
Satellite Onboard Data Reduction Using
a Risc-V Core Inside an RTG4-Based

Data Processing Pipeline

Gasper Skvarc Bozic(&), Thomas Unterlinner, Tanja Eraerds,
Sabine Ott, and Markus Plattner

Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr. 1, 85748 Garching, Germany

gaskvarc@mpe.mpg.de

Abstract. The Wide Field Imager (WFI) is one of two scientific instruments
onboard the next generation European x-ray observatory ATHENA. It will orbit
Lagrange point L2 and send the acquired science data to a single ground station
with a downlink that is available for several hours once per day. The data rate of
the downlink is a bottleneck, which limits the amount of science data that can be
transferred.
Measurement data of the eRosita satellite which is in operation since mid of

2019 shows that a high radiation background generates parasitic sensor data that
adds to the science data. In order to remove the parasitic data from the science
data stream onboard, a Risc-V softcore processor implementation in the
RTG4 FGPA has been studied. Depending on the observation scenario, the data
rate is reduced by a factor of more than 50.
Within this article, we describe the WFI onboard processing architecture, the

sensor effects on space radiation and the hard- and software architecture of the
Risc-V softcore that can be implemented to reduce the data rate on board. Three
test cases are defined and executed to verify the performance of the data
reduction scheme.

Keywords: ATHENA � WFI � Risc-V � RTG4 � Real-time � Onboard
processing

1 Real-Time Data Processing Onboard ATHENA WFI

The Wide-Field-Imager (WFI) is one of two science instruments onboard the next gen-
eration x-ray space telescope ATHENA (Advanced Telescope for High ENergy Astro-
physics) [1]. Its camera system consists of four large and one fast sensor, sensitive in the
energy range from 0.2 eV up to 10 keV. The sensors are based on DEPFET (DEpleted
P-channel Field-Effect Transistor) technology, 2-dimensional arrays of 512 � 512
(large), and 64 � 64 (fast) pixels, respectively. The sensors are operated in parallel,
independent from each other, in rolling shutter mode. This means that 511 (63) rows are
active and record incoming x-ray photons while one row is readout. Since the detection
principle shall also resolve the energy of each incoming x-ray photon, the sensors have to
be read out at rates of more than 50 Mega-Pixel per second to avoid a pile-up.

© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 228–238, 2020.
https://doi.org/10.1007/978-3-030-52794-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_17

In order to achieve the pixel read-out rate, each sensor is read out with eight
channels operated in parallel. The eight data streams of one sensor are processed in
real-time parallel processing pipelines that are implemented inside a Microchip
RTG4 FPGA. The processing steps of each pipeline are:

• Offset correction: Every pixel has its individual offset value that is subtracted from
the current measurement value.

• Common Mode Correction: Variations in the read-out ASICs cause an offset value
common to all values of one read-out line. This offset is subtracted from all 64
pixels of one channel.

• Event and Pattern Filter: The pixel (energy) values are compared to thresholds that
span the valid energy range. Pixels within the valid range are flagged as “valid”. In
case several neighboring pixels show valid values, the pattern is analyzed [2].

• Event List Generator: Dependent on the operational mode, the valid events are
selected and spatial coordinates, as well as timestamps, are added to them.

All of these pipeline stages are based on pixel-wise data processing, i.e. each stage
executes operations on the data stream of its detector channel without dependency on
neighboring channels, see [3] for details. The output of the data processing pipeline is
an Event List that includes all event data of the frame, i.e. coordinates of an event (pixel
that was hit by x-ray photon), the energy (ADC value) and the time stamp (arrival time
of the x-ray photon sampled with the frame rate). The event list of a frame is stored in
an FPGA internal buffer (block RAM).

Pixel-wise Data CorrecƟon

Memory
(holds pixel correcƟon values)

Event List

≈ 1.25 Mbit/s

Sensor data
≈ 734 Mbit/s

8 channels

Memory I/F ≈ 2.5 Gbit/s

Offset
CorrecƟon

Common
Mode

CorrecƟon

Event and
PaƩern

Filter

Event List
Generator

Sp
ac

eW
ire

In

te
rfa

ce

SoŌcore-based
MIP CorrecƟon

Sequencer
Frame

Processor
Control Unit

Buffer

Frame
Processor

SoC

Detector
Control

Fig. 1. Block diagram of FPGA (red: real-time processing pipeline, blue: softcore). (Color
figure online)

Satellite Onboard Data Reduction Using a Risc-V Core 229

In addition to the real-time data processing pipeline, the FPGA accommodates

• a Sequencer block that generates all dynamic signals required for detector control in
rolling shutter mode

• a Frame Processor Control Unit based on a finite state machine
• a Risc-V softcore that processes the event list (see Sect. 3)

The downlink data rate for a given satellite is limited. On the other hand, we want
to transfers as much relevant science data to a ground station as possible. It is beneficial
if the system allows it to do some data processing on the satellite itself and thus reduce
the required downlink data rate. The described RTG4 FPGA processing pipeline
already significantly reduces the science data rate. However, since RTG4 FGPA pro-
vides a flexible implementation environment, we investigated if the science data rate
can be further reduced by implementing a Risc-V softcore for executing a Minimum
Ionizing Particles (MIPs) exclusion algorithm.

2 Science Data Disturbance by Ionizing Particles

In the ideal case of observation, the processing pipeline can be adjusted to all the
required observation scenarios. Additional events, however, are created in reality due to
radiation that is existing in the halo orbit around L2. The particles that cause such
events are called Minimum Ionizing Particles (MIPs) and include mainly protons.
Pixels directly hit by a MIP receive energies above the threshold of maximum energy
range and are removed within the data processing pipeline.

However, a MIP not only creates a direct detector hit but can also generate sec-
ondary radiation due to interaction with the structure surrounding the detector system.
These secondaries, in turn, create events that cannot be distinguished from valid events
generated by x-ray photons. Because of these effects, an additional processing step has
to be implemented that identifies events from the event list that are located within a
certain distance from a MIP event and remove them from the list. The area around the
MIP event that could contain secondary events caused by the MIP depends on several
parameters: MIP energy, incident angle, material (type and thickness) crossed by the
MIP, etc. Geant4 simulations are carried out, taking into account these characteristics
of incoming particles and the detector surroundings.

This simulation approach has been verified using data from the eRosita mission [4].
Although eRosita has a different type of sensor, the sensitivity regarding MIPs is
comparable. Measurement results obtained by the eRosita cameras in orbit around
Lagrange point L2 have been used for model correlation and yield an agreement within
10% between simulation and measurement results. Applying the same approach to
ATHENAWFI with an adapted simulation model yields an average rate of 2 MIP/cm2/s
and an average count of 10 pixels that are hit by one MIP directly. This results in an
average value of 0.41 MIP per frame of a large sensor and 10−4 MIP per frame of the fast
sensor.

230 G. Skvarc Bozic et al.

3 RISC-V Softcore Architecture and MIP Removal
Algorithm

As described in Sect. 1, the real-time data processing is implemented in FPGA-based
pipelines. Data from all pixels flow through the pipeline stages and additional infor-
mation based on the processing stages is added in the form of flags. At the end of the
pipeline, that Event List Generator selects the valid events and forwards them into an
FPGA internal buffer memory. This is the place, where the raw data has been reduced
by two to three orders of magnitude. Based on the nature of the task responsible for
identifying the events within the defined region of a MIP as described in Sect. 2, it
would be difficult to implement the required logic in the FPGA fabric. Therefore, a
softcore microprocessor is used to perform the required task.

3.1 Softcore Microprocessor Architecture

Figure 2 depicts the softcore microprocessor architecture where blue and green blocks
represent components implemented in the FPGA fabric. Whereas, red blocks represent
components external to the FPGA. Green blocks indicate fabric interfaces with the
physical world. The architecture is based on a 32-bit Risc-V CPU with a 32-bit AHB
internal interconnect. For the design presented in this paper a Risc-V soft IP core
(MiV_RV32IMA_L1_AHB) from Microsemi was used. This Risc-V soft IP core has a
separate bus for memory and memory-mapped peripherals. The memory bus is con-
nected to a DDR3 memory controller which interfaces the external DDR3 memory
where program data is stored.

Several different peripherals were implemented. The most important is the dual-port
SRAM with APB wrapper. This is the interface between the fabric parallel data
pipeline and softcore microprocessor as depicted in Fig. 1. Other peripherals such as
GPIO and UART are used for debugging purposes and provide an interface between
the microprocessor and a PC. All peripherals are connected via the APB bus and
through the AHB to APB bridge to the main interconnect. A second APB bus is used as
an interface between the CoreABC processor and the memory controller. The Cor-
eABC is a small co-processor used for external memory configuration and initializa-
tion. After power-up, certain configuration registers in the DDR3 external memory
have to be configured.

The softcore microprocessor implementation was designed for the RTG4 target
device with a system clock running at 50 MHz. The JTAG component included in the
architecture enables the programming of the microprocessor and advanced debugging
capabilities.

As an interface between fabric and microprocessor two options are possible. One is
the dual-port SRAM and the other is FIFO buffers. At this point, dual-port memory was
chosen as it simplifies testing. Currently, we do not have a dummy data generator that
could fill the FIFO buffer and mimic the parallel data pipeline, because the interface
between parallel data pipeline and softcore microprocessor is not yet completely
defined. With SRAM we can write the generated event list at the beginning of program
execution to the SRAM. The dual-port memory is connected to the APB peripheral bus

Satellite Onboard Data Reduction Using a Risc-V Core 231

for simplicity. In case the memory penalty is significant then the SRAM can be moved
directly to the AHB bus and improve the performance as long as the burst transfer
mode of the AHB bus is utilized.

3.2 Event List Structure

The input to the algorithm running on the Risc-V microprocessor is an Event List,
which is the output of the frame processing pipeline. Its structure is shown in Fig. 3.
For each frame, the Event List header is generated that contains the time stamp in the
form of the frame counter and additional housekeeping data e.g. threshold values used
in the pipeline stages. Each event is represented as one line that contains amongst
others the following data:

• Energy value (bits number 36 down to 23): The 14-bit output of the ADC represents
the energy of the pixel

• Line address (bits number 22 down to 14): The 9-bit value corresponds to line
number 0–511

• Pixel address (bits number 13 down to 5): The 9-bit value corresponds to the
column number 0–511

• Flags (bits number 4 down to 0): Information gained by the pipeline stages and
added to each event indicating, for example, the results of threshold comparison.

Figure 3 illustrates the event list and shows a frame. The blue dots represent pixels
illuminated with x-ray photons.

Fig. 2. Softcore microprocessor architecture with AHB internal interconnect. (Color fgure
online)

232 G. Skvarc Bozic et al.

3.3 MIP Pixel Exclusion

Since the input to the algorithm is already a reduced dataset in from of an Event List it
is not beneficial to reconstruct the frame in the microprocessor as this introduces
substantial memory penalty and usage. Therefore, the generated Event List is con-
sidered as data point dataset. Each MIP event is represented by multiple pixels where
each pixel corresponds to one data point in the generated Event List. When the Event
List is passed to the processor, the processor does not know which event pixels belong
to one MIP event even though this would be obvious if one would plot the data points.
Therefore, it is necessary to perform a clustering algorithm in order to identify different
MIP events and the number of them. However, because prior to clustering the number
of clusters is unknown a hierarchical clustering algorithm or some other form of non-
parametric clustering algorithm is needed.

The algorithm presented in this paper uses the DBSCAN clustering algorithm [5]
since it is a non-parametric density-based clustering algorithm and suits this application
well. Once all the clusters or rather MIP event groups (tracks) are identified it can be
determined if other events occurred within the MIP event region. In order to do this, the
region around each MIP event has to be defined. In our case, an elliptical exclusion area
around the MIP tracks was chosen. First, a centroid is calculated for each cluster and
other ellipse parameters based on mathematical equations presented in [6]. Based on
these parameters an ellipse border is computed and with it the region around the
MIP. Afterward, the non-flagged events can be checked if they fall into any of the
computed regions if they do, they are flagged which indicates that they belong to a MIP
event as explained in Sect. 2.

The algorithm depicted in Fig. 4 was first tested as a MATLAB script where one
can also visualize all the results and prove the algorithm correctness. After successful
test with MATLAB scripts the algorithm was rewritten in C to test it on the Risc-V
microprocessor.

Fig. 3. Event list format and example frame. (Color figure online)

Fig. 4. Secondaries detection algorithm flow diagram.

Satellite Onboard Data Reduction Using a Risc-V Core 233

Prior to described algorithm above, we used a simpler algorithm for detecting MIP
events. It is based on an insertion sort algorithm with time complexity of O(n2), which
is comparable to the worst-case time complexity O(n2) of the DBSCAN algorithm.
Based on the results from Tables 1 and 2 it was determined that an algorithm with time
complexity O(n2) is a feasible solution for our target application. However, the algo-
rithm based on insertion sort had a significant drawback as it could not distinguish
between two MIP events with either the same Line addresses (y coordinate) or the same
Pixel addresses (x coordinate). Therefore, a new algorithm for identifying MIP events
was needed.

As can later be seen from results in Sect. 4, the current C implementation of the
new algorithm is nowhere near required timing constraints. However, we are confident
that with optimized range query function we can achieve similar results as we did with
the insertion sort based algorithm, if not better.

4 Experimental Results

Three different scenarios have been tested for the new algorithm:

• Test 1 has been performed with a constant number of *50 events with an
increasing number of MIP events (with an average of 10 pixels per MIP).

• Test 2 always included 3 MIP events per frame and the number of events has
gradually been increased.

• Test 3 has been performed with a constant number of *50 events, a constant
number of MIP events (3 MIPs per frame), and an increasing number of pixels per
MIP event.

Table 1. Performance for processing one event list with one MIP event (insertion sort)

Number of events Flagged events Cycles Execution time [ms]

750 189 382500 7,65
500 113 256700 5,10
350 22 171100 3,42

Table 2. Performance for processing one event list with multiple MIP events (insertion sort)

Number of events Flagged events Cycles Execution time [ms]

780 206 515900 10,30
505 101 328100 6,97
350 22 202400 4,04

234 G. Skvarc Bozic et al.

Test 2 and test 3 demonstrate the timing complexity of the DBSCAN clustering
algorithm which is expected to be O(n2) in the worst case, result of using a linear
search. Algorithm is affected by the Event List growth and it does not matter which
number of events increases be it either MIP or regular events. However, test 2 has
worse performance as significant number of regular events introduces additional timing
penalty because of another linear search in the last block of the algorithm depicted in
Fig. 4.

It should be pointed out that these results can be affected by the size of a MIP
region since more events can fall into a region. However, this is only significant when a
large number of events are present in a frame, and more events need to be processed.
Moreover, for each test case, a random Event List was generated.

Figure 5 depicts the result from the measurement of the execution time of the
function executing algorithm as described in Fig. 4. The execution time linearly
increases with the increasing number of MIP events. The dotted trendline (linear
approximation) also confirms this behavior.

Figure 6 depicts the relation between the execution time and the increasing number
of events per frame. As seen by the dotted trendline the execution time follows an
O(n2) the worst-case timing complexity characteristic in the case of the DBSCAN
algorithm.

Fig. 5. Execution Time of the algorithm compared to the increasing number of MIP events per
frame

Satellite Onboard Data Reduction Using a Risc-V Core 235

Figure 7 depicts the measurement result when the number of pixels per MIP event
is increased. As seen by the dotted trendline the execution time follows an O(n2) the
worst-case timing complexity characteristic in the case of the DBSCAN algorithm.

Fig. 6. Execution Time of the algorithm compared to the increasing number of events per frame

Fig. 7. Execution Time of the algorithm compared to the increasing number of pixels per MIP

236 G. Skvarc Bozic et al.

Figure 8 depicts visual results from the algorithm described in Sect. 3.3. Generated
Event List is shown in the left figure where events are represented by blue dots.
Generated Event List is plotted in a 512 � 512 pixel frame in order to have a visual
representation of the sensor array. The figure on the right depicts detected MIP events
with their elliptic regions. The color of MIP events is not important and it is there just
to visually distinguish between different MIP events. Two sizes of ellipse regions are
shown, where smaller regions marked with the red color include fewer events from the
Event List as opposed to larger regions marked with blue color.

5 Conclusion

In this paper, a use case of a softcore microprocessor in space application was pre-
sented. In particular, a MIP pixel exclusion algorithm running on a Risc-V softcore
microprocessor as part of the WFI onboard processing architecture. The softcore
microprocessor architecture was based on a 32-bit Risc-V RV32IMA CPU with a 32-
bit AHB internal interconnect.

Two different approaches were tested for the MIP pixel exclusion algorithm. One
based on an insertion sort algorithm, which proved that algorithms with time com-
plexity O(n2) are a feasible solution for our application. However, it turned out it is not
suitable for all scenarios. Therefore, a second more robust algorithm concept based on
data clustering DBSCAN algorithm was presented. Its executions times were far off
from required timing constraints. The most significant drawback of the current
DBSCAN based algorithm is the range query function. Currently it is implemented as
naïve linear search of the Event List which results in saver timing penalty and thus
making the DBSCAN algorithm of timing complexity O(n2). Mover, another search for
elements is performed in the final stage of the new algorithm which introduces addi-
tional timing penalty.

Fig. 8. Visualization of the algorithm results described in Sect. 3.3. (Color figure online)

Satellite Onboard Data Reduction Using a Risc-V Core 237

Nevertheless, with DBSCAN having a worst-case time complexity of O(n2) we are
confident that with an optimized range query function based on r*-tree or kd-tree data
indexing structure we can achieve similar results, if not better, as with the insertion sort
based algorithm. With the use of data indexing structure the expected timing com-
plexity of DBSCAN is O(n * log(n)).

Our next steps are to write an optimized C code for the range query, run the test on
the Risc-V softcore microprocessor, and see if our speculations are correct.

References

1. Nandra K., et al.: The hot and energetic universe – a white paper presenting the science theme
motivating the ATHENA + Mission. http://www.the-athena-x-ray-observatory.eu

2. Schanz, T., et al.: A fast one-chip event-preprocessor and sequencer for the Simbol-X
LowEnergy detector. Nucl. Instrum. Methods Phys. Res. A 624, 392–395 (2010)

3. Plattner M., et al.: WFI electronics and on-board data processing. In: Proceedings SPIE 9905,
Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99052D, 11 July
2016. https://doi.org/10.1117/12.2235375

4. Meidinger, N., et al.: Development of the focal plane PNCCD camera system for the X-ray
space telescope eROSITA. Nucl. Instrum. Methods Phys. Res. A 624, 321–329 (2010)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters. In: KDD-96 Proceedings, pp. 226–231. AAAI (1996)

6. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley
Publishing Company, Boston (1992)

238 G. Skvarc Bozic et al.

http://www.the-athena-x-ray-observatory.eu
https://doi.org/10.1117/12.2235375

	Satellite Onboard Data Reduction Using a Risc-V Core Inside an RTG4-Based Data Processing Pipeline
	Abstract
	1 Real-Time Data Processing Onboard ATHENA WFI
	2 Science Data Disturbance by Ionizing Particles
	3 RISC-V Softcore Architecture and MIP Removal Algorithm
	3.1 Softcore Microprocessor Architecture
	3.2 Event List Structure
	3.3 MIP Pixel Exclusion

	4 Experimental Results
	5 Conclusion
	References

