde-
pendent tasks needing to finish in a timely manner. However, no formal bounds
can be provided and especially tree-like computations use much memory as the

248 F. Fritz et al.

schedule results in a breadth first execution of the invocation tree. To make
use of the static resource allocation, the programmer has to manually find the
maximum number of spawned tasks.

In summary, TBB sticks as close to classic work-stealing as possible, while
focusing on portability and average system throughput. When necessary, it
diverges from theoretical bounds in favor of a portable and simple implementa-
tion. This trend can be seen in most general purpose implementations. EMB?
in contrast offers a task-based API, similar to TBB, but tunes its scheduler for
fair task execution and offers specialized features like static resource allocation
at startup.

4 Work-Stealing with Static Memory Allocation

EMB? shows that static, predictable resource usage and clean task-based paral-
lel APIs are in demand on embedded platforms. However, their fair scheduling
model is better suited for controlling the whole system rather than gradually
introducing parallel sections in individual applications. Classic work-stealing on
the other hand is a good fit for this purpose and can also ease the reasoning on
upper memory bounds. A combination of work-stealing and static memory allo-
cation at startup can therefore lead to predictable application behavior. Unfor-
tunately, modern frameworks like TBB intentionally hurt the tight bounds of
randomized work-stealing and make liberal use of a general purpose memory
allocator. On a desktop machine occasional usage of more memory or longer
execution times are well worth the trade-off. For an embedded system, in con-
trast, unpredictability can cause major issues.

To bring work-stealing closer to the embedded domain, we explore how a C++
library implementation can provide tight and predictable memory bounds while
also keeping the runtime properties of classic work-stealing and a natural fork-
join API. The core of the prototype — called Predictable Parallel Patterns Library
for Smart and Scalable Systems (P3LS?) — is a novel resource-trading scheme
that integrates memory management into the stealing procedure. This allows
the implementation to allocate all memory statically at startup, guaranteeing a
maximum application footprint after a single, serial measurement run.

4.1 Resource-Trading Algorithm

Existing implementations like Cilk and TBB allocate all resources used dur-
ing scheduling on the heap. This adds a multithreaded memory allocator as
an abstraction layer to be considered in a pessimistic analysis. The different
orders of allocation that can happen must be taken into account for exact mem-
ory requirements, as well as the sporadic work involved in balancing memory
between threads or requesting new pages from the OS.

To avoid this issue, the resource-trading algorithm incorporates the balancing
of memory into the stealing process. This amortizes the management overhead
into the T, term of the time bound and allows for a strict space bound. The

Accelerating Real-Time Applications with Predictable Work-Stealing 249

starting point is the maximum amount of resources Rg a serial invocation tree
can allocate. Figure 3 shows Rg exemplary as the dark shaded areas, indicating
the active part of the deepest invocation tree (we use Rg instead of S; to more
accurately describe our implementation later on).

Rp

Fig. 3. Invocation tree with resource-trading

Resource-trading has the same linear growing bound RgFP; as work-stealing.
Each worker thread is associated with Rg resources at startup, with no additional
allocations during runtime. By proofing that a worker thread never runs out
of resources with this initial configuration, the bound RgP; follows trivially.
Specifically, we show that a thread always starts stealing with Rg resources and
these are enough to run until returning to the stealing state.

A serial execution of the invocation tree has by definition enough resources,
therefore the interactions during the work-stealing algorithm are of interest. The
critical point where a thread loses resources of its initial Rg pool are synchroniza-
tion points where another thread stole part of the work and is not yet finished.
Figure 3 shows this situation. The first, dark shaded thread eventually returns
from task B, requiring task C to be finished before continuing working on task A.
However, task C is currently being executed by the second, light shaded thread.
To not idle the first worker has to start stealing. Unfortunately, all resources
including A and upwards must be kept allocated, making the first thread lose
Rp blocked resources.

To solve this, each thread trades in resources to compensate for potentially
blocked resources of another worker on a steal. In the example in Fig.3 the
second thread trades Rp of its initial Rg resources to task A when stealing C.
This leaves the worker with Rg — Rp resources for the remaining invocation tree,
which are sufficient for executing it, as Rg equals the longest branch. Following
this trade-in rule and the busy-leaves property, each task ¢ with n active child
tasks has n — 1 traded resources associated with it. The first n — 1 children
finishing can not execute ¢, but can combine their free resources with one of the
traded in resources to enter the stealing state with the initial Rg resources. The
last child finishing does not require spare resources, as it can continue working
on the parent task, freeing its resources when finishing it.

250 F. Fritz et al.

Following this simple trade-in rule, resources can be balanced between the
workers only on steal and synchronization events, leading to strict space bounds.
The trading affects the time bounds by adding the work to trade resources to
the steal procedure. When the work required for stealing is proportional to ¢,
the expected time bound in Eq. (3) follows.

Tp = O(Tl/P, + CooToo) (3)

4.2 Prototype Implementation

In order to keep the busy-leaves property and strict time bounds, the prototype
must implement a cactus-stack and not block in threads. The system model
suggests that parallel sections are clearly defined and should be predictable in
resource usage, having the execution switch from a serial to a parallel section
explicitly. Figure 3 shows this with a switch from the serial stack (shaded) to the
parallel invocation tree at the top, dotted line. We decide to build a cactus stack
by executing each spawned task on a small stackful coroutine?, as spawns tend
to be dense in a parallel section, requiring only a small stack per task. Calls into
purely serial code that potentially uses more stack space are run on a separate,
bigger stack, as indicated with the bottom, dotted line in Fig. 3. By doing this,
P3LS3 holds strict theoretical bounds and implements the API in Listing 1.

The previous section on the resource-trading algorithm introduced abstract
resources Rg that can be split and united at any point. However, memory can not
be split and united at will, as computers rely on continuous blocks of memory in
the virtual address space. Our first prototype therefore trades fixed size memory
blocks managed in a linked list, i.e. it trades the stackfull coroutines to execute
tasks. Each thread starts with D blocks equal to the deepest spawn depth and
trades are performed by slicing and concatenating parts of the lists. The time
Cso to perform a steal is therefore ¢ = O(D).

The stealing procedure integrating resource-trading is implemented in a non-
blocking manner, thus holding bounds on a multiprogrammed environment [1].
During stealing, a flag is atomically updated from a thief to acquire a task,
similar to Wool [4]. The new value indicates both the stolen state of the task
and contains the traded in resources, making the action of stealing and trading
in resources atomic. Each task additionally holds a stack of currently traded in
resources, which is also used to implicitly synchronize as the last finishing child
encounters an empty resource stack.

During development the program must be executed once to measure the
maximum size of the coroutines and the computation depth D by triggering
the biggest possible invocation tree. These measured values are then used to
configure the scheduler, which during startup acquires the Sp = O(P;(S1 +
D)) memory required for the execution. This way of finding the static memory

3 The resource-trading algorithm can work with any other choice of cactus-stack and
non-blocking scheduler. We choose coroutines as we are interested in exploring a
pure library solution with a clean APIL.

Accelerating Real-Time Applications with Predictable Work-Stealing 251

footprint is very accessible for the developer, as it only depends on few metrics
and the model of an invocation tree is simple to reason about.

5 Performance Analysis

We evaluate the performance of P3LS? by comparing it to TBB (2019, interface
version 11000) and EMB? (v1.0.0). All benchmarks are executed on a Banana
Pi M3 as an example of a high performance embedded system. The board is
equipped with an A83T ARM SoC housing a Cortex-A7 octa-core processor
clocked at 1.6 GHz and runs the vendor supplied linux operating system, which
is based on the 3.4.39 smp preemp kernel. The benchmark applications are com-
piled with GCC v5.4 using optimization level -03.

We first analyze the scheduling overhead of the frameworks using the syn-
thetic load of unbalanced tree search [11], followed by an embarrassingly parallel
row wise matrix multiplication. Further benchmarks where conducted, but are
not shown for brevity. However, they all show the same trend as seen in the
following evaluation. Each benchmark is discussed in one of the following sub-
sections, with diagrams showing the resulting speedups and full execution time
distributions. The box plots indicate the 95th and 5th percentile execution times
with whiskers and all fliers are included.

All measurements are performed in both isolated and multiprogrammed sys-
tem conditions. Isolated tests are executed with minimal influences from other
processes running on the system, by isolating the benchmark processor cores
and using the round robin real-time scheduler. These isolated measurements
are most common in other benchmarks, and thus can be used for comparison.
To simulate a multiprogrammed system, we intentionally run one higher priority
process per CPU core, potentially preempting the currently running benchmark.
The processes are periodically performing work and memory access, resulting in
a measured per core utilization of an average 25%.

5.1 Unbalanced Tree Search

Unbalanced tree search [11] constructs and traverses a highly unbalanced tree
by calculating a hash value at each node. The benchmark spawns a task for each
node, resulting in very unpredictable load with many synchronization points,
revealing the frameworks scheduling overhead. For our test, we choose to spawn
an initial 140 nodes at the tree root and eight children with a probability of
q=0.124875. This leads to a tree with about 71,000 nodes and therefore the
same amount of spawned tasks. We repeat each benchmark 50 times.

Figure 4a shows that TBB and P3?LS? both achieve a near identical speedup
in this test, while EMB? can not accelerate the computation, even introducing
a significant slowdown at low core counts. This confirms the assumption that
decentralized work-stealing and its depth-first tree traversal is superior to the
work-sharing scheduler used in EMB? for this kind of fine-grained, recursive
tasks. Turning to the time distributions in a multiprogrammed environment,

252 F. Fritz et al.

74 —¥— Serial Y B Serial

8 1000 + l
—#*— Intel TBB R [Intel TBB
—¢ EMB? d ! B EMB2
1 PLs? 7 == pLs®
—-—- Upper Bound // p 800
5 Isolated v v I

..... Multiprogrammed 7 /
s

600 - I

Runtime in ms

400

200

LI O
1 2 3 4 5 6 7 i 2 3 4 5 IG 7
Number of Threads Number of Threads
(a) average case speedups (b) multiprogrammed time distribution

Fig. 4. Results of the unbalanced tree search benchmarks.

shown in Fig. 4b, we can see generally low dispersion for TBB and P3LS3, close to
the serial measurements. EMB? in contrast shows by far the biggest irregularity
in execution times. This trend is also visible in non synthetic divide and conquer
algorithms like a fast Fourier transform, although it is less pronounced.

5.2 Matrix Multiplication

We implement a row wise matrix multiplication as an example of an embarrass-
ingly parallel algorithm. Using the frameworks parallel for constructs, rows
are executed concurrently, making the libraries handle splitting up data and
load balancing internally. We choose a matrix size of 128 x 128 and repeat each
benchmark 5000 times.

The measured average speedups compared to the serial implementation are
shown in Fig. 5a. All three frameworks nearly reach the theoretical upper bound
of a perfect, linear speedup when being executed on an isolated system, with TBB
being the fastest by a slight margin. When looking at the multiprogrammed envi-
ronment, all frameworks show worse speedups. Interestingly, EMB? slows down
more drastically than the other two frameworks on lower core counts, suggest-
ing problems with either load balancing or synchronization. Looking closer at
the time distributions in Fig. 5b, we notice a trend of more consistent execution
times with increasing thread count and observe that the libraries do not intro-
duce more variance than a serial execution, suggesting that the overall system
jitter by the higher priority workers dominates.

Accelerating Real-Time Applications with Predictable Work-Stealing 253

74 —¥— Serial

—#— Intel TBB

— EMB?

6 PLs3

—-— Upper Bound
Isolated

1) Multiprogrammed

nlINRERY

Speedup
N

_ :
10.0 i'

Runtime in ms

:

24 7.5+ N Serial 4 l
[Intel TBB ! *
50 HEE EMB?) ;
1 /=3 r3Ls? '!' 'l' v 'H"
1 2 3 1 5 6 7 T2 5 o4 5 6 7
Number of Threads Number of Threads
(a) average case speedups (b) multiprogrammed time distribution

Fig. 5. Results of the matrix multiplication benchmarks.

6 Conclusion

We analyzed how task-parallel programming and dispatching frameworks fit into
the embedded and real-time domain. We argue that classic work-stealing offers
good theoretical bounds and our tests verify that it leads to consistently fast exe-
cution times even on small problem sizes. Specifically, the benchmarks show that
EMB? suffers from load balancing issues, while TBB and P3LS? perform almost
equally well on all tests. This behavior results from P3LS? and TBB using a lock-
free work-stealing scheduler, while EMB? uses a mostly work-sharing implemen-
tation and therefore, find the former to be superior for parallelizing individual
applications. Furthermore, all benchmarks show that the use of work-stealing
frameworks does not increase the dispersion of the execution times compared to
a sequential execution. The uncertainty from randomized stealing is dominated
by other system effects.

Our remaining concern with existing dispatching frameworks is their liber-
ate use of dynamic memory management and occasional deviation from classic
work-stealing bounds in favor of mainstream usability. As embedded systems can
require static resource allocation, we implemented a prototype work-stealing
library in C++, offering both static memory allocation and strict theoretical
bounds. Our time measurements show that our early prototype P3LS?, imple-
menting the proposed resource-trading approach, can keep up with the industry
leading TBB. Unfortunately, P?LS? can not improve execution time variances
compared to TBB, even though TBB implements blocking style work-stealing
and uses dynamic memory management. Under our current measurement con-
ditions, we can therefore not detect any sporadic, negative effect on execution
times resulting from dynamic memory allocations.

254 F. Fritz et al.

Currently, we focus on the performance of individual applications, in future
work we would like to investigate the behavior of multiple task-parallel applica-
tions running concurrently on a real-time OS. We would also like to refine our
measurements, by including memory usage and by looking at smaller problem
sizes. Lastly, we want to explore if resource-trading can be integrated into par-
allel patterns that require structured memory allocations, like e.g. divide and
conquer algorithms with temporary buffers.

References

1. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1998, Puerto Vallarta, Mexico,
pp. 119-129. ACM (1998). https://doi.org/10.1145/277651.277678

2. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: 13th International Workshop
on OpenMP, IWOMP 2017. LNCS, vol. 10468, pp. 92-106. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9_7

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science, pp. 356-368, November 1994. https://doi.org/10.1109/SFCS.1994.365680

4. Faxen, K.: Efficient work stealing for fine grained parallelism. In: 39th International
Conference on Parallel Processing, pp. 313-322, September 2010. https://doi.org/
10.1109/ICPP.2010.39

5. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI 1998, Montreal, Que-
bec, Canada, pp. 212-223. ACM (1998). https://doi.org/10.1145/277650.277725

6. Gleim, U., Levy, M.: MTAPI: parallel programming for embedded multicore sys-
tems. Technical report (2013)

7. Halpern, P.: Strict fork-join parallelism. Technical report N3409, September 2012

8. Kukanov, A., Voss, M.J.: The foundations for scalable multi-core software in
Intel®) threading building blocks. Intel Tech. J. 11, 309-322 (2007). https://doi.
org/10.1535/itj.1104.05

9. Lee, I.T.A., Boyd-Wickizer, S., Huang, Z., Leiserson, C.E.: Using memory map-
ping to support cactus stacks in work-stealing runtime systems. In: Proceedings
of the 19th International Conference on Parallel Architectures and Compilation
Techniques - PACT 2010. Vienna, Austria, p. 411. ACM Press (2010). https://doi.
org/10.1145/1854273.1854324

10. Li, J., Dinh, S., Kieselbach, K., Agrawal, K., Gill, C., Lu, C.: Randomized work
stealing for large scale soft real-time systems. In: IEEE Real-Time Systems Sym-
posium, RTSS, pp. 203-214, November 2016. https://doi.org/10.1109/RTSS.2016.
028

11. Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: International
Workshop on Languages and Compilers for Parallel Computing, LCPC 2006.
LNCS, vol. 4382, pp. 235-250. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72521-3_18

12. Schuele, T.: Embedded multicore building blocks - parallel programming made
easy. In: Embedded World 2015 (2015)

https://doi.org/10.1145/277651.277678
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1109/ICPP.2010.39
https://doi.org/10.1109/ICPP.2010.39
https://doi.org/10.1145/277650.277725
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1145/1854273.1854324
https://doi.org/10.1109/RTSS.2016.028
https://doi.org/10.1109/RTSS.2016.028
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1007/978-3-540-72521-3_18

13.

14.
15.

Accelerating Real-Time Applications with Predictable Work-Stealing 255

Sukha, J.: Brief announcement: a lower bound for depth-restricted work stealing.
In: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2009, Calgary, AB, Canada, pp. 124-126. ACM
(2009). https://doi.org/10.1145/1583991.1584025

Voss, M., Asenjo, R., Reinders, J.: Pro TBB. Apress, Berkeley (2019)

Wagner, D.B., Calder, B.G.: Leapfrogging: a portable technique for implementing
efficient futures. In: Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 1993, San Diego, Cali-
fornia, USA, pp. 208-217. ACM (1993). https://doi.org/10.1145/155332.155354

https://doi.org/10.1145/1583991.1584025
https://doi.org/10.1145/155332.155354

	Accelerating Real-Time Applications with Predictable Work-Stealing
	1 Introduction
	2 System Model and Requirements Context
	3 State of Task-Based Programming
	3.1 Classic Work-Stealing
	3.2 Work-Stealing Implementation Challenges
	3.3 Case Study: TBB and EMB2

	4 Work-Stealing with Static Memory Allocation
	4.1 Resource-Trading Algorithm
	4.2 Prototype Implementation

	5 Performance Analysis
	5.1 Unbalanced Tree Search
	5.2 Matrix Multiplication

	6 Conclusion
	References

